(1) The trigonometric functions satisfy several identities. Most are a consequence of the very important:

$$
\text { Fundamental Identity }(\cos (t))^{2}+(\sin (t))^{2}=1
$$

This holds because $(\cos (t), \sin (t))$ is defined to be a point on the unit circle $x^{2}+y^{2}=1$.
(2) We can also define some other trigonometric functions using sine and cosine.

$$
\text { Definition of: } \quad \tan (t):=\frac{\sin (t)}{\cos (t)} \quad \cot (t):=\frac{\cos (t)}{\sin (t)} \quad \sec (t):=\frac{1}{\cos (t)} \quad \csc (t):=\frac{1}{\sin (t)}
$$

(3) The following identities can be established by looking at the unit circle or at the graphs of sine and cosine.

$$
\begin{gathered}
\qquad \text { Periodicity: } \cos (t+2 \pi)=\cos (t) \text { and } \sin (t+2 \pi)=\sin (t) \\
\text { Even/Odd Properties: } \cos (-t)=\cos (t) \quad \sin (-t)=-\sin (t) \quad \tan (-t)=-\tan (t) \\
\text { Corelations: } \sin \left(\frac{\pi}{2}-t\right)=\cos (t), \quad \cos \left(\frac{\pi}{2}-t\right)=\sin (t), \quad \tan \left(\frac{\pi}{2}-t\right)=\cot (t), \quad \cot \left(\frac{\pi}{2}-t\right)=\tan (t) .
\end{gathered}
$$

(4) These final identities are also very useful. They come from previous identities.

$$
\begin{gathered}
\text { Difference of sines: } \sin (a)-\sin (b)=2 \sin \left(\frac{a-b}{2}\right) \cos \left(\frac{a+b}{2}\right) \\
\text { Difference of cosines: } \cos (a)-\cos (b)=-2 \sin \left(\frac{a-b}{2}\right) \sin \left(\frac{a+b}{2}\right) \\
\hline
\end{gathered}
$$

Sine of a sum: $\sin (s+t)=\sin (s) \cos (t)+\sin (t) \cos (s)$
Sine of a difference: $\sin (s-t)=\sin (s) \cos (t)-\sin (t) \cos (s)$

$$
\begin{gathered}
\text { Cosine of a sum: } \cos (s+t)=\cos (s) \cos (t)-\sin (s) \sin (t) \\
\text { Cosine of a difference: } \cos (s-t)=\cos (s) \cos (t)+\sin (s) \sin (t) \\
\text { Tangent of a sum: } \tan (s+t)=\frac{\tan (s)+\tan (t)}{1-\tan (s) \tan (t)}
\end{gathered}
$$

Tangent of a difference: $\tan (s-t)=\frac{\tan (s)-\tan (t)}{1-\tan (s) \tan (t)}$

$$
\begin{array}{|ll}
\hline \text { Double angles: } \sin (2 t)=2 \sin (t) \cos (t) & \cos (2 t)=\cos ^{2}(t)-\sin ^{2}(t) \quad \tan (2 t)=\frac{2 \tan (t)}{1-(\tan (t))^{2}} \cdot \\
\hline \text { Half angles: } \sin (t / 2)= \pm \sqrt{\frac{1-\cos (t)}{2}} \quad \cos (t / 2)= \pm \sqrt{\frac{1+\cos (t)}{2}} \quad \tan (t / 2)= \pm \sqrt{\frac{1-\cos (t)}{1+\cos (t)}} .
\end{array}
$$

For the half angle identities, you must think about whether the result should be positive or negative.
Fundamental inequalities: $0<\cos (t)<\frac{\sin (t)}{t}<\operatorname{sect} \quad$ whenever $\quad 0<t<\frac{\pi}{2}$.

