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We analyse the sequence in which the three most commonly prescribed cancer
treatments—surgery (S), chemotherapy (C) and radiotherapy (R)—should be administered.
A system of ordinary differential equations is formulated that captures the various local
and systemic effects of the three modes of treatment, as well as the first-order effects
of the inter-relationship between the primary tumour and the distant metastatic tumours,
including primary tumour shedding and the primary tumour’s effect on the rate of
angiogenesis in the metastatic tumours. Under a set of stated assumptions on the parameter
values, we find the exact cancer cure probability (subject to toxicity constraints) for the
six permutation schedules (i.e. SCR, CSR, CRS, SRC, RSC, RCS) and for two novel
schedules, SRCR and RSCR, that apply radiotherapy in disjoint, optimally timed portions.
‘We show analytically that SRCR and RSCR are the two best-performing (i.e. highest cure
probability) schedules among the eight considered. Further, SRCR is shown to be optimal
among all possible schedules, provided a modest condition is satisfied on the delay of
initial angiogenesis experienced by the patient’s dormant tumours.
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1. Introduction

When a patient is diagnosed with cancer (e.g. of the breast, prostate or head and neck),
three main therapy modalities are available: the local (i.e. at the site of the primary tumour)
treatments, surgery (S) and radiotherapy (R), and the systemic (i.e. local and distant)
treatment, chemotherapy (C). The decision facing the practitioner is how much local and
systemic treatment to apply and when to apply it. At the crux of this sequencing decision is
the fact that most cancer deaths are caused by metastatic (i.e. distant) disease, even though
the majority of cancer patients do not have clinically detectable metastases at the time of
presentation (DeVita ef al., 1993).

Our motivation for studying this problem is twofold: first, the clinical research
community has not converged on agreed-upon sequencing protocols. Although the debate
continues for most types of cancers, we illustrate this point with breast cancer, perhaps the
most intensely studied form of this disease. The focus before 1975 was on locoregional
control of tumours using surgery and adjuvant (i.e. postsurgical) radiotherapy, perhaps
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followed by chemotherapy (Thiirlimann & Senn, 1996); in the two subsequent decades,
the benefits of adjuvant chemotherapy became more apparent, while the marginal benefit
of adjuvant radiotherapy after a total mastectomy was brought into question (Early Breast
Cancer Trialists” Collaborative Group, 1995) and was not shown to improve survival until
1997 (Overgaard et al., 1997; Ragaz et al., 1997). Not until 1996 were the results of a
prospective trial published that was aimed at the sequencing decision (Recht et al., 1996);
in our notation, this study showed that SCR was better than SRC for patients at substantial
risk for metastatic disease. In addition, neoadjuvant (i.e. preoperative) chemotherapy has
been championed by the Milan Cancer Institute group and appears to be efficacious in
women with large tumours (Bonadonna et al., 1998).

In addition to the lack of consensus in the clinical community, our second motivation
for studying this problem is the deep understanding of the relationship between
angiogenesis and metastasis that has emerged in recent years, due largely to Judah
Folkman’s laboratory (Weidner et al., 1991; O’Reilly et al., 1994; Holmgren ef al., 1995).
The paradigm shift caused by tumour angiogenesis research has recently led to a rethinking
of the detailed timing of chemotherapy schedules (Browder et al., 2000). This leads us
to believe that incorporating angiogenesis-related mechanisms, which are described in
the next section, into the sequencing decision makes the sequencing problem sufficiently
complex that a mathematical analysis has the potential to shed new light that may otherwise
elude the clinical research community.

Mathematical modelling has been applied extensively to the detailed temporal
scheduling of radiotherapy (see, for example, Fowler, 1989; Sachs et al., 1997) and
chemotherapy (Norton & Simon, 1977; Coldman & Goldie, 1983; Dibrov et al., 1985;
Day, 1986; Skipper, 1986; Swan, 1990; Adam & Panetta, 1995; Costa & Boldrini, 1997 to
name a few). In contrast, very little modelling work has been undertaken for multimodal
therapy. Insights from the linear-quadratic model of radiobiology—if not the mathematical
model itself—have been used to suggest that the time delays between these three modes
of treatment should be kept to a minimum (Peters & Withers, 1997). However, all of
the aforementioned papers consider only the primary tumour, even though metastases
are responsible for most cancer mortality. Several researchers have developed stochastic
simulation models of breast cancer that incorporate the primary tumour and metastases,
and have calibrated their models to clinical data to generate some insights into the efficacy
of chemotherapy and the nature of the metastatic spread (Koscielny et al., 1985; Retsky
et al., 1987; Yorke et al., 1993; Speer et al., 1984; Retsky et al., 1997). The models of
Retsky and co-workers are the most similar in spirit to ours, in that they incorporate the
dormancy-followed-by-rapid-growth phenomenon revealed by Folkman’s work. Although
the simulation models in Koscielny et al. (1985); Retsky et al. (1987); Yorke et al. (1993);
Speer et al. (1984); Retsky et al. (1997) are more complicated than our model, and in
some cases are based on a clever statistical analysis of a wealth of data (see, for example,
Koscielny et al., 1984), these studies do not compare different multimodal treatments.

In this paper, we formulate the multimodal treatment problem as a control problem:
maximize the cancer cure probability subject to toxicity constraints. To maintain a
deterministic framework, we adopt a ‘certainty equivalence’ approach and use queueing
theory to obtain a point estimate for the unknown amount of undetectable metastases
at the time of presentation. Rather than undertake a frontal assault of this problem via
control theory, we perform an exact analysis of the six permutation schedules, which in



ANALYSIS AND COMPARISON OF MULTIMODAL CANCER TREATMENTS 345

turn suggests two novel strategies that appear worthy of consideration. We then show that
these two policies are superior to the six permutation schedules, and show that one of
these policies is in fact an optimal solution to the original control problem, as long as the
parameter values satisfy a certain condition.

This paper is organized as follows: the underlying biology and the mathematical model
are described in Section 2. In Section 3, we state and justify the assumptions on the
parameter values that are imposed to derive our results. The six permutation policies are
analysed in Section 4 and compared in Section 5. The two novel schedules are motivated
and analysed in Section 6 and their superiority is established in Section 7. The results are
discussed in Section 8. Readers who are not interested in the mathematical derivations may
want to skip Section 4 and read only Propositions 4-10 in Sections 5—7 before turning to
Section 8.

2. The model
Model overview

Our model is a set of ordinary differential equations (ODEs) that tracks the dynamics
of a primary tumour and its associated metastases, which are subject to a multimodal
treatment of surgery, radiotherapy and chemotherapy. Our desire to maintain analytical
tractability while covering a broad range of phenomena (e.g. angiogenesis, metastasis,
three treatment modalities) necessitates the use of a simple model that captures only first-
order effects. Consequently, we ignore the detailed aspects incorporated into the state-
of-the-art spatial models on individual facets of tumour growth and cancer treatments;
see, for example, the references in Orme & Chaplain, 1997 (angiogenesis); Perumpanani
et al., 1996 (metastasis); Jackson & Byrne, 2000 (chemotherapy); Wein et al., 2000
(radiotherapy) and Adam & Bellomo, 1997 (surgery). However, we hypothesize that many
of these details are not required—indeed, not appropriate—for a study that is aimed at the
strategic and rather crude decisions related to the ordering of the three treatment options.

The following salient features are captured in our model; the model’s limitations are
discussed in Section 8. The disease involves a primary tumour (e.g. in the breast or
prostate) and possibly secondary tumours incident elsewhere in the body (e.g. in the lungs,
liver, and/or kidneys). Vascularized (primary and secondary) tumours shed cells that travel
to a distant site, and grow into secondary tumours called metastases. After reaching a
moderate size, metastatic tumours undergo a latent (non-growing) period referred to as
dormancy, where cell division is balanced by cell death caused by apoptosis and necrosis
(Holmgren et al., 1995). This dormant state is due to a lack of nutrients, and dormant
tumours are clinically undetectable. Rapid growth resumes after the metastasis recruits
nearby endothelial cells to form blood vessels around the tumour, in a process called
angiogenesis (Folkman, 1995). The possibly prolonged period of time between the onset of
dormancy and the eventual vascularization of the metastasis is referred to as the angiogenic
delay. Recent evidence indicates that the presence of the vascular primary tumour actually
prolongs the angiogenic delays experienced by dormant metastases, and the removal of
the vascular primary tumour (e.g. by surgery) reduces the angiogenic delays, causing
metastases to more rapidly emerge from their dormancy (O’Reilly et al., 1994; Holmgren
et al., 1995).
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Our model begins at the time of presentation, when the clinician observes a
vascular primary tumour and any clinically detectable distant metastases. The clinician
quantifies the size of these tumours, and uses this information to estimate the amount of
subclinical metastases that is undetectable at the time of presentation. The patient then
undergoes multimodal treatment consisting of the surgical removal of the primary tumour,
radiotherapy treatment that acts locally on the primary tumour, and chemotherapy that acts
systemically on all cancer in the body. The goal of our analysis is to compare the efficacy
of different schedules that vary as to the order of the three treatment modalities.

The model equations

Although we will not be using control theory, it is useful to view this problem from a
control-theoretic point of view. Let r(¢) equal one if radiotherapy is being administered
at time ¢, and let it equal zero otherwise. Similarly, let c¢(z) be a 0—1 control variable
describing the chemotherapy regimen. Our third decision variable is the time of surgery,
t;. We want to choose these decision variables to maximize the probability of cancer
cure, subject to toxicity constraints. Our model tracks the number of cells in the primary
tumour (p(¢)), the number of cells in dormant metastases (d(¢)), and the number of cells in
nondormant (i.e. growing) metastases (m(¢)). Note that m (¢) contains avascular metastases
(metastases that have no more than v cells) as well as postdormant tumours that have
undergone angiogenesis. We assume that at time 0, the clinician observes p(0) and the
number and size of all metastases comprising m(0), and uses this information to estimate
the initial amount of dormant metastases. In the spirit of the certainty equivalence principle
that allows for the separation of estimation and control (Bertsekas, 1976), we substitute this
point estimate for the unobservable quantity, d(0), into our optimization problem.
Mathematically, given p(0) and m(0), the problem is to
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Model description

Primary tumour growth. The primary tumour in (2) is assumed to grow exponentially at
rate y . Its regrowth rate after treatment is also y (Brown et al., 1987). Although tumours are
often assumed to follow Gompertzian growth (Norton, 1988), the exponential assumption
is reasonable over the time horizon of treatment (roughly nine months).

Treatment. We assume that the ‘log cell kill” hypothesis (Skipper et al., 1964), which
states that a given dose of chemotherapy kills a fixed fraction of remaining cancer cells
(with exponential killing rate k), holds in all three compartments in (2)—(4). We assume
that radiotherapy also kills a fixed fraction of remaining cells, with exponential killing
rate k;. Radiotherapy is active against the primary tumour, but not against the distant
metastases. Although we are ignoring the quadratic killing term in the linear-quadratic
model that is used in the radiobiology community, the great majority of cell killing under
standard fractionation schedules is due to the linear term (Fowler, 1989). However, our
model is attempting to capture neither the details of radiotherapy fractionation schedules
nor other temporal details of multimodal scheduling, such as breaks between rounds of
chemotherapy and healing periods between modes of treatment. Rather, in (5)—(7), we
assume that radiotherapy and chemotherapy are administered for exactly R and C time
units, respectively, and they cannot be given simultaneously (Stewart, 1991). Surgery is
instantaneous and kills a fixed fraction e of the primary tumour. For cases such as breast
cancer, in which surgical removal of lymph nodes is possible, the nodes are considered
part of the primary tumour; smaller values of s correspond to nodes that go undetected
at the time of surgery. Note that nothing can be gained by inserting rest periods into the
treatment schedules, and so it is without loss of generality that our toxicity constraints
restrict an optimal multimodal treatment to last R + C time units.
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Cancer cure probability. 'We model the cancer cure probability using the Poisson model,
which has been widely used to compute the tumour control probability in the radiobiology
community (Tucker & Taylor, 1996). According to this model, f is the fraction of (primary
and metastatic) tumour cells that are clonogenic (i.e. capable of tumour regeneration), the
number of remaining cells at each point in time has a Poisson probability distribution,
and a cure is achieved if all clonogenic cells are destroyed. This approach, together
with the queueing theory analysis at the end of this section, allows us to avoid tracking
individual metastases in our model. To see this, suppose there are m;q cells in metastasis
i before treatment and we administer some chemotherapy just before time ¢, so that
m;(t) = m;pe™ . Then the instantaneous cancer cure probability at time ¢ is the probability
that all the clonogenic cells in these metastases are killed. Assuming that the growth and
killing rates of these metastases are independent, this quantity is [ [;_, exp(— fm;oe ™) =
exp(— fmoe™) = exp(— fm(t)), where mo = ) _; mjg and m(¢) = >, m;(¢). Hence, we
only need to keep track of the total number of metastatic cells.

A similar argument holds for the dormant compartment. Hence, the instantaneous
cancer cure probability at time 7 is e/ [POFdNOFmD] which only depends on the total
number of cells, p(¢) + d(t) + m(t), a quantity we refer to as the cancer burden.
According to the Poisson model, each tumour cell is either clonogenic or not, and hence the
instantaneous cure probabilities at different time points are highly dependent. Therefore, in
the radiobiology literature, the tumour cure probability for radiation monotherapy is taken
to be the maximum (over ¢ € [0, R]) instantaneous cure probability, and this maximum
is attained at the end of treatment (i.e. at t+ = R); if the instantaneous tumour cure
probabilities were independent (they clearly are not), then it would be more appropriate to
integrate over time, rather than maximize over time. In contrast, the instantaneous cancer
cure probability in our problem is not necessarily maximized at the end of treatment (i.e. at
t = R+ C); for example, it is possible that cell killing by postsurgical radiotherapy is more
than offset by metastatic growth. Hence, in (1) we need to perform the inner maximization
over t € [0, R 4+ C] to find the probability of cancer cure.

Shedding of metastases. We assume that the primary tumour is vascular at time ¢ if and
only if it satisfies p(f) > v. A vascularized tumour sheds cells at rate Ap(1)P, where
A > 0and B € [0, 1]. For mathematical simplicity, we do not subtract the shedding term,
which represents a negligible fraction of primary tumour cells, from (2). Although our
results do not depend upon a specific value of g8, because cells are shed from the tumour
surface and the probability of shedding is linear in the microvessel count (Weidner ef al.,
1991), a natural choice is § = 2/3 (Landry et al., 1982). Metastases are the result of a
multistage process in which most shed cells successfully escape, survive in circulation,
extravasate, and migrate to a conducive location in the host organ, but most solitary cells
remain dormant and most micrometastases do not continue to grow (Chambers et al., 1995;
Luzzi et al., 1998). We assume that all the requisite steps successfully occur with a fixed
probability, which is incorporated into the constant X.

Metastatic growth. Cells that are shed from the primary tumour enter the metastatic
compartment, where they are assumed to grow exponentially at rate y,,. We now make two
crucial assumptions to avoid tracking the evolution of avascular metastases into dormant
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metastases when they reach size v, thereby maintaining analytical tractability. First, we
assume that all unobservable metastases at time 0 have exactly v cells. That is, they are all
dormant, and undergoing a delay until the angiogenic switch is turned on; consequently,
m(0) is indeed observable. In reality, some of these unobservable metastases may have
not yet attained v cells, while others may be vascularized but not yet detectable. This
assumption is not too unreasonable, because the angiogenic delay in the presence of a
primary tumour is typically of the order of several years (Hanahan & Folkman, 1996),
whereas the time for an avascular metastasis to grow from a single cell to v cells, and the
time for a postdormant metastasis to grow from v cells to the level of detection are both of
the order of months (Demicheli ef al., 1998). Second, we do not account for entry into the
dormant compartment of newly shed metastases that reach v cells. This omission is justified
because the growth of a metastasis is typically not fast enough for a single metastatic cell
to grow to v cells during the multimodal treatment. Chemotherapy treats metastases, so
the only time in which growth can occur unabated is during radiotherapy. For a shed cell
to become v cells within R time units, we must have yn R > Inv. However, taking the
metastatic doubling time to be seven days (the shortest estimate in the literature, Demicheli
et al., 1998) and ¥ to be 107 cells (Folkman, 1995), R needs to be at least In V/ym = 1163
days, which is more than twice as long as standard fractionation schedules for radiotherapy
(Fowler, 1989).

At time 0, the dormant compartment consists of a (possibly empty) set of metastases
that each contain v cells. If chemotherapy is given before radiotherapy, then these dormant
metastases will be smaller than v cells at time C, and during radiotherapy will grow
exponentially at rate yp,, but not beyond the size of v cells. It is mathematically convenient
to incorporate this regrowth into the dormant compartment, and as explained later, the
indicator_ function 7))y in (3) disallows the regrowth of depleted dormant metastases
beyond v cells.

Angiogenesis of dormant metastases. The onset of angiogenesis experienced by dormant
metastases occurs at rate ay when the primary tumour is vascular, and at the faster rate
a when the primary tumour is avascular. We are assuming that the reduced angiogenic
delay is due solely to having an avascular tumour (defined by p(¢) < v), regardless of how
tumour shrinkage was achieved. While this phenomenon is well documented for surgical
removal of the primary tumour (Weidner et al., 1991; O’Reilly et al., 1994; Holmgren et
al., 1995) and for radiotherapy (Camphausen et al., 2001), it is not yet known whether this
reduction in angiogenic delay also occurs for tumour shrinkage achieved by chemotherapy.

Angiogenic threshold. 'We now explain the role of the indicator function Ij; >, in (3), (4).
Standard ODE models can give drastically misleading results by allowing an infinitesimal
population to move from a populated compartment (i.e. the dormant compartment) to an
initially unpopulated compartment (i.e. the metastatic compartment) and then experience
fast exponential growth in the latter compartment. Motivated by movements from a wild-
type compartment to a mutant compartment in an immune response model, Kepler &
Perelson (1995) developed a deterministic threshold model to circumvent this shortcoming.
We adapt their technique, which allows us to delay the first metastatic vascularization until
time t,, which is defined in (9). To derive (9), we assume that avascular metastasis i has
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size d; (t) € (0, v] (recall that chemotherapy may shrink these dormant metastases to below
the size of v cells). We assume that the angiogenesis rate for metastasis i at time ¢ is

di (1)
ll-) lavIipw)>sy + alipn<iyl- (11)

For each of these avascular metastases, we envision a different angiogenesis clock ticking
with an exponentially distributed duration with rates given by (11), and we are interested
in the time at which the first clock expires. Note that full-size dormant metastases (i.e.
d; (t) = v) experience the standard angiogenesis rate of [ay I{p)>5) + al{p@)<5)], Whereas
smaller metastases have proportionately smaller rates, and hence longer expected delays
(because in reality they need to grow to the size of v first, although this is not directly
incorporated into our model). Following Kepler & Perelson (1995), we let P (¢) denote the
probability that none of these dormant tumours have undergone angiogenesis by time ¢.
The function P(¢) satisfies P(0) = 1 and is nonincreasing in ¢. Once P(t) reaches the
prespecified value 1/e (see Kepler & Perelson, 1995 for a justification of this value), which
is defined to occur at time t#,, then for all t > t;, we allow the cells from the dormant
compartment to trickle into the metastatic compartment at the rate a, or a, depending
upon the size of the primary tumour. In computing P (¢), we obtain a form amenable to an
aggregation of the individual metastases:

1 t
P(t) = l_[exp ( - 5/0 di(Dlavlipr)>v) + al{p(z)ga}]df>,
i

1 t
= exp ( 3 /0 d(®)|avlipy>vy + al{pe)<iyl dT>, (12)

where d(t) = )", di(¢). Setting P (t,) = 1/e in (12) and simplifying yields (9).

Regrowth of dormant metastases. Now we return to the indicator function Iy g
in the regrowth term in (3). Recall that the regrowth term allows dormant metastases,
which have been shrunk to below v cells by chemotherapy, to regrow to their original size.
The quantity d(t) in (10) is equal to the size of the initial dormant population d(0) less
any dormant cells that have departed from the dormant compartment due to angiogenesis.
Because the dormant compartment does not include any newly shed metastases from the
metastatic compartment, this upper limit on d(¢) limits the regrowth of shrunk dormant
metastases to precisely their original size.

Shedding by vascular metastases. Shedding by vascular metastases is captured by
the model, because an incipient metastasis behaves exactly as an existing nondormant
metastatic tumour: the growth rate and the effects of treatment experienced by incipient
and existing nondormant metastatic tumours are identical, meaning that no information is
lost by keeping such shed cells aggregated into the nondormant metastatic compartment.
This argument tacitly invokes the earlier assumption that incipient metastases are not able
to reach dormancy before the end of treatment.
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Estimation of undetectable metastases. At the time of presentation, the clinician observes
p(0) cells in the primary tumour and the number and size of each of the detectable
metastases comprising m(0). Given this information, we now derive the expected size of
the dormant compartment at the time of presentation, which is given in (8).

As mentioned earlier, we assume that all unobservable metastases at time 0 have
exactly v cells. Hence, our estimate of d(0) is v multiplied by the number of undetectable
metastases at the time of presentation. We can view the estimation of this last quantity in
the context of queueing theory (Kelly, 1979), where arrivals correspond to the shedding
of cells by the primary tumour, and services correspond to the time between being shed
as a solitary metastatic cell and reaching a clinically detectable size. More specifically, we
consider a dynamic stochastic system where arrivals to the queue consist of shed cells and
occur according to a nonhomogeneous Poisson process at rate Ap(t)?. Departures from
the system occur when a metastasis in the system reaches a detectable size. We assume
that metastases reach a detectable size after a random amount of time with mean p~'. If
D is the detection limit in terms of cells, then 1 ~! = a;’! + 7! In D. Service (growth to
detection) for each metastasis begins as soon as the metastasis enters the system (is shed)
and the service time is assumed to be independent from that of other metastases.

The queue length Q(7) for the infinite-server queue described above is precisely the
number of undetected metastases at time t. Foley (1982) showed that Q(t) is independent
of the departure process from this queue prior to time 7. Note that according to our
deterministic growth model, the size of each observable detectable metastasis at the time
of presentation can be mapped into the time that it reached the detection limit D. That
is, observing the size and number of clinical metastases corresponds in our queueing
system to observing the departure process up to the time of presentation. Hence, Foley’s
result implies that the number of undetectable metastases at the time of presentation is
independent of the number and size of detectable metastases at the time of presentation.
Furthermore, Keilson & Servi (1994) show that, if this queue is initially empty and has an
arrival rate A(t) and service time cumulative distribution function S(t), then the queue
length at time 7 has a Poisson distribution with mean for A[1 — S(t — z2)]dz. Thus,
we need to specify S(t) to derive an explicit formula for E[Q(7)]. To obtain a relatively
simple expression, we follow the tradition in queueing theory and assume that service times
are exponential. If we let T = 0 correspond to the time when the primary tumour becomes
vascularized, then p(t) = ve?" and

T
E[Q(7)] :/ ApPePrie—in(T=2 4,
0

(13)

AP eBrHivT _
B e’”( By +u )

Since we assume vascularization occurs for tumours consisting of v cells, at the time of
presentation the primary tumour has been shedding cells for In(p(0)/v)/y time units,
i.e. the length of time it took the primary tumour to grow from v cells to p(0) cells.
Hence, the expected amount of dormant metastases present at the time of presentation
is DE[Q(™E2L2)], which, upon simplification of (13), yields (8).
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3. Assumptions on the parameters

To enable an analytical comparison of the schedules, we make the following five
assumptions.

ASSUMPTION 1 % > max{e™%, er —k)C e(V*kT)R}: surgery, the full regimen of
chemotherapy ancf the full regimen of radiotherapy are each effective enough to shrink
the initial primary tumour to an avascular size. If we take typical values of & = 10° cells
and p(0) = 10? cells, then these therapies need to achieve at least four logs of cell kill.
Representative schedules of 30 x 2 Gy for radiotherapy (Hall, 1994) and eight rounds of
CMF 420 (Ragaz et al., 1997) can typically achieve more than four logs of cell kill (Hall,
1994; Skipper & Schabel, 1982; Steel, 1977).

ASSUMPTION 2 (k¢ — ¥m)C > yYmR: dormant metastatic tumours treated with the full
regime of chemotherapy do not grow back to their pre-chemotherapy size during the
subsequent full regime of radiotherapy. In other words, the full regimen of chemotherapy
is able to offset R days of unabated growth. This is perhaps the most debatable of our
five assumptions. Using Ragaz et al. (1997); Recht et al. (1996), we let C = 165 days
and R = 33 days. Estimates for the metastatic growth rate vary from yy, = 0-01 day ™!
(which corresponds to a doubling time of about 2-5 months; Koscielny & Tubiana, 1999)
to 0-1 day~! (a doubling time of seven days; Demicheli er al., 1998). By Assumption 2,
we need ke > 0-012 day~! (if yn = 0-01 day ') or k. > 0-12 day~! (if y = 0-1 day™ 1),
which corresponds to a 21 (ke — ym) = 0-042 log drop (if ¥, = 0-01 day™!) or 0-42 log
drop (if ¥ = 0-1 day~") for each cycle of chemotherapy. Estimates for the log cell kill for
each round of chemotherapy vary from 0-3 (Retsky et al., 1993) to 0-6 (Skipper & Schabel,
1982). Hence, this assumption is satisfied by most, but perhaps not all, tumours.
ASSUMPTION 3 % < p(0) eV IR (] — g=s+(=k)Cy: the number of cells shed
by the primary tumourrduring an initial treatment by radiotherapy is less than or equal to
the number of primary cells killed by surgery and chemotherapy following radiotherapy.
While it is difficult to find data to confirm or refute this assumption, recall that shed cells
in our model correspond to those that have successfully escaped from the primary tumour,
survived during transport, extravasate, migrate to a metastatic location, and grow beyond
the micrometastatic size. Given the low probability of this string of events (Chambers et
al., 1995; Luzzi et al., 1998), together with the efficacy of surgery and chemotherapy, this
assumption seems incontrovertible.

ASSUMPTION 4 k; > k¢: the kill rate of radiotherapy is greater than or equal to the kill
rate of chemotherapy. This assumption is supported by the literature (Hall, 1994; Skipper
& Schabel, 1982; Steel, 1977).

ASSUMPTION 5y, > y: metastatic tumours grow at least as fast as the primary tumour.
This assumption is satisfied by estimates from the literature (Demicheli et al., 1998;
Koscielny & Tubiana, 1999).

4. Analysis of permutation schedules

In this section, we analyse the six permutation schedules. Because e/~ is decreasing in
x > 0, maximizing the cancer cure probability is equivalent to minimizing the cancer
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burden; i.e. for any given schedule, we can replace the inner maximization in (1) by
min;epo, R+c] p(t) + d(t) + m(t); we refer to the resulting minimal value as a schedule’s
nadir. Our approach is to determine the nadirs for all six permutation schedules in this
section and to compare these nadirs, and hence compare the efficacies of these schedules,
in Section 5.

Because surgery is instantaneous, for purposes of analysis it is convenient to group the
schedules into two groups: the three CR schedules (SCR, CSR, CRS) and the three RC
schedules (SRC, RSC, RCS), which are analysed in Sections 4.1 and 4.2, respectively.

4.1 Nadirs of CR schedules

The analysis in this section is enabled by the key observation that we can combine
the dormant and metastatic compartments for CR schedules. To see this, note that
throughout chemotherapy, both the dormant and the metastatic compartments experience a
net (negative) growth rate of yy, — k.. During the subsequent radiotherapy, the metastatic
compartment regrows freely at rate yy,, while the dormant population regrows at rate yp,
until (possibly) hitting the threshold d(),t € [C, C+ R]. However, the dormant population
never regrows to the threshold during [C, C + R] because, during this time interval,

t
d(r) = d(0) exp ( - / <av1{p<r>>ﬁ} + al{p(r><a})1{r>za} df)
0

t
X exp (/0 Ymligry<doy — kcc(t)]dr) by solving (3),

_ t
d(t) exp (/(; [le{d(f)<g(5)} — kee(T)] dT) by (10),

< d(r) e *%C  pecause at most t — C days of regrowth have occurred,
<

d(t) by Assumption 2. (14)

Hence, the cells in the dormant and metastatic compartments exhibit precisely the same
behaviour during CR strategies, and separating these compartments and keeping track of
angiogenesis is not necessary for computing the nadirs of CR schedules. Consequently,
the model dynamics for the SCR, CSR and CRS schedules simplify to the following two
ODEs:

p(t) =y — kelpepo,0)) — kelyerc,c+ry — $lp=)1p (1), (15)
d +m)(t) = Ap)P L py=5) + [¥m — keljrepo.cnl(d + m)(2). (16)

SCR. Under SCR, surgery is performed at time 0, driving p(0) below v by Assumption 1.
By Assumptions 2, 4 and 5, kr > k. > y, and thus subsequent chemotherapy and
radiotherapy both shrink the primary tumour. Hence, initial surgery eliminates shedding
for the duration of the entire schedule. Discarding the shedding term and solving (15), (16)
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yields
O e sty —ht if 7 € [0, C);
PRI p(0) e str—+CHr—k06=C) gt ¢ [C, C + R,
d 4+ m)(e) = | @O +m@)elmter if 1 € [0,0);
| @(0) + m(0)) ermkICHME=C)if ¢ € [C, C + R).

Because p(¢) and (d + m)(t) are negative for all + € [0, C), it follows that the cancer
burden hits its nadir in the interval [C, C + R]. If we define the cancer burden at time
t =C+u € [C,C+ R]by bscr(u), then

bscr(u) = p(0) e ST =RICHY =k 4 14(0) 4 m (0)] erm=ke)CHymu (17)
bscr() = (v — k) p(0) e ST RICHY=hu o 14(0) + m(0)] eVm k) CHymn,
bscr(u) = (y — ke)? p(0) e ST —RICH=kou 4 215(0) 4 m(0)] eVm=k)CHrmu (1)
The function bgcr (#) is convex in u# € [0, R] by (18), and solving BSCR(u) = 0 gives
(ke — y)p(0) e=sH7€ }
Ymld(0) +m(0)]ermC |’
The convexity of bgcr (1) implies that the nadir for the SCR schedule is

ﬁ:(ym_y+kr)—11n[

nscr = p(0) e s TORICH =R 4 14(0) 4 m(0)] ek CHymn” (19)
where
0
0 if d(O) —+ m(O) 2 &(kr — y) e*5+(}'*Vm)C;
m
0
wt=1R if d(0) +m(0) < &(kr —-y) e St —ym)(C+R)—k R,
V)
[ (=) p(0) e++7€ ] "
mC
;(/m[d(0)+m$);:; otherwise.
Ym — VY T
(20)

The value u* is the amount of radiotherapy we can apply before the rate of metastatic
growth outstrips the rate of primary tumour reduction.

CSR. Under schedule CSR, shedding occurs until chemotherapy is able to drive the
primary tumour below v (see Assumption 1), which occurs at time t, = (y —
ko)~'In(v/p(0)). For t € [0, C), (15) for the primary tumour is solved by p(t) =
p(0) ey —ko)r, Substituting this expression into (16) gives the linear ODE

(d +m)(t) = A[p0) e KNP 4 [y — ke l(d +m)(r) for 1 €l0,1.),

which has the solution

B Ap(0)Plerm—ke)t _ oy —ke)pr) ko)t
d+m)@t) = ke — B+ vm— ke +[d(0) +m(0)]e . (21)
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The second term in the right side of (21) describes treatment of the original (dormant
and nondormant) metastases. The first term corresponds to incipient metastases caused by
shedding and their subsequent growth; if we denote this term by

Ap(0)P[erm—ke)t _ oy —ke)Bry
ift < tg;

he(t) = (ke = ¥)B + ¥m — k¢ nh=te (22)

¢ - Xp(O)ﬁ[e(Vm_kc)t _ e(V_kc)ﬂtc+(Vm_kc)(t_tc)]

ifte <t <C,

(ke = ¥)B + Ym — ke

then
(d +m)(@) = he(t) + (d(0) + m(0)) e for ¢ € [t, C].

Following the arguments in the SRC case, we solve the linear ODEs (15), (16) for ¢ €
[C, C 4+ R] and define the cancer burden at time C + v to be

besr (v) = p(0) e ST —k)CHy—knv [d(0) + m(0)] erm—ke)Ctymy he(C)e¥m?.
(23)

The derivative of bcsgr (v) vanishes at

(kr — y) p(0)e s+ k)€ }

A _ -1
P=m=y k) o [ymhc(C) T Ymld(0) + m(0)] crmKIC

By the convexity of bcsr (v), it follows that the CSR nadir is

nesg = p(0) e HITEICHITIIT 1 1d(0) + m(0)] e ICHIT 4 (Cherm”,

24
where
: p©) —5+(y—ym)C
0 if d(0) +m(0) + he(C) > ——(ky — y) e TV 7mE,
Ym
. p(0) —5+ (= Ym)(C+R)—k:R .
v =R if d0)+m0)+h.(C) < y—(kr —y)e m .
m
_ (ke — ) p(0) e 5Ty —ke)C } .
—y + k)L ln|: otherwise.
Voo =¥ +a) Yihe(C) + ymld(0) + m(0)] en—FIC
(25)

CRS. Because schedules CRS and CSR both apply surgery after the primary tumour has
been driven below v and shedding has ceased, the dormant and metastatic compartments
of CRS and CSR undergo identical primary shedding and treatment. Hence, the two
schedules’ d 4+ m solutions are the same. As in the previous cases, the nadir is achieved in
[C, C + R]. Solving (15) under CRS during ¢ € [C, C + R] yields

N PO eV kICH—k)(=C) fort € [C, C + R);
p( ) - p(o) e—S+(V_kc)C+(V_kr)R ift=C + R.
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Define the cancer burden function at time t = C + w for w € [0, R) by
bers(w) = p(0) ey =k)C+(y —kw +[d0) + m(o)]e(ym—kc)c+)/mw + he(C) e?m?,
and let w be the point where bers(w) vanishes. We find that

(ke — y)p(0) e ~FC }
Ymhe(C) + Yld(0) + m(0)] em—k)C |’

wz(ym—y+kr>—11n[

The nadir could be achieved at time C + R with the application of surgery; because the
computation of W does not take this into account, we need to compare the three-part
solution (analogous to (20) and (25)) with the w = R case. After making this comparison,
we find that the CRS nadir is

ners = p(0) e Sl =gy H(y =k ) CH(y —kw™ he(C) eYmw”
+ (d(0) + m(0)) eVm k) CHymuT (26)
where w* = R if
p(0) e(V*kc)C+(V*kr)ﬁ1* a- e*SﬂL(J/*kr)(R*ﬁ)*))
+ [he(C) ™™ 4+ [d(0) + m(0)] eVmkICHymD™ (| _ eym(R=0%)y o ()

and otherwise w* = w*, where

0
0 if d(0) + m(0) + he(C) > ?(kr ) elr-mic,
m
0
W= {R if d(0) + m(0) + he(C) < ?(kr ) VI CHRI kR,
m

(kr — y)p(0) ¥ FC
Ymhe(C) + Ymld(0) + m(0)] eVm—ke)C

Ym—y +k)™! In [ ] otherwise.

4.2 Nadirs of RC schedules

SRC. Under the SRC strategy, the primary tumour satisfies p(r) = p(0)e T~k
for ¢t € [0, R]. The solutions for the other two compartments depend on whether or not
angiogenesis occurs before time R. In the former case, by Assumption 1 and (3) and (9),
the time that angiogenesis is initiated in the dormant compartment is given by

fo — v
T ad)

We need to consider two cases: ¢t < R and f5; > R. For t, < R, we have

d(0) ifz € [0, t5);
@) = —a(t—ts)
d0)e ift € [t4, R],

m(0) e¥m’ ift € [0, ts);
m(t) = .
gse(t) +d(0) +m(0)e" ift € [ts, R],
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where

0 ift < ty,

t)=4 dO
gsr( ) ( ) [aeym(tftsr) + ymefa(tflsr)] _ d(o) if for < t
a—+ Ym

27

which is the offspring, up to time 7, of cells that transitioned from dormancy via
angiogenesis. Hence, the cancer burden in [0, R] can be succinctly stated as

p(t) +d(t) +m(t) = p(0)e TR L 4(0) + gy (1) +m(0)e?™", (28)

where g () takes on the case-dependent value in (27).

As in the CR schedules, we combine the dormant and metastatic compartments by
noting that they undergo exactly the same experience during (R, R 4+ C] of the SRC
schedule. Hence, for t € (R, R + C], we have

p(t) = p(O)e—H-(V—kr)R+()’—kc)(t—R), (29)
d +m)(t) = [d(R) + m(R)] eVmkI=R), (30)

Turning to the case t; > R, we find that no angiogenesis occurs in the dormant
compartment, and the solution given in (28) holds for + € [0, R). Similarly, as in (29),
(30), the cancer burden for t € [R, R + C] is given by

(1) +d (@) +m(1) = p(0) e TR
+1d(0) + g (R) + m(0) ¥R mk)=R) 3y

PROPOSITION 1 The nadir for SRC occurs at time R + C.

Proof. We show that the SRC cancer burden for all ¢ € [0, R + C) is bounded below by
the cancer burden at time R + C. For ¢t € [0, R),
p(0) e TR 1 4(0) + gy (1) + m(0) ™
> p(0) e ST —ki+(y—ka)C d(0) + g (t) +m(0) eVmt
since y < k¢ by Assumptions 2 and 5,
> p(0) e ST RIHE=RIC 4 4 (0) + m(0) e since gy (1) > 0,
> p(0) e HI—RIHG—KIC | g (0) m(REO—KC |y () Pm(R+CI—keC
by Assumption 2,
> p(0) e st —ki+(y—ko)C [d(0) + g (R)] eVm—ke)C m(0) eVm(R+C)—kC
since tg; > 0 implies d(0) + g (R) < d(0) ermR
> p(0) e ST TRIRHY—KIC L [4(0) + g (R)] ePmKIC L 1y (0) e¥m(R+O)—keC
since y < k; by Assumptions 2, 4 and 5,
=p(R+C)+d(R+C)+m(R+C) by@3l).

To understand the second-to-last inequality, note that 7, > 0; that is, a delay may occur
before the original d(0) cells begin to enter the metastatic compartment. Hence, d(0) +
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gsr(t), which is the number of dormant cells plus the number of offspring from dormant-
then-angiogenic cells, is less than or equal to d(0) e¥m".
Fort € [R, R + C), we have, by Assumptions 2 and 5,

p(t) +d @) +m(t) = p(r) e()/*kc)(RJrC*T)_}_ d(t)e()/m*kc)(RJrC*t) +m(t) e(Vm*kc)(R+C*t)7
=p(R+C)+d(R+C)+m(R+C),

which completes the proof. O

Hence, the nadir for SRC is given by

nsre = p(0) e~ Sty —k)R+(y—ke)C [d(0) + g (R)] em—ke)C m(0) eVm(R+C)—keC
(32)

RSC. Because this schedule begins with radiotherapy, our analysis must account for
shedding. Analogous to f., define t; = (k; — y) ™! In[p(0)/v], which is the time it takes for
presurgical radiotherapy to drive the primary tumour to the avascular size v. Assumption 1
implies that 7, < R for strategies RSC and RCS.

The analysis of RSC over [0, R) proceeds, as in the SRC case, by breaking the time
axis at points where the equations for d and m change. For RSC, these break points occur
at time #; and also at time t; provided #s < R, where f is the time that angiogenesis is
initiated in the dormant compartment.

By analysing (9), we find that

v . v
— if ——— <t
) avd(0) ayd(0)
s ) trayd (0 ) ] trayd (0
v l—rav_() if v > t and v l—rav_() < R,
ad(0) v ayd(0) ad(0) v
and ts > R if avdL_(O) > f. and Wﬁ(o)(l — %) > R. Hence, we have three cases to

analyse. After working out these cases, we can express the cancer burden succinctly in
terms of two case-dependent auxiliary functions,

0 i1 <t
%[aeym(”m) +yme” 7] — d(0) iff; <ts <13
gis(1) = avdj‘oi/m laye (710 o e @07 = d (0) i <1 <ie g
%[e)’m@r—lrs) _ e—uv(tr—trs)]eym([—tr)
v+ ¥m
d(o)ae_'_ia;(r:w[ael/m(ttr) + yme*”(’*’f)] —d0) ifte <t <1,

which quantifies the offspring of dormant cells that undergo angiogenesis when



ANALYSIS AND COMPARISON OF MULTIMODAL CANCER TREATMENTS 359

radiotherapy is applied before surgery, and

Ap(0)P[erm! — e —knpr)

* Y ift <t

he(1) = P V)P Vm 34

o) Ap(0)P[erm! — ¥ —ko)Btrtym(i—tr)] drs (34)
(ke = ¥)B + ¥m -

which corresponds to the incipient metastases caused by shedding and its subsequent
growth. The cancer burden for RSC is given by (the details are straightforward and are
omitted)

p(t) +d(t) +m(t) = p(0)e” " 4 d(0) + gus(t) + he(t) + m(0) e’

fort € [0, R), 35)
p(t) +d(t) + m(t) = p(0)e STV RRTY=kIC=R) 4 17(0) + gr5(R) + hr(R)
+ m(0) e"mR)em=k)C=R)  fort € [R, R+ C]. (36)

PROPOSITION 2 The nadir for RSC occurs at time R + C.

Proof. The approach here is the same as for Proposition 1. For notational simplicity, we
define h() to be the number of individual metastases shed by the primary tumour up to
time ¢, so that h.(t;) = fotr Ap(0)Pey =BT d7which equals the left side of Assumption 3.

Note that fzr(t) counts the number of cells shed, whereas £, (¢) in (34) and (58) incorporates
these cells plus their progeny. For ¢ € [0, R),

p(0)e? ™M+ d(0) + grs (1) + he(t) + m(0)e"™

> p(0) eV TRIFITRIR=D L 7(0) + m(0)e™
since (y — kr)(R —t) < 0, and h.(t), gs(t) > 0,

> p(0) e R L h (1) — p(0)e” TR — =Y RIC) 4 4(0) 4 m(0) e
by Assumption 3,

= p(0) e STV RIRFY=RIC 4 i (1) + d(0) + m(0) e"™”,

> p(0)e S HITRIREG—RIC | f gy IR Om—kIC | Q) gFmR+Gm—ho)C
+ m(0) e/m(R+O=keC by Agsumption 2,

> p(0) e S HURORFGRIC o p (13 rm(R=)+(m—kC | g(0)etmR+Fm—ke)C
+ m(0) ePm(R+C)—keC
since each shed cell can grow for at most #; days by time #;,

> p(0) e HIRIRFI—RIC o p (1) ¥Rt +(im—ke)C
+[d(0) + gry (R)] €7 4 (0) erm(FHOTHC
since trs > 0 implies d(0) + gs(R) < d(0) evmR

= p(R+C)+d(R+C)+m(R+C) by (34)and (36).

For ¢t € [R, R 4 C) the same argument as for SRC in Proposition 1 holds, completing the
proof. g
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Hence, the nadir for RSC is

nrsc = p(0) e I TRFTTRIC 4 1d(0) + 15 (R) + he(R) +m(0) e7nK ] e =C,
(37)

RCS. The analysis of the RCS policy is summarized in the following proposition.
PROPOSITION 3 nRrcs = HRSC-

Proof. First, we claim that the sum of the d and m compartments are equal for the RSC and
RCS schedules. To see this, note that these two schedules are identical during the interval
[0, R), so the cancer burdens prior to time R are the same. Assumption 1 implies that the
primary tumour is driven below v by time R in both policies; consequently, the behaviour
of the d and m compartments of RCS are again the same as RSC even during [R, R + C].
This follows from observing that, once flipped, the primary vascular/shedding (> v) switch
stays off, because p(t) is a decreasing function.

Furthermore, we claim that the nadir for RCS occurs at time R + C. The proof of this
claim is the same as for Proposition 2, except that we include the surgery event before the
final inequality in the analysis for t € [R, R+ C). Hence, it suffices to show that the cancer
burden of RCS at time R + C is the same as that of RSC at time R + C. We already know
that the sum of their d and m components are the same; clearly, their p compartments
are also identical, since, by time R + C, both schedules have applied surgery, R days of
radiotherapy and C days of chemotherapy to the primary tumour. U

5. Comparison of permutation schedules

In this section, we compare the performance of the six permutation schedules. We compare
the three CR schedules in Section 5.1 and the three RC schedules in Section 5.2. The two
most widely used multimodal schedules, SCR and SRC, are compared in Section 5.3.

5.1 CR schedules

The following proposition provides simple dominance relations among the three CR
strategies. Throughout the paper, we say that schedule A is ‘better’ (or ‘more effective’)
than schedule B if schedule A achieves a cancer cure probability that is at least as high as
schedule B.

PROPOSITION 4 Earlier surgery is more effective for CR strategies; that is,
nSCR < NCSR < NCRS-
Proof. Define the function

Y(x1,x2) = min {x;e 7K 4 xperml), (38)

\t\

Note that x; > y1, x2 > y» implies that ¥ (x1, x2) = ¥ (y1, y2). By (19) and (24), we have

nscr = ¥ (p(0) e KIC 14(0) 4+ m(0)] eV RIC),
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and

nesr = ¥ (p(0) e T RIC 14(0) + m(0)] eV RIC + (), (39)
which implies nscr < ncsr. Also,
nesr < min{y (p(0) e ~*C [d(0) + m(0)] eVm €
+he(0)), p(0) e T TRICHI TR
+ [(d(0) + m(0)) e kIC 4 p(C)] e R} by (38), (39),
=ncrs by (26),
which completes the proof. 0

5.2 RC schedules

Recall that nrsc = nrcs by Proposition 3. In other words, delaying surgery until the
end of radiotherapy produces the same cure probability as delaying surgery until after
radiotherapy and chemotherapy. To determine if delayed surgery is useful in any RC
schedules, we use (32) and (37) to compute

nsrc = nrsc = [gur(R) = gis(R) — he(R)] e ™*C,
implying that RSC is favoured over SRC if

gst(R) — grs(R) > he(R); (40)

that is, if the number of offspring from dormant-then-vascular cells when surgery is
performed first is greater than the number of cells produced by shedding before the
primary tumour is shrunk to an avascular size plus the number of offspring of dormant-
then-vascular cells when surgery is postponed until radiotherapy is complete. Note that
gsr(R) > grs(R) because the dormant population undergoes angiogenesis more slowly
when surgery is delayed. Unfortunately, the many cases inherent in the definitions of g (7),
grs(t) and h.(¢) in (27), (33), (34) prevent us from sharpening the result in (40).

5.3 SCR versus SRC

In this section, we compare the two most widely used multimodal schedules, SCR and
SRC.

PROPOSITION 5 If
I3 i
PO) (ks —y) e STIMC 25[p0)F — 57T p0) 7]

m(0) >
Ym By + 1

(41)

and

0 > p(0) e s T—rm)C (] — elr—koR)
m =

evmR — 1

_ P —n B o
_OALp)F = 07TV p0) 7 J(aerm R 4 et R — g — y) Fy <y
By + 1)@+ ym)(emk —1) ’

(42)
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where
v By + i
tsy = = L (43)
ad©)  aa[pF — T p) 7 ]
or if p(0) is sufficiently large to satisfy
b (ke — ) e—SHr—ym)C
YmUA
and
_B L — 3 e — —t.
[P~ =577 p) 1TV (et B0 4 ype =Rt g — 1y <py
=5+ —ym)C (1 — e —k)R
5 ¢ (1—e _ )(ﬁy+u)(a+ym)7 45)

VA
then SCR is more effective than SRC.

Proof. By (19) and (32),

nscr — nsre = p(0) e—s—i—(y—kc)C(e(y—kr)u* _ e()/—kr)R)

+ermKICL4(0) 7™ — (d(0) + gsr(R)] + m(0) erm € @rm” — /Ry (46)

Our analysis involves two steps: first we prove that either (41) or (44) imply that u* = 0
in (20), and then we show that the quantity in (46) is negative in the u* = 0 case if
either (42) or (45) hold.

Substituting (8) into the u* = 0 condition in (20) yields, after some simplification,
condition (41). Alternatively, if m(0) = O then (41) is satisfied if

— _ K K
A p0) — 3PV p(0) 7 ] - P(0)(ky — y) e~ T =rm)C
By +u - Y '

(47)

The left side of (47) increases in p(0) without bound, while Assumption 1 implies that the
right side is bounded above by y,, ! (k,— y)ver =€ Consequently, we can rearrange (47)
to get (44).
Turning to the second part of our argument, we set u* = 0 in (46) to get
nscr — nsre = p(0) e FTTEIC(L — eV TIOR) — g (R) enTC

+ m(0) e(Vm_kc)C(l _ e)/mR).
This quantity is negative if

p(O) e HITIEQ — eV TRIR) — g (R)

m(0) > T "

(48)

Substituting in for gy (R) using (27) and (8), we find that (48) can be expressed
as (42), (43).
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Using an argument analogous to that used in deriving (44), we take m(0) = 0 and find
that (48) is satisfied if

gr(R) = p(0) e S Tr—mC (] _ er=kky, (49)

Recalling that g, represents the number of offspring of dormant-then-vascular cells and
that this quantity is increasing with d(0) (once d(0) is large enough to make f;, <
R), we can use (27) and (8) to show that gy (R) increases without bound as p(0)
increases. Because the right side of (49) is bounded above by pe” /€ (] — ¥ —k)R)
(by Assumption 1 again), condition (49) holds if p(0) is sufficiently large; more precisely,
condition (45) is derived by substituting (27) and (8) into (49), thereby completing the
proof. O

In words, Proposition 5 states that SCR is favoured over SRC if the initial metastatic
population m(0) is sufficiently large relative to the initial primary tumour size p(0) (as
given by (41)—(43)) or if the initial primary tumour is sufficiently large (as dictated by (44),
(45)). It is desirable to use chemotherapy before radiotherapy to suppress either the large
metastatic population (in the former case) or the large dormant population (in the latter
case).

On the other hand, the dominance can swing the other way for patients at low metastatic
risk. Referring to (46), note that p(0) small enough makes g (R) = 0 and m(0) small
enough makes the final term negligible; consequently, SRC is favoured over SCR for p(0)
and m (0) sufficiently small.

6. Analysis of RCR schedules

The two RCR schedules are motivated in Section 6.1 and analysed in Sections 6.2 and 6.3,
respectively.

6.1 Motivation

To motivate the SRCR schedule, we return to our comparison of SCR and SRC
in Section 5.3. A close examination of (46) reveals that metastatic growth during
radiotherapy is of central concern. More specifically, only existing vascular metastases and
newly dormant-then-vascular tumours grow during SRC’s radiotherapy, whereas dormant
regrowth causes all metastatic tumours to grow during SCR’s radiotherapy. Consequently,
due to dormancy during SRC’s radiotherapy, less systemic growth occurs during SRC’s
radiotherapy than during SCR’s radiotherapy. Equation (46) also shows that SRC applies
the full R days of radiotherapy and achieves its nadir at the end of treatment, while SCR
mitigates the effect of its larger systemic growth during radiotherapy by achieving its
nadir before applying the full allotment of radiotherapy, when radiation’s effectiveness
is eclipsed by increases due to systemic growth.

Schedule SRCR combines these advantages of SCR and SRC. By performing
radiotherapy first we ensure that the severity of the systemic growth during radiotherapy
is the same as that of SRC, but, using our analytical results, we time the duration of
radiotherapy applied to mimic how SCR applies prenadir radiotherapy only while the net
effect of radiotherapy on the nadir is desirable, i.e. radiotherapy’s effectiveness is able
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to offset systemic growth. Note that the inevitable conclusion to this is that sometimes
the systemic growth may be so significant that it overcomes the usefulness of prenadir
radiotherapy before R days of radiotherapy are applied, and the schedule foregoes the
remaining radiotherapy until after chemotherapy.

The motivation for RSCR is analogous to that for SRCR, only this time the advantages
of CSR and RSC are combined. For the same reasons that RSC can outperform SRC,
delayed surgery is a viable option for RCR schedules and RSCR will at times outperform
SRCR.

6.2  Nadir of SRCR schedule

Consider a generic SRCR schedule that begins with surgery, then administers radiotherapy
for ¢ time units, is followed by the full regimen of chemotherapy, and concludes with R —¢
time units of radiotherapy. Under this schedule, the cancer burden at time 7 4 C is

bsrcr(t) = p(0) e ST —ki+(y—ke)C [d(0) + gsr(D)] em—ke)C m(0) eymt‘i‘(ym*kc)C’
(50)

where gg(¢) is defined in (27). We analyse a specific SRCR schedule, namely the one
that applies R; time units of radiotherapy before chemotherapy and R — R time units of
radiotherapy after chemotherapy, where

Ry = argog}igR bsrcr(1); (5D

P

that is, the SRCR schedule minimizes the cancer burden at the time when chemotherapy is
completed.

If Ry < R then regrowth of dormant cells occurs during [Ry + C, R + C] until the
dormant compartment size at some time t € [R; + C, R + C] reaches the upper bound
imposed by d(¢). But, as with the CR schedules, we can show that this regrowth during
SRCR never attains the level d(¢) because

d(t) = d(t) e/m=RO+m=k)C " for ¢ € [R) + C, R 4+ C] by (14),
<d(t) emR+O—kC  qincet — Ry < Rfort € [R; +C, R+ C],
<d(t) by Assumption 2.

Hence, for SRCR during [R; + C, R+ C], the d and m compartments experience growth at
rate ¥y, and can be grouped for computing the cancer burden within this interval. Therefore,
fort € [R; + C, R + C], we have

p(t) = p(0) e TORIRIFG—k) CH(y—k) (=R =C) (52)
(d +m)(1) = [(d(0) + gx(R1)) e"m~RIC 4y (0) emR1+0m—k)C ] ermt=R1=C) (53

Although a closed-form solution for R; in (51) cannot, in general, be found,
this optimization problem can be easily solved using standard numerical techniques.
Nonetheless, we can prove the following proposition.

PROPOSITION 6 Schedule SRCR achieves its nadir at time R; + C.
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Proof. Consider the schedule SR{C, which is shorthand for an SRC policy that employs
only R; time units of radiotherapy. We claim that this schedule attains its nadir at time
R1 + C as a consequence of Proposition 1. To see this, note that the proof of Proposition 1
did not assume anything about the length of R, it did not use the radiotherapy part of
Assumption 1, and, although Assumption 2 was used, this assumption still holds for
radiotherapy of duration R; < R. Furthermore, Proposition 1’s use of solutions based on
the SRC analysis are valid for SR;C, because these solutions did not rely on a particular
choice of R nor the radiotherapy part of Assumption 1. Hence, the minimum cancer burden
of schedule SRCR up to time R; + C occurs at time R; + C.

To conclude the proof, we need only show that, when R; < R, the cancer burden of
SRCR actually increases during [R; + C, R 4+ C]. Using (52) and (53), we get that, for
C+tel[Ri+C,R+C],

bsrer(1) = (y — k) p(0) S+ Rty CH & =hor
+ Yl (d(0) + gsr(R)) eV HIC 4 (0) e/m 1t Im =k C vt
bsrer(1) = (v — ke)* p(0) 7> F TRRIHI I CH G o

+ V21 (0) + go(R1)) eTm7RIC 4y (0) e?mBIF+Om—ke)Clemt - (54)

But bSRCR(Rl) 0 by the definition of R; (note that BSRCR(Rl) > 0if Ry = 0), and
bSRCR (t) = Ofort € [Ry, R] by (54), which completes the proof. ]

Using Proposition 6, we get that
ASRCR = p(()) e—S"r()/—kr)Rl +(y—ke)C

+[d(0) + gu(R)] e?m I 4 m(0) rm—h b, (55)

6.3 Nadir of RSCR schedule
The development and analysis of RSCR is analogous to that of SRCR. Let

brscr (1) = p(0) ¥ TV KIC 4 14(0) + gr (1) + hy (1)] eV TRIC
+m(0) eV Tm=kICfor ¢ € [0, R, (56)

and define
Iél = arg min bRrscr(?).

\t\

Applying a similar analysis and arguments used for SRCR with brgcr and Ry in place
of bsrcr and R; (the analysis of RSCR requires noting that neither Proposition 2 nor the
solutions for RSC rely on the radiation portion of Assumption 1, and that Assumption 3 is
satisfied for R1 < R), we find that the nadir of RSCR occurs at time R] + C, and thus

nrscr = p(0) e T TIRFITEIC 4 1d(0) + gro(R1) + he(Ry)] eV

+ m(o) e(Vm_kc)C‘H’le .
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7. Dominance of RCR schedules

In Propositions 7 and 8 below, we prove what was conjectured in Section 6.1: SRCR
combines the best elements of SCR and SRC, and RSCR combines the best of CSR and
RSC. The dominance of the RCR schedules is summarized in Proposition 9, and these two
strategies are compared in Proposition 10.

PROPOSITION 7 nsrcrR < MSCR, SRC-

Proof. Using (32) and (55), we get
nsRCR = bsrcr(R1) < bsrcr(R) = nsrc,

by our choice of R;.
To prove nsrcr < "SCR, hote that

bsrer (1) = p(0) e STV —KICHY =k | [4(0) + gg(r)] eV k)€
+m(0) e¥m—kI)CHyml by (50),
< p(0) e S —kICHy =kt 4 () e¥mle(rm—k)C 4 1y () e Ym—Ke)CHym?
since t > 0 implies  d(0) + go(t) < d(0) e’
= bscr(t) forallz € [0, R] by (17). (57)

But inequality (57) implies that

NSRCR = min bsrcr(f) < min bscr(f) = nscr-
<R 0<t<R

\[\

PROPOSITION 8 nRrscrR < nCSR, MRSC-

Proof. By Proposition 2, we have

nRSCR = min brscr () < brscr(R) = nrsc.
0<I<R

RIS

Showing nrscr < ncsr is trickier; we begin by establishing the inequality
h(t) erm—ke)C ho(C)erm! where t € [0, R]. For t € [0, t], it is easiest to derive
this inequality by using the following integral versions of A.(¢) and &.(C), which follow
from first principles and are consistent with the previous definitions in (22) and (34):

t
he(t) = / "m0 p(0)Per kBT g, (58)
0
Ic
he(C) Ze()/m—kc)(c—lc)/ e(ym_kC)(tc_T))Lp(O)ﬂe(y_kC)ﬂT dr. (59)
0
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Then, for t € [0, ],
hy(t) eV —kIC — o(n—ke)C f leymu—r),\p(o)ﬂe(y—kr)ﬁr dr by (58),
0

< e¥nt m—k)C /  ap(0)F e BT g,
0

< efmlerm—hke)C /[C Ap(0)Per kBT q¢
0

since k. < k; (by Assumption 4) implies # < t,

fe
< Pl Um—kI(C—10) / el —ke) (=) ()Y kBT 47
0

since k. > ym by Assumption 2,

Ic
< eFnt Ok (C—1o) / eUn—ke) (=) (0)Be¥ k)BT g

0
since k. < k; by Assumption 4,
=e""h (C) by (59). (60)

Fort. <t <R,

he(2) e(rm=ko)C _ he(te) eYm(—1) o (Ym—ke)C by (34),
< he(0) eYm(—t) o Vmlr by (60),
= he(C) e,
We use the above inequality, along with the fact that #;; > 0 implies that d(0) + gs(¢) <
d(0) e”, to show
bCSR(t) — p(()) e—S+(V_kC)C+(V_kr)t + d(()) e(Vm_kc)C'H/mt + hC(C) e)’mt
+ m(0) e (Ym—ke)C+ymt by (23),
> p(0) e ST —k)CHy—kn)t [d(0) + grs (1)) erm—ko)C X0 e(Ym—ke)C
+ m(o) e(Vm_kc)C'H’mt’

= brscr(?) by (56).

The proof is completed by

ncsR = min besr(f) = min brscr(f) = NRSCR-
0<t<R 0<t<R

AN XX
U

The next proposition combines the earlier results to show that one of the two RCR
schedules is always superior to the six permutation schedules.

PROPOSITION 9 If nsrcr < nrscr, then SRCR is better than all six permutation
schedules; otherwise, RSCR is better than all six permutation schedules.
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Proof. The SRCR schedule is better than the three CR schedules by Propositions 4 and 7,
and it is better than SRC by Proposition 7. The RSCR schedule is better than the other
two permutation schedules: it is better than RSC by Proposition 8 and better than RCS by
Proposition 3. Hence, the better of the two RCR schedules is better than all six permutation
schedules. 0

While it is difficult to compare the two RCR schedules in full generality, we derive
in the next proposition a condition under which SRCR dominates not only RSCR but all
feasible schedules. Although this condition is likely to hold in the clinic, it is actually
motivated by analytical tractability of the optimization problem (51). Note that for ¢ €
[0, tsr], equations (27) and (50) imply

bsrer (1) = (1 — ko) p(0) e~ +HF—RICHF =k | ) rm—k)CHvmt (61

If we let T equal the minimum of R and the time at which (61) vanishes (taking — In (0) =
00), then

(kr—y) p(@)e 5+ —ym)C
In ( Y (0)

T = min { R,
Ym — Y + ke

If T < ty, then Ry = T is the closed-form solution to (51). A weaker version of the
condition T < fg is that, when surgery is performed first, the first angiogenesis of a
dormant tumour occurs sometime after R days. Given that R is likely to be in the range of
33-40 days, and the postsurgical angiogenesis of dormant tumours typically takes several
months (Demicheli et al., 1998), this is not an unreasonable assumption.

PROPOSITION 10 If
(ke—y) p(0) e=$+r—ym)C _
In ( Ymm (0) ) v
Ym— ¥ + ke = ad(0)

min { R, (e. T <ty),

then SRCR is optimal among all possible schedules that satisfy constraints (2)—(10).

Proof. We need to show that SRCR is at least as good as any schedule, say schedule B,
in which surgery, C days of chemotherapy and R days of radiotherapy are interspersed in
some general way.

The proof is by contradiction: consider a schedule B in which surgery, C days of
chemotherapy and R days of radiotherapy are interspersed in some general way, and
assume that B is optimal. Let t* denote the time of schedule B’s nadir, with R¢ and Rp the
cumulative durations of chemotherapy and radiotherapy (respectively) applied up to time
t*, and By a 0-1 indicator equal to 1 if B applies surgery prior to t*. Further, let

x1 = number of cells remaining at time ¢* that were produced by dormant regrowth during
periods of radiotherapy after chemotherapy;

xp = number of offspring cells, remaining at time #*, that were produced by any dormant
cells that underwent angiogenesis during [0, t*];

x3 = number of cells remaining at time #* produced by any primary tumour shedding
during [0, #*]. This includes both the shed cells and their offspring.
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Then we can write

ng = pp(t*) + dp(t*) + mp(r"),
= p(0) e BsH(y—k)Cp+(y—ki)Rp +d(0) e(rm—ko)Cp +x14+x+x

+ m(O) e()’m_kc)cb""‘VmRB
> p(0) e 5B+ (¥ —k)Cp+(y—ki)Rp + d(O)e(Vm—kc)CB + m(0) e(ym=ke)Cp+ymRp

since x; > 0fori =1,2,3,
> p(0) e~ ST (r—ke)Cp+(y—ki) Rp + d(o)e(ym—kc)cs + m(0) e(ym—ke)Cp+ymRp

because s > 0 by Assumption 1,
> p(0) e ST —ko)Cp+(y —ke)(C—Cp)+(y —kr) Ry +d(0) e (Ym—ke)Cp+(Ym—ke)(C—Cp)

+m (0) e()’m —ke)Cp+(Ym—kc)(C—Cp)+ymRB

since Cp < C,and y < k¢, Ym < ke by Assumptions 2 and 5,
= p(0) e s T —k)CH(y—ko)Rp d(0) erm—ke)C m(0) e(J/m*kc)CJerRB’

> p(0) e STV —k)CH(y—kn)T d(o)e(ym—kc)c + m(0) o (Ym—ke) C+ym?
by the definition of 7,

= bsrcr(7) by (50),

= NSRCR-

Hence, SRCR is optimal among all feasible policies. d

8. Discussion

Approach. We have formulated a mathematical model that to our knowledge is the first
to explicitly address the age-old question in cancer treatment: how to sequence surgery,
radiotherapy and chemotherapy (McCormick, 1996). Our model attempts to incorporate
all of the salient mechanisms underlying the interrelated dynamics associated with a
primary tumour and its shedding, angiogenesis of the primary tumour and its impact
on metastatic dormancy and growth, and the impact of local (surgery and radiotherapy)
and systemic (chemotherapy) treatment. Despite trying to keep our model as simple as
possible, it still has 14 parameters. Moreover, some of these parameter values are only
known to within an order of magnitude, and most of them have considerable interpatient
heterogeneity, sometimes in a complicated manner; that is, due to specific mutations and
the microenvironment, the radiosensitivity, chemosensitivity, shedding rate, growth rates,
and angiogenesis rates may be correlated (see, for example Tubiana & Koscielny, 1991;
Lewis et al., 1996). Hence, in our view, it would be difficult if not impossible to validate
this 14-parameter model (due to the many degrees of freedom in the parameter value
selection) using clinical data. Without a model validation, any conclusions derived from
a computational study would not (with good reason) persuade a skeptical clinical research
community. Therefore, we have employed a purely analytical approach to this problem.
In Section 3, we impose five assumptions on the parameter values, and in Proposition 10
we add a sixth condition to prove the global optimality of a specific policy. These six
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inequalities can be expressed in simple biological terms, so that a clinical researcher can
easily decide whether our sequencing results are credible.

Results. For the three RC schedules, we prove that earlier surgery is preferred; i.e.
SCR is better than CSR, which is better than CRS. To understand this result, note the
tradeoff inherent in the timing of surgery: earlier surgery prevents shedding of the primary
tumour, while later surgery acts as a ‘poor man’s antiangiogenesis’ by slowing the rate of
vascularization of dormant metastatic tumours. In our model, the avascular and vascular
metastatic tumours behave identically during CR schedules: they both shrink during
chemotherapy, and both grow during radiotherapy (an avascular tumour’s growth during
radiotherapy is regrowth toward its dormant ceiling size of v cells, but Assumption 2
prevents them from attaining this level during treatment). In these circumstances, efforts
to prevent angiogenesis of dormant metastases by delaying surgery are fruitless. Hence,
delayed surgery offers no antiangiogenic advantage to offset the accompanying primary
shedding, and so earlier surgery is preferable.

The suboptimality of CSR is perhaps surprising in light of the ongoing clinical trial of
this schedule by the Milan Cancer Institute (Bonadonna, 1996). There are three factors
not included in our model that could bias our results against the CSR regimen. First,
by assuming that surgery is instantaneous, we ignore the unchecked metastatic growth
that may occur during the several-week healing period between surgery and adjuvant
chemotherapy in SCR; however, we note that delays of up to four weeks cause no
significant difference in outcome (The Ludwig Breast Cancer Study Group, 1988; Sertoli
et al., 1995). Also, one of the rationales of the Milan group is that chemotherapy is
likely to face a smaller drug-resistant population in the neoadjuvant setting (Bonadonna
et al., 1998). Finally, their biggest motivation for administering at least a few rounds of
chemotherapy before surgery was to increase the likelihood of breast-conserving surgery.

In contrast to the CR schedules, the timing of surgery does influence the behaviour
of dormant metastases during RC schedules. Vascular metastatic tumours grow during
RC’s radiotherapy, while dormant tumours remain latent at their ceiling size. According
to (40), RSC is favoured over SRC (i.e. delayed surgery is preferable) if the increase in the
number of offspring from dormant-then-vascular cells during radiotherapy when surgery
is performed first rather than delayed (recall that the angiogenesis rate is higher after
surgery) is greater than the amount of incipient metastases caused by primary shedding
and its subsequent growth during radiotherapy if surgery is delayed. Computational results
(not shown here) using representative parameter values from the literature and a variety of
initial conditions did not allow us to conclude that one of these two schedules consistently
dominated the other.

The two most commonly used multimodal schedules from a historical perspective
are SCR and SRC. Proposition 5 shows that SCR is preferred to SRC if, at the time of
presentation, the detectable metastasis is sufficiently large relative to the primary tumour,
or if the primary tumour is sufficiently large. In these two cases, chemotherapy should be
given before radiotherapy to suppress the vascular metastatic population and the dormant
metastatic population, respectively. In contrast, if the primary tumour is sufficiently small
and there is no detectable metastasis, then SRC is favoured over SCR. This result is
consistent with Recht et al. (1996), which showed that SCR is preferable to SRC for breast
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cancer patients receiving conservative surgery who are at substantial risk for systemic
metastases (as determined by the presence of positive nodes, a negative estrogen receptor
test, or invaded lymphatic vessels).

A close examination of the comparison of SCR and SRC led us to consider SRCR,
which maintains the relatively low systemic growth during SRC’s radiotherapy, while
adopting SCR’s approach of achieving its nadir when radiotherapy’s effectiveness is offset
by systemic growth. In a similar manner, we hypothesized that RSCR combines the best
of CSR and RSC. Although neither of these novel policies always dominates the other, we
prove that it is always the case that the better of these two schedules is preferable to all six
permutation schedules. Furthermore, under the additional condition that vascularization of
dormant metastatic tumours does not occur within the first R (~240) days after surgery, then
SRCR is optimal over all possible schedules that employ surgery, R days of radiotherapy
and C days of chemotherapy. A noteworthy feature of this result is its simplicity: one
only needs to split radiotherapy into two disjoint segments to attain optimality, and more
sophisticated strategies, such as the integrated alternating regimen in Tubiana ez al. (1985),
need not be considered. A second interesting aspect of this result is that SRCR has the
same cure probability in our model as a SR;C policy that employs R; < R time units of
radiotherapy. Nonetheless, applying the remaining R — R; time units of radiotherapy after
chemotherapy may improve locoregional control and delay the onset of metastasis in cases
where a cure is not achieved.

Finally, as a side benefit of our analysis, we note that our estimation of the amount
of subclinical dormant metastases at the time of presentation appears to be new. Applying
existing results in queueing theory, where shed cells from the primary tumour correspond
to arrivals to the waiting line, and services correspond to the time between being shed
as a solitary metastatic cell and reaching a clinically detectable size, we derive the
counter-intuitive result that the knowledge of the number and size of clinically detectable
metastases at the time of presentation does not influence the estimate for the expected
number of dormant metastases at the time of presentation. This result requires only two
mild probabilistic assumptions: shedding occurs according to a nonhomogeneous Poisson
process, which follows (asymptotically, as the number of cells gets large; Cinlar, 1972) if
each cell metastasizes independently of one another, and all service times are independent
and identically distributed.

Limitations. Our model, despite containing 14 parameters, is a gross caricature of
physical reality. First and foremost, most tumours are a heterogeneous collection
of cells that accumulate mutations (e.g. p53), which are partially dictated by the
tumour’s microenvironment (e.g. the oxygen level; Graeber et al., 1996) and the
treatment (particularly chemotherapy) regimen (i.e. Coldman—Goldie’s acquired resistance
hypothesis; Coldman & Goldie, 1983). These mutations in turn may cause changes in the
radiosensitivity, chemosensitivity, shedding rate, growth rate, and angiogenesis rate of the
primary and metastatic tumours. It is difficult to predict how our model’s exclusion of this
heterogeneity might bias the results. One could argue that giving chemotherapy early may
be desirable because the tumour cells have not accumulated too many mutations, while it
could also be argued that it is preferable to delay chemotherapy, and hence acquired drug
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resistance. Either way, our omission of these factors requires our results to be interpreted
with caution.

As mentioned earlier, our model also glosses over the detailed timing issues, such as the
healing periods between modes of treatment, and the pharmacokinetics of chemotherapy.
Also, there are some chemotherapeutic agents that appear to act in a synergistic or
antagonistic manner with radiotherapy. However, these interactions are drug-specific and
often depend upon the detailed timing of the schedule. Finally, the process of tumour
angiogenesis is extremely complex, involving the regulation of dozens of factors (Hanahan
& Folkman, 1996), and our modelling of it is necessarily simplistic.

Despite these biological simplifications, perhaps the biggest shortcoming in our
model—which is shared by the majority of mathematical models in the cancer treatment
literature—is the modelling of a dynamic stochastic decision problem with imperfect
but accumulating information by a dynamic deterministic control problem with perfect
information. In particular, the effectiveness of our two novel schedules requires the
clinician to observe the point in time when the metastatic growth begins to outweigh the
radiation killing, something that is impossible with today’s technology. Consequently, it is
important to reflect on how—and if—the results derived here can be applied to the actual
clinical problem. We envision that the insights from this analysis could be operationalized
in the following manner, which is illustrated with the SRCR schedule. First, a statistical
model (along the lines developed in Koscielny et al., 1984; Koscielny & Tubiana, 1999)
could be used to map the information gained at the time of presentation and at surgery (e.g.
size of the primary tumour, amount of detectable metastases, histological grade, presence
of margins, node involvement, hormonal tests such as psa for prostate cancer or estrogen
receptor for breast cancer) to estimate a one-dimensional quantity called the metastatic
potential (e.g. the probability of detectable metastases within five years). This information
is then used in the context of our results: if the metastatic potential is very small then use
SRC, if it is very large use SCR, and if it is intermediate in value then use a version of
SRCR. Of course, the refinement and validation (via simulation initially) of such a model
would entail a significant independent study in itself. If new information arises during
treatment, then the schedule can be altered accordingly; for example, if a patient presents
with metastases during the radiation portion of SRC, radiotherapy would be immediately
truncated in favour of chemotherapy.

Conclusion. In summary, our model and analysis provides a systematic framework for
thinking about the sequencing of the three traditional cancer treatments in multimodal
therapy. Our analysis elucidates the tradeoffs inherent in this complex problem, and
unearthed two novel schedules, SRCR and RSCR, which may be capable of generating
clinical benefits. In addition to further studies that might validate and operationalize our
results (as described above), an obvious extension is to incorporate angiogenesis inhibitors
as a fourth mode of treatment; initial results of angiostatin and radiotherapy on mice are
intriguing (Gorski et al., 1998; Mauceri et al., 1998). To generalize our model in this
direction without sacrificing analytical tractability would probably require a modelling
approach in the spirit of Hahnfeldt et al. (1999), rather than the more detailed spatial
models that dominate the mathematical literature (Orme & Chaplain, 1997).
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