Predicting Wettability and the Electrochemical Window of Lithium-Metal/Solid Electrolyte Interfaces

Kwangnam Kim†‖ and Donald J. Siegel*,†‖§∥⊥

1 Mechanical Engineering Department, 2 Materials Science & Engineering, 3 Applied Physics Program, 4 University of Michigan Energy Institute, and 5 Joint Center for Energy Storage Research, University of Michigan, Ann Arbor, Michigan 48109-2125, United States

ABSTRACT: The development of solid electrolytes (SEs) is expected to enhance the safety of lithium-ion batteries. Additionally, a viable SE could allow the use of a Li-metal negative electrode, which would increase energy density. Recently, several antiperovskites have been reported to exhibit high ionic conductivities, prompting investigations of their use as an SE. In addition to having a suitable conductivity, phenomena at the interface between an SE and an electrode are also of great importance in determining the viability of an SE. For example, interfacial interactions can change the positions of the band edges of the SE, altering its stability against undesirable oxidation or reduction. Furthermore, the wettability of the SE by the metallic anode is desired to enable low interfacial resistance and uniform metal plating and stripping during cycling. The present study probes several properties of the SE/electrode interface at the atomic scale. Adopting the antiperovskite SE Li3OCl (LOC)/Li-metal anode interface as a model system, the interfacial energy, work of adhesion, wettability, band edge shifts, and the electrochemical window are predicted computationally. The oxygen-terminated interface was determined to be the most thermodynamically stable. Moreover, the large calculated work of adhesion for this system implies that Li will wet LOC, suggesting the possibility for low interfacial resistance. Nevertheless, these strong interfacial interactions come at a cost to electrochemical stability: strong interfacial bonding lowers the energy of the conduction band minimum (CBM) significantly and narrows the local band gap by 30% in the vicinity of the interface. Despite this interface-induced reduction in electrochemical window, the CBM in LOC remains more negative than the Li/Li+ redox potential, implying stability against reduction by the anode. In sum, this study illustrates a comprehensive computational approach to assessing electrode/electrolyte interfacial properties in solid-state batteries.

KEYWORDS: battery, energy storage, interface, Li-metal anode, wettability, electrochemical window

INTRODUCTION

Lithium-ion batteries (LIBs) are widely used energy storage devices due to their relatively high energy density and rechargeability.1 Commercial LIBs typically employ liquid electrolytes, which have the advantage of high ionic conductivities. However, commonly used liquid electrolytes are flammable, volatile, and susceptible to Li dendrite formation, resulting in internal short-circuiting.1–3 Thus, improvements in cell designs and/or materials that address these safety concerns are desirable. Compared to liquids, solid electrolytes (SEs) are less flammable, nonvolatile, and less sensitive to changes in temperature.4–6 Also, the high stiffness exhibited by some SEs has been projected to suppress dendrite formation.7 This latter benefit presents the possibility to increase the capacity of the negative electrode by substituting metallic lithium for lithiated carbon.8

Low ionic conductivity has historically been a shortcoming of SEs.9 More recently, however, a growing number of solid ionic conductors have been reported with conductivities comparable to those of liquids.9–15 Nevertheless, subsequent investigations on these SEs have shown that a high ionic conductivity alone is insufficient for realizing a viable solid-state cell; interfacial interactions involving the electrodes are also critical.15 Two examples of important interfacial properties involving SE are stability16–19 and wettability.20–22

Insufficient interfacial stability manifests through the formation of new phases (from reactions between the SE and electrode, or through decomposition of the SE itself) or through electron transfer between the electrode and SE. Both processes can yield undesirable outcomes. In the former case, the product phases can limit Li-ion mobility and thus increase interfacial resistance.16,18 In the latter mechanism, electron transfer to/from the SE can precipitate additional chemical reactions or impart undesirable electrical conductivity to the SE: for example, the reduction of an SE by the negative electrode can inject electrons into the conduction band.13,24
Figure 1 presents an energy level diagram for an SE and the electrodes in a battery.1,23 To minimize electron transfer to/from an SE, the anode electrochemical potential, \(\mu_a \), should be located below (i.e., at a lower energy than) the conduction band minimum (CBM) of the SE, while the cathode, \(\mu_c \), should be at a higher energy than the SE’s valence band maximum (VBM). Prior studies have demonstrated that these levels can be predicted computationally for an interface-free (i.e., bulk) SE, providing an estimate of an SE’s susceptibility to undesirable electron transfer.24–26 Nevertheless, the electrochemical window of an electrolyte can be influenced by interfacial interactions with the electrodes. For example, a previous report revealed that the highest unoccupied molecular orbital/lowest unoccupied molecular orbital levels of electrolyte solvent molecules shift due to interactions with electrode surfaces, narrowing the electrochemical window relative to that of the isolated molecules.23 To the best of our knowledge, the impact of interface interactions on the CBM/VBM positions of an SE has not been reported.

Regarding interfacial bonding, recent studies have identified the wettability of an SE by Li metal as a key factor in predicting performance.27,28 Low wettability results in poor contact to the Li/Li+ level. The present study predicts stability and wettability at a Li-metal/SE interface. The antiperovskite with composition Li\textsubscript{3}OCl (LOC) is adopted as a model SE.12 LOC has a simple crystal structure, making it attractive for computationally expensive electronic structure calculations. Furthermore, LOC has been reported to have a high ionic conductivity (~104 S/cm) and a large band gap,26,36 the latter implying a wide electrochemical window. An LOC-based cell with a graphitic anode and LiCoO\textsubscript{2}-based cathode was reported to operate at a voltage of up to 4.2 V over many cycles;37 additional experiments using a Li–LOC–Li symmetric cell reported that LOC is compatible with a Li-metal anode.39

First-principles calculations were used to assess the electronic and thermodynamic properties of Li and LOC surfaces/interfaces. Vibrational contributions to the enthalpy and entropy were evaluated to estimate surface/interface energies at near-ambient temperatures. Interface wettability was characterized according to the Li contact angle on LOC, derived from the Young–Dupré equation and the calculated interfacial work of adhesion. Stability against reduction by the Li electrode was predicted by determining the absolute positions of the band edges of LOC (via GW calculations) in relation to the Li/Li+ level.

These calculations suggest that the oxygen-terminated Li/LOC interface is the most thermodynamically stable. The calculated work of adhesion implies that Li will wet LOC with a low contact angle, suggesting the possibility for strong interfacial bonding and low interfacial resistance. On the other hand, this strong interfacial interaction significantly narrows the band gap of LOC in the interfacial region by shifting both the CBM and VBM: in the vicinity of the interface, the bulk band gap of ~8 eV is reduced to ~5.6 eV, implying a trade-off between strong interfacial bonding/wettability and electrochemical stability. Despite this interface-induced reduction in electrochemical window, the CBM in LOC remains ~1 V more negative than the Li/Li+ redox potential, denoting stability against reduction by the anode. In total, the present study demonstrates how first-principles computational methods can be used to comprehensively characterize interfacial properties that are relevant to the operation of solid-state batteries.

\section*{METHODS}

\textbf{First-Principles Calculations.} Density functional theory (DFT) calculations were performed using the Vienna ab initio Simulation Package.30 Exchange–correlation effects were treated within the generalized gradient approximation (GGA), as parameterized by Perdew, Burke, and Ernzerhof (PBE).40 Interactions between core and valence electrons were treated using the projector augmented wave method.41,42 The valence electron configurations were 1s22s2 for Li, 2s2p6 for O, and 3s23p5 for Cl. A plane-wave basis set with a cutoff energy of 550 eV was used for calculations involving ionization relaxations and total energy evaluations. More computationally expensive GW calculations (described below) used a 2s valence configuration for Li and lower cutoff energy of 475 eV. The energy of the electronic ground state was converged to within 10-5 eV, and the force criterion for atomic relaxations was set to 0.01 eV/Å. Convergence tests with respect to k-point sampling density for bulk systems are discussed in the Supporting Information.

Surface energies for LOC were calculated for fully relaxed slab models with 11 layers and within a supercell containing a 12 Å vacuum region. A 1\texttimes 1\texttimes 1 k-point mesh was used for all surface calculations. The effects of the number of slab layers (7–15 layers) and vacuum thicknesses (6–24 Å) were tested; it was determined that the surface energy was well converged using the parameters described above. The work of adhesion was calculated for
fully relaxed interface models with seven layers of LOC and seven layers of Li. Convergence testing revealed that the work of adhesion did not change significantly upon increasing the number of Li and LOC layers (tests were done with 5–13 Li layers and 7–23 LOC layers). A \(\Gamma \)-centered \(4 \times 4 \times 1 \) k-point mesh was also used for interface calculations; this sampling converged the total energy of the interface to within 1 meV/atom. Spin-polarized calculations were used for gas-phase molecules and for atoms; these systems used a simulation cell of dimensions 10 Å \(\times \) 11 Å \(\times \) 12 Å, with reciprocal space sampled at the \(\Gamma \) point.

Free energies were evaluated within the harmonic approximation using the direct method. \(^{43,44}\) Atomic displacements of \(\pm 0.02 \) and \(\pm 0.04 \) Å were used in conjunction with \(3 \times 3 \times 3 \) expansions of the conventional unit cells, corresponding to supercells containing 135 atoms for LOC (Figure S1), 54 atoms for BCC Li, 324 atoms for LiO\(_2\), and 216 atoms for LiCl. A \(\Gamma \)-centered \(4 \times 4 \times 4 \) k-point mesh was used for the Li supercell, whereas a single k-point was used for the other systems. Phonon calculations on slab models of LOC (see Figure S2) employed a \(3 \times 3 \times 3 \) expansion within the surface plane for \((100)\) surfaces, a \(3 \times 2 \) expansion for \((110)\) surfaces, and a \(2 \times 1 \) expansion for \((111)\) surfaces. A single k-point was used for these slab models. Interface models used a \(2 \times 2 \) expansion within the interfacial plane (dimensions of 15.6 Å \(\times \) 15.6 Å) and a \(\Gamma \)-centered \(2 \times 2 \times 1 \) k-point mesh. Convergence testing revealed that increases to system size or the number of k-points did not significantly alter the vibrational properties.

Band edge positions for the conduction and valence bands were calculated with the GW method. \(^{45,46}\) Prior studies have shown that GW calculations yield ionization potentials (IPs), electron affinities (EAs), and band gaps in good agreement with inverse photoemission experiments. \(^{46,47}\) We performed non-self-consistent GW\(_2\) (and partially) self-consistent GW\(_0\) and GW calculations using input wave functions from either self-consistent GGA or HSE06 \(^{51,52}\) hybrid-functional calculations. Here, “G” and “W” refer to Green’s function and the screened Coulomb interaction, respectively. In the self-consistent GW methods, the eigenvalues are updated, while the wave functions are kept fixed.

Band Edge Positions. The absolute positions of the VBM and CBM (relative to vacuum) in bulk LOC were obtained following the procedure described in ref S3. Figure 2 summarizes this approach, which involves aligning the planar-averaged electrostatic potential \(V_{\text{ref}} \) in the bulk region of an LOC slab surface with that from a bulk cell. \(^{53,54}\) VBM and CBM positions in the bulk cell (given by \(E_{\text{VBM}} \) and \(E_{\text{CBM}} \)) are evaluated using GW calculations, while the position of the vacuum level \((V_{\text{vac}}) \) is determined from the slab system at a lower level of theory (GGA or HSE06). Aligning the electrostatic potentials

\[
V_{\text{vac}} = V_{\text{ref}}(s) + \Delta V_{\text{ref}}(s) - \Delta \epsilon_{\text{vac}}(s,b) - \epsilon_{\text{VBM}}(s,b) + \epsilon_{\text{CBM}}(s,b) - E_{\text{VBM}}(s,b) + E_{\text{CBM}}(s,b) = V_{\text{ref}}(b) + \Delta V_{\text{ref}}(b) - \Delta \epsilon_{\text{vac}}(s,b) - \epsilon_{\text{VBM}}(s,b) + \epsilon_{\text{CBM}}(s,b) - E_{\text{VBM}}(s,b) + E_{\text{CBM}}(s,b) = \Delta V_{\text{ref}}(s) - \Delta V_{\text{ref}}(b) - \Delta \epsilon_{\text{vac}}(s,b) + \epsilon_{\text{VBM}}(s,b) - \epsilon_{\text{VBM}}(b,s) + \epsilon_{\text{CBM}}(s,b) - \epsilon_{\text{CBM}}(b,s) - E_{\text{VBM}}(s,b) + E_{\text{VBM}}(b,s) + E_{\text{CBM}}(s,b) - E_{\text{CBM}}(b,s).
\]

Figure 2. Determination of the absolute band edge positions of a solid electrolyte. The method is based on aligning the reference potentials \(V_{\text{ref}} \) of the slab (s), bulk (b), and interface (i) systems.

in these two systems provides a common reference from which the absolute VBM/CBM positions can be inferred. Following this procedure, the IP of bulk LOC is expressed as

\[
\text{IP}_{b,GW} = (V_{\text{vac}} - V_{\text{ref}}) - (\epsilon_{\text{VBM}} - \epsilon_{\text{VBM}}_{\text{ref}})
\]

where \(V_{\text{vac}} \) and \(V_{\text{ref}} \) are the planar-averaged electrostatic potentials in the vacuum region and at the center of the LOC slab, respectively, and \(\epsilon_{\text{VBM}} \) and \(\epsilon_{\text{VBM}}_{\text{ref}} \) are the VBM energy and reference electrostatic potential of bulk LOC evaluated with the GW method, respectively. \(\epsilon_{\text{VBM}}_{\text{ref}} \) for the bulk cell should be evaluated at an atomic plane similar to that found in the center of the LOC slab. The absolute CBM position (i.e., \(E_{\text{CBM}}(s,b) \)) can be determined by combining IP\(_{b,GW}\) with the bulk band gap (i.e., \(E_{\text{CBM}}(s,b) \)). Since the wave functions input to a GW calculation (from a preceding GGA or HSE06 calculation) are unchanged during the GW calculation, the Hartree potential is also unchanged. Thus, the reference potential from the slab supercell (evaluated using the GGA or HSE06 functional) and the bulk (evaluated using GW) can be aligned without difficulty. \(^{49,50}\)

In a similar fashion, the absolute positions of the LOC band edges can be determined when LOC is interfaced with a Li anode. In this case, the electrostatic potential at the center of an LOC slab (now a subcomponent of the interface supercell) is used as the reference potential (i.e., \(V_{\text{ref}} \)). Band edge shifts are obtained as the difference in VBM or CBM positions between the bulk and interface systems as

\[
\Delta E_{\text{VBM/CBM}}^{b-i,GW} = |E_{\text{VBM/CBM}}^{b,GW} - E_{\text{VBM/CBM}}^{i,GW}|
\]

Gibbs Free-Energy Calculations. The Gibbs free energy, \(G \), for several phases relevant for the Li–O–Cl system was evaluated using the following expression \(^{27,30}\)

\[
G(T, P) = E(0 K) + E^{\text{vib}}(T) + E^{\text{rot}}(T) + E^{\text{trans}}(T) + pV - T[S^{\text{vib}}(T) + S^{\text{trans}}(T)]
\]

Here \(E(0 K) \) is the static energy at 0 K (i.e., the DFT total energy), and \(E^{\text{vib}}(T) \) is the vibrational energy, including the zero-point energy. For molecular systems, the rotational energy, \(E^{\text{rot}}(T) \), translational energy, \(E^{\text{trans}}(T) \), and the \(pV \) term sum to \(7/2k_B T(4k_B T) \) for linear (nonlinear) molecules, where \(k_B \) is the Boltzmann constant. These three terms do not significantly contribute to the free energy of solids under the conditions examined here. \(S^{\text{vib}}(T) \) and \(S^{\text{trans}}(T) \) are the vibrational and configurational entropies; the latter term can be neglected for the ordered solid systems examined here. \(^{54,55}\) For gas-phase molecules, the total entropy \(S^{\text{vib}}(T) + S^{\text{trans}}(T) \) was obtained from experimental data. \(^{54,55}\) Vibrational contributions to the energy and entropy within the harmonic approximation can be expressed as

\[
E^{\text{vib}}(T) = \sum_i \frac{1}{2} \hbar \omega_i + \hbar \omega_i (e^{\hbar \omega_i/k_B T} - 1)^{-1}
\]

\[
S^{\text{vib}}(T) = \frac{3}{2} \sum_i \frac{\hbar \omega_i / k_B T}{e^{\hbar \omega_i / k_B T} - 1} - \ln(1 - e^{-\hbar \omega_i / k_B T})
\]

where the sums are over vibrational modes \(\omega_i \) and \(\hbar \) is the reduced Planck constant.

The dependence of the chemical potentials of the gas-phase species upon temperature and pressure was evaluated assuming ideal gas behavior

\[
\mu(T, p) = \frac{1}{2} G(T, p^*) + k_B T \ln \left(\frac{p}{p^*} \right)
\]

where \(p^* \) is the standard pressure. The calculated vibrational modes for the various molecular species, 1572 cm\(^{-1}\) for O\(_2\), 538 cm\(^{-1}\) for Cl\(_2\), 1062, 916, and 424 cm\(^{-1}\) for ClO\(_2\), and 642, 577, and 278 cm\(^{-1}\) for Cl\(_2\)O\(_2\) are in reasonable agreement with the experimental data. \(^{58}\) A discussion of corrections to the chemical potentials of oxygen and chlorine can be found in the Supporting Information.
RESULTS AND DISCUSSION

Bulk Properties. Antiperovskite LOC crystallizes in the cubic space group $Pn3m$. In this structure, Li_6O octahedra are surrounded by a cubic framework composed of Cl anions (Figure S1). The low-energy structures of LOC, BCC Li, Li_2O, and LiCl were determined at 0 K using the Murnaghan equation of state (see the section Murnaghan equation of state and Figure S3 in the Supporting Information).

Table 1 summarizes the band-gap predictions as a function of the calculation method and input wave-function flavor (based on either a self-consistent GGA or hybrid-functional calculation). GW calculations were preceded by extensive GW calculations. Of the convergence tests, as described in the section GW calculations. GW calculations were preceded by extensive GW methods reported in Table 1, prior studies have shown that the HSE06 + G0W0 method and the GGA + GW0 method yield band gaps that are in very good agreement with the HSE06, were used to generate the input wave functions used in the GW calculations.

Table 1. Calculated Band Gaps (in Electron Volts) for Li_3OCl as a Function of the Calculation Method

<table>
<thead>
<tr>
<th>wave-function type</th>
<th>non-GW</th>
<th>G_0W_0</th>
<th>GW0</th>
<th>GW</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGA-PBE</td>
<td>4.84</td>
<td>7.29</td>
<td>7.84</td>
<td>8.65</td>
</tr>
<tr>
<td>HSE06</td>
<td>6.41</td>
<td>8.04</td>
<td>8.32</td>
<td>8.80</td>
</tr>
</tbody>
</table>

“Two different exchange-correlation functionals, GGA-PBE and HSE06, were used to generate the input wave functions used in the GW calculations.

To avoid decomposition of LOC into the elements or binary compounds, the range of allowable values for its chemical potentials must satisfy the following constraints:

\[\mu_{Li}^{LOC} \leq G_{Li}^{BCC bulk} = \mu_{Li}^{ref} \]
\[\mu_{O}^{LOC} \leq 0.5G_{O_{gas}}^{gas} = \mu_{O}^{ref} \]
\[\mu_{Cl}^{LOC} \leq 0.5G_{Cl_{gas}}^{gas} = \mu_{Cl}^{ref} \]
\[2\mu_{Li}^{LOC} + \mu_{O}^{LOC} \leq G_{LiCl}^{bulk} \]
\[\mu_{Li}^{LOC} + \mu_{Cl}^{LOC} \leq G_{LiCl}^{bulk} \]
\[\chi_{Li}^{LOC} + \gamma_{O}^{LOC} \leq G_{Cl_{gas}}^{ref} \]

where the superscript "ref" refers to standard conditions, and Cl_{gas} refers to Cl$_2$ and ClO$_2$ gases at STP. μ_{LOC}^{ref} can be eliminated in eq 2 using eq 1, allowing the constraints to be expressed only as functions of μ_{LOC}^{Li} and μ_{LOC}^{Cl}.

The narrow blue region in Figure 3a identifies the range of chemical potentials (satisfying the above constraints) for which LOC is stable at 300 K and 1 atm. Four constraints define the region’s boundaries: at the left and right edges, two parallel lines demark decomposition into Li_2O and LiCl, while boundaries above and below mark the chemical potentials at which decomposition into O$_2$ gas or to Li metal is expected. Red lines and arrows in Figure 3a indicate the chemical potential values at which other decomposition products are predicted to form. Although not shown, the stability range for LOC at 550 K and 10^{-8} atm, conditions typical for its synthesis, is very similar to that shown in Figure 3a at 300 K and 1 atm.

The combination of chemical potential values (parallel lines in Figure 3a) that bound the stability regime of LOC can be expressed generally as $\mu_{LOC}^{Li} - 2\mu_{LOC}^{Cl} = C$, where C is a constant. At 300 K and 1 atm, LOC is stable for $1.39 \leq \mu_{LOC}^{Li} - 2\mu_{LOC}^{Cl} \leq 1.42$. Since the stability region is very narrow, μ_{LOC}^{Li} and μ_{LOC}^{Cl} can be related by assuming $C = 1.4$, e.g., $\mu_{LOC}^{Cl} = 0.5(\mu_{LOC}^{Li} - 1.4)$. With this approximation, the constraints in eq 2 can be expressed only in terms of μ_{LOC}^{Li}.

Figure 3. (a) Stability of bulk LOC at 300 K and 1 atm as a function of the chemical potentials of oxygen (μ_{LOC}^{O}) and chlorine (μ_{LOC}^{Cl}) in LOC. The thin blue region indicates the combination of chemical potentials that satisfy the thermodynamic constraints in eq 2, resulting in the stability of LOC. Outside of this region, LOC is expected to decompose into other phases; red lines and arrows indicate boundaries in chemical potential space where other phases are predicted to form. (b, c) Calculated surface energies of LOC as a function of the chemical potential of oxygen at 300 K and 1 atm [panel (b), STP] and at 550 K and 10^{-8} atm [panel (c), comparable to the synthesis conditions of LOC]. In the surface energy plots, the chemical potentials μ_{LOC}^{Li} and μ_{LOC}^{Cl} are related by eq 2 and restricted to the range determined in panel (a) for which LOC is stable with respect to decomposition.
Li$_3$OCl Surface Energies. The stability of six low-index surfaces of LOC was examined (Figure S2): two (100) surfaces, one with Li–Cl termination and one with Li–O termination; two (110) surfaces, one terminated by Li and one terminated by a plane containing all of Li, O, and Cl; and two (111) surfaces, one with Li–Cl termination and one O termination. To ensure both surfaces of each LOC slab were identical, it was necessary to construct nonstoichiometric slabs.

The surface energy was evaluated as

$$\sigma = \frac{1}{A} \left(G_{\text{slab}} - \sum_i n_i^{\text{slab}} \mu_i^{\text{LOC}} \right)$$

where A is the surface area, G_{slab} is the Gibbs free energy of the slab supercell, n_i^{slab} is the number of atoms of type i in the slab, and μ_i^{LOC} is the chemical potential of species i in bulk LOC. The chemical potential of Li ($\mu_{\text{Li}}^{\text{LOC}}$) in the above expression for σ can be eliminated using the Gibbs free energy of LOC (eq 1); furthermore, the chemical potential of Cl ($\mu_{\text{Cl}}^{\text{LOC}}$) can also be eliminated using the relation $\mu_{\text{LOC}} = 0.5(\mu_{\text{Li}}^{\text{LOC}} - C)$ so that the surface energy can be expressed as a function of μ_{LOC}

$$\sigma = \frac{1}{A} \left(G_{\text{slab}} - \frac{1}{3} n_{\text{Cl}}^{\text{bulk}} G_{\text{Li},\text{Cl}}^{\text{bulk}} - \frac{1}{2} n_{\text{Li}}^{\text{bulk}} - \frac{1}{3} n_{\text{Cl}}^{\text{bulk}} \right) C$$

$$+ \left\{ n_{\text{slab}}^{\text{Cl}} + \frac{1}{2} n_{\text{slab}}^{\text{Li}} - \frac{1}{2} n_{\text{Li}}^{\text{slab}} \mu_{\text{LOC}}^{\text{Li}} \right\}$$

where $C = 1.4$ at 300 K and 1 atm.

Figures 3b,c compare the energies of the six examined surfaces of LOC as a function of oxygen chemical potential at STP (Figure 3b) and at conditions typical of LOC synthesis (550 K, low pressure, Figure 3c). Compared to the (111) and (110) surfaces, the (100) planes have the lowest surface energies regardless of their chemical termination. Calculated surface energies for the (100) surfaces are 0.19 and 0.75 meV/Å2 at 300 K and 0.11 and 0.62 meV/Å2 at 500 K, for the Li–Cl and Li–O terminations, respectively. Assuming that thermodynamic equilibrium holds, this implies that the (100) surfaces are the most plausible; indeed, the equilibrium crystallite shapes predicted by the Wulff construction and the calculated surface energies exhibit only (100) planes, Figure S6.~63 Given their low energies, the (100) surfaces were adopted for additional interfacial analyses, as described below. Note that the surface energies of (100) planes are independent of μ_{LOC}, as explained in the Supporting Information.

Li/Li$_3$OCl Interface. LOC/Li interfaces were constructed by joining either Li–Cl-terminated (100) or Li–O-terminated (100) surfaces of LOC with the (100) surface of a Li metal. The minimum-energy interface geometry was determined by searching over a series of rigid displacements of the adjoining slabs in directions within, and normal to, the interface plane. The equilibrium interface distance (assuming rigid slabs) was determined by fitting energy vs interface distance data to the universal binding energy relation (UBER).~66 Starting from this interface distance, all atoms were subsequently fully relaxed to generate the final interface geometry.

Hereafter, we refer to the (100) LOC surface or interface with either Li–Cl or Li–O termination as the “Cl-terminated” or “O-terminated” surface, respectively. Interfaces involving each of these two LOC surfaces and the (100) surface of BCC Li were modeled to predict the interfacial thermodynamics, wettability, and electrochemical stability of LOC in contact with a Li-metal anode. The (100) surface of Li has the lowest energy among low-index facets of BCC Li: 29.1, 30.5, and 31.2 meV/Å2 for (100), (110), and (111) planes, respectively, Figure S7, similar to previous reports.~65–67 Interfaces were constructed by matching the 2 × 2 Cl- or O-terminated LOC (100) surface to a $\sqrt{5} \times \sqrt{5}$ (100) BCC Li surface containing five Li atoms per layer. This interfacial orientation relationship minimizes the interfacial strain while allowing for moderate supercell sizes. The Li surface was strained by 1.1% in its in-plane directions to match the dimensions of the LOC slab. The interface models contained 103 and 107 atoms, respectively, for supercells based on Cl- and O-terminated LOC.

To identify the minimum-energy interface geometry, the total energy of the interface was evaluated as a function of displacements within, and normal to, the interface plane. One hundred interfacial displacements in the interfacial plane were sampled using a uniform grid with a 10 × 10 mesh. This grid search was performed at several interlayer distances. In all cases, the atom positions were fixed. The interfacial work of adhesion W_{ad} at each interfacial separation, d, was calculated for this “rigid” interface according to

$$W_{ad}(d) = \frac{1}{A} [E_{\text{interface}}(d) - (E_{\text{Li},\text{OCl}} + E_{\text{BCC-Li}})]$$

where A is the interface area and $E_{\text{interface}}$, $E_{\text{Li},\text{OCl}}$, and $E_{\text{BCC-Li}}$ are the total energies of the interface, the isolated LOC slab, and the isolated BCC Li slab, respectively. (The dimensions and the number of layers contained in the isolated slabs were identical to those in the interface system.) The W_{ad} values obtained at different interfacial separations were fit using the universal binding energy relation (UBER)64

$$W_{ad}(d) = -W_{ad}^0 \left(1 + \frac{d - d_0}{l} \right) e^{-(d - d_0)/l}$$

where W_{ad}^0 is the work of adhesion for the rigid interface at the equilibrium separation, d_0 and l is a scaling length. The equilibrium separations for the Cl- and O-terminated interfaces were 3.11 and 2.61 Å, respectively (Figure S8).

Subsequently, all atoms in the interface cells were relaxed starting from interface models positioned at their rigid-body equilibrium interface distances, d_0. These relaxations yield the minimum-energy interface structures. Figure 4 shows the interface models that result from this process. The Cl-terminated interface has a relatively undisturbed interfacial structure, which resembles that of bulk Li and LOC. Li$_6$O octahedra in LOC at this interface remain intact. On the other hand, large interfacial atomic rearrangements are observed for the O-terminated system. In this case, truncated Li$_6$O octahedra at the interface (these octahedra are missing a Li atom at the octahedron vertex closest to the Li slab) are reformed by attracting Li atoms from the Li slab. These models were used to calculate thermodynamic properties and the work of adhesion, as described below.

Interface Thermodynamics. We first consider the thermodynamic properties of the LOC/Li interface. These are summarized in Table 2 and include the interface formation energy, the strain energy, and the interface energy. The interface formation energy, G_0, was calculated as68
Table 2. Calculated Li/Li₃OCl Interface Formation Energy, Strain Energy, and Interface Energy as a Function of Interface Composition at Ambient Conditions and at Conditions That Mimic the Temperature and Pressure Used during the Synthesis of LOC

<table>
<thead>
<tr>
<th>Interface</th>
<th>Formation Energy (eV)</th>
<th>Strain Energy (eV)</th>
<th>Interface Energy (J/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl termination</td>
<td>3.80</td>
<td>0.03</td>
<td>0.50</td>
</tr>
<tr>
<td>O termination</td>
<td>3.21</td>
<td>0.03</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Table 3. Calculated Work of Adhesion and Contact Angle as a Function of Interface Composition for the Li/Li₃OCl Interface

<table>
<thead>
<tr>
<th>Interface</th>
<th>Work of Adhesion (J/m²)</th>
<th>Contact Angle (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl termination</td>
<td>0.09</td>
<td>143.4</td>
</tr>
<tr>
<td>O termination</td>
<td>0.75</td>
<td>52.6</td>
</tr>
</tbody>
</table>

The O termination is energetically favored compared to the Cl termination. The relative ordering of the formation energies is the same under conditions that mimic LOC synthesis (2.84 vs 2.12 eV for Cl and O terminations, respectively; Table 2). Similar to the surface energies, the interfacial formation energies are constant values, i.e., they are independent of the oxygen chemical potential.

The interface formation energy can be expressed as a sum of two terms. These include a strain energy incurred to form a coherent interface (in this case applied only to a Li metal) and the interfacial energy:

\[G_i = \gamma_f + \zeta \]

Here, \(\gamma \) is the interface energy evaluated for the coherent LOC/Li junction, assuming a strained Li metal. The interface energy is a measure of the interface bonding strength. \(\zeta \) is the strain energy associated with matching the Li in-plane surface lattice constants to that of LOC. The calculated interface energies of Cl- and O-terminated interfaces are 0.50 and 0.42 J/m² at STP and 0.37 and 0.28 J/m² at the LOC synthesis conditions, respectively. As the interface energy is measured relative to the average bonding in LOC and Li metal, the positive values predicted for \(\gamma \) imply that bonding at both interfaces is slightly weaker than on average in the bulk materials. Although the Cl-terminated surface is more stable than the O-terminated variant, the smaller magnitude of the interface energy obtained for the O-terminated interface suggests that the O-terminated interface is preferred relative to the Cl-terminated variant. It is possible that O-terminated interfaces may be formed from the Cl-terminated LOC surface through the segregation of oxygen to the interface. Regarding the strain energy, the computed value is small, only 0.03 eV. This follows from the small size of the strain and the softness of a Li metal. Given that the interface energies of both terminations are comparable, we extend our characterization of their properties to both variants.

Interface Adhesion and Wettability. Using the relaxed interface geometries shown in Figure 4, Table 3 summarizes the interfacial work of adhesion, \(W_{ad} \), and the contact angle, \(\theta_c \), for Li wetting of LOC. A large difference is observed in the \(W_{ad} \) values for the two interface terminations. First, adhesion at the Cl-terminated interface is relatively weak, \(W_{ad} = 0.09 \) J/m². This weak interaction is consistent with this interface’s relatively undistorted atomic structure (Figure 4) and likely

Figure 4. Relaxed structure of Cl- and O-terminated interfaces, which consist of seven layers of LOC (100) and BCC Li (100) planes (103 and 107 atoms, respectively). The O-terminated interface is shorter in height than the Cl-terminated interface due to shorter interlayer distance. A weak interaction is found at the Cl-terminated interface, whereas O ions strongly attract Li-metal atoms and form an octahedron to make up for the missing part at the O-terminated interface.
reflects the low reactivity (with Li metal) of the intact Li$_6$O octahedra present at the interface. In contrast, adhesion at the O-terminated interface is much stronger, $W_{ad} = 0.75$ J/m2. In this case, the stronger adhesion arises from stronger interactions between the Li-metal slab and the truncated Li$_6$O octahedra at the LOC surface, Figure 4. Reforming the Li$_6$O octahedra and extending the LOC crystal structure by scavenging Li from the metal slab provides a driving force for stronger interfacial adhesion.

Prior studies have argued that the wettability of an SE by a Li metal is desirable for achieving low interfacial resistance and for suppressing the formation of dendrites.20–22 Wettability is typically evaluated using sessile drop experiments, wherein the contact angle, θ_c, of molten Li on an SE substrate is measured.22,69,70 $\theta_c > 90^\circ$ is associated with weak, nonwetting interfacial interactions, while $\theta_c < 90^\circ$ implies strong interfacial adhesion.69 The contact angle can be calculated from W_{ad} and the surface energy of Li, σ_{li}, via the Young–Dupré equation70

$$W_{ad} = \sigma_{li}(1 + \cos \theta_c)$$

Table 3 shows the calculated contact angles for a Li metal on the Cl- and O-terminated surfaces of LOC. Consistent with their relative W_{ad} values, Li is predicted to not wet the Cl-terminated surface, $\theta_c = 143.4^\circ$, but is expected to wet the O-terminated surface, $\theta_c = 52.6^\circ$. The possibility for achieving good Li wettability for the most stable (O-terminated) Li/LOC interface may underlie the good cyclability reported for suppressing the formation of dendrites.20 Thus, realizing the benefits of the O-terminated interface may require additional care in material handling.

Interfacial Electronic Structure and Electrochemical Window. Stability against undesirable electron transfer to or from an SE depends upon the positions of the SE’s band edges (CBM and VBM) in relation to the electrochemical potentials of the electrodes. Toward predicting this stability, the spatial distribution of the VBM and CBM of LOC in contact with a Li-metal electrode was identified. Figure 5 shows charge density isosurfaces for the VBM and CBM of the O-terminated LOC/Li interface. These distributions were determined by analyzing the band- and k-point-decomposed partial charge density. Specifically, the VBM was identified as the highest occupied electronic state having the majority of its density located on the LOC slab; similarly, the CBM was identified by searching for the lowest energy unoccupied state with majority weight on the SE. (Additional details describing the process for identifying the band edge states are provided in Figures S9–S12 and in associated descriptions in the Supporting Information.)

Figure 6 illustrates the predicted band edge positions and the corresponding electrochemical window for bulk LOC and for Li/LOC interfaces terminated with Cl or O. Band edge positions for bulk LOC were determined with the aid of a vacuum/slab supercell of LOC; this procedure predicts the behavior of bulk LOC far from surfaces/interfaces and thus does not account for possible changes to the positions of the VBM or CBM due to interfacial interactions near electrodes (in this case, a Li-metal anode). (Bulk band edge positions for a different SE, LLZO, were reported in a prior study.)24

Importantly, the present study also quantifies the extent to which band edge positions change near interfaces (described below). This is done for the two explicit interface models shown in Figure 4.

Assuming a Cl-terminated (100) surface, Figure 6 shows that “isolated” bulk LOC has band edge positions that are well outside of the operating window of a hypothetical Li metal/4.5 V battery. The CBM is located 0.4 eV above the vacuum level and is separated by the bulk band gap (8.04 eV) from the VBM, the latter 7.6 eV below the vacuum level. These band edge positions suggest that, in the limit of isolated/bulk LOC where all interfacial effects are ignored, there is a negligible driving force for electron transfer to/from LOC from either an anode operating at the Li/Li$^+$ potential or to a cathode operating at 4.5 V.

Assuming the surface of LOC remains Cl-terminated, Figure 6 also shows that interfacing LOC with Li has little effect on the band edge positions. In this case, only minor shifts in the CBM (+0.43 eV) and VBM (+0.04 eV) are predicted; these shifts reduce the band gap slightly, to 7.65 eV. The relatively small shifts introduced by interfacial interactions at the Cl-terminated interface may be explained by the weak interactions present there. As mentioned above, the work of adhesion for this interface is small, only 0.09 J/m2. Such weak interactions do not strongly perturb the electronic structure of LOC, leaving the band edge positions relatively unchanged from their positions in the bulk.

Turning to the O-terminated model of LOC, Figure 6 shows that the band edges for the bulk system do not differ significantly from those obtained for the Cl-terminated case: the band edges undergo only a small, 0.3 eV rigid shift to higher energies. Nevertheless, large differences are predicted for the explicit interface model. In contrast to the limited shifts observed for the Cl-terminated interface, the VBM and CBM of LOC at the O-terminated interface shift by +1.29 and −1.15
eV, respectively. These shifts narrow the LOC band gap by 2.4 eV, resulting in a smaller near-interface band gap of 5.60 eV.

The relatively larger changes to the CBM and VBM that occur at the O-terminated interface are a consequence of the stronger bonding present there. Recalling the adhesion and contact angle data from Table 3, this interface is predicted to have a work of adhesion that is eight times larger than the Cl-terminated case. Consequently, a Li metal is expected to wet the O-terminated surface of LOC but not the Cl-terminated one. It is likely that these stronger interfacial interactions induce significant perturbations to the LOC interfacial electronic structure (i.e., the formation of new bonds), which, in turn, shift the band edges more substantially.

Despite the strong interactions present at the O-terminated interface, Figure 6 shows that the CBM for this system remains approximately 1 eV higher in energy (~1 V more negative) than the Li/Li' level. This positioning implies that the electron transfer to LOC from a Li-metal electrode is energetically unfavorable for the O-terminated interface (as well as for the Cl-terminated case, as discussed above), a situation that is desirable from the standpoint of electrochemical stability. A previous study of the chemical stability of LOC using the grand potential phase diagram approach concluded that LOC will not decompose into other compounds when in contact with a Li metal. In total, the present and prior calculations suggest that LOC is both chemically and electrochemically stable against a Li cathode. An initial estimate of this stability can be gleaned from the position of the VBM for isolated/bulk LOC, as shown in Figure 6. In this approximation, LOC appears to be stable for voltages exceeding 5.5 V. However, this stability limit is very likely overestimated; an explicit calculation of the LOC/cathode interface is needed, as done here for the Li/LOC interface, to position the VBM accurately. (In the limit of isolated/bulk LLZO, accounting for changes to the electrochemical potential of Li at the cathode was shown to shift the VBM to higher energies.) Regarding chemical reactivity, a previous DFT calculation suggested that LOC will decompose into LiClO₃ and LiCl when in contact with a LiCoO₂ cathode. In contrast, earlier full-cell experiments using the same cathode reported stable operating voltages of up to 4.2 V. Nevertheless, capacity fade observed in these experiments for the early stages of cycling could imply the formation of solid electrolyte interphase (SEI) that prevents further reactions and preserves high-voltage operation. Under this scenario, which is commonly observed at the anode of conventional liquid electrolytes, there would be no inconsistency between the calculations and the experiments. Nevertheless, the possibility for SEI formation highlights the need to go beyond stability assessments that are based on thermodynamics alone: kinetic passivation should also be considered.

Examining the data from Tables 2 and 3 and Figure 6 more broadly, it appears that a trade-off exists between the “interfacial compatibility” of LOC with Li and its electrochemical window (as determined by the position of the LOC CBM). Specifically, Tables 2 and 3 show that the O-terminated interface is the most favorable system based on thermodynamics, adhesion, and Li wettability. On the other hand, Figure 6 shows that these favorable interfacial properties come at a cost to expected electrochemical performance; a more
substantial shift of the CBM is observed for the O-terminated interface, resulting in reduced resistance to electron transfer with the negative electrode. Fortunately, for the present LOC-based system, this trade-off appears to be insufficient in magnitude to impact battery performance, as the bulk CBM starts several electron volts above the Li/Li^+ level, and interfacial effects do not push the CBM below that level. Nevertheless, it is reasonable to speculate that this trend should apply generally, as the formation of relatively stronger (interfacial) bonds generally coincides with larger perturbations to the electronic structure of a bonding couple.\(^7\) Thus, other SEs whose bulk band edges lie closer to the Li/Li^+ level, for minimizing undesirable electron transfer.

Strong interfacial bonding. Stated differently, solid electrolytes having excellent wettability by Li may not be optimal choices for minimizing undesirable electron transfer.

It is important to recognize that defects at the interface could influence interfacial properties. However, since neither the identities (interstitials, vacancies, antisite defects, voids, etc.) nor the concentrations of these defects are known, it is not possible to speculate about even the qualitative nature of their impact—for example, do defects increase or decrease adhesion? As a first step in modeling any complex system (such as a realistic interface), it is helpful to have a clear understanding of an appropriate baseline. By examining the defect-free Li/LOC interface, the present study provides such a baseline.

CONCLUSIONS

The present study has probed several properties of a model solid electrolyte/Li-metal interface at the atomic scale. In particular, the interfacial energy, work of adhesion, wettability, band edge shifts, and the electrochemical window were predicted computationally for a system based on the antiperovskite solid electrolyte Li_3OCl (LOC). Vibrational contributions to the enthalpy and entropy were evaluated to estimate surface/interface energies at near-ambient temperatures. Interface wettability was characterized according to the Li contact angle on LOC, derived from the Young–Dupré equation and the calculated interfacial work of adhesion. Stability against reduction by the Li electrode was predicted by determining the positions of the band edges of LOC via GW calculations relative to the Li/Li^+ level.

These calculations suggest that the oxygen-terminated Li/LOC interface is the most thermodynamically stable. The calculated work of adhesion implies that Li will wet LOC with a low contact angle of \(\sim 53^\circ\), reflecting strong interfacial bonding and the possibility for low interfacial resistance. On the other hand, this strong interfacial interaction significantly narrows the band gap of LOC in the interfacial region by shifting both the CBM and VBM: in the vicinity of the interface, the size of the bulk band gap, \(~8\ eV\), is reduced to \(~6.6\ eV\), implying a trade-off between strong interfacial bonding/wettability and electrochemical stability. Despite this interface-induced reduction in electrochemical window, the CBM in LOC remains \(~1\ V\) more negative than the Li/Li^+ redox potential, denoting stability against reduction by the anode.

In total, the present study demonstrates how first-principles computational methods can be used to comprehensively characterize interfacial properties that are relevant to the operation of solid-state batteries.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.9b13311.

Supercell of Li_3OCl; cleavage planes and configurations of surfaces; chemical potential correction; Murnaghan equation of state; GW calculation details; Wulff plots; independence of surface energies of (100) planes on \(\mu_{\text{Li}^+}\); surface energy of BCC Li metal; universal binding energy relation (UBER) fitting of adhesive energy; band and \(k\)-point decomposed partial charge densities; reference electrostatic potential for the slab model; convergence test for band edges of Li_3OCl at interfaces; and error estimate for CBM positions (PDF)

AUTHOR INFORMATION

Corresponding Author

E-mail: djsiege@umich.edu. Tel: +1 (734) 764-4808.

ORCID

Kwangnam Kim: 0000-0003-1149-1733

Donald J. Siegel: 0000-0001-7913-2513

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported as part of the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences.

REFERENCES

(71) Yu, S. Atomic Scale Simulations of the Solid Electrolyte Li-La2Zr2O12; University of Michigan: Ann Arbor, MI, 2018.