Symantec NetBackup™
Device Configuration Guide

UNIX, Windows, Linux

Release 7.5
Symantec Corporation
350 Ellis Street
Mountain View, CA 94043

http://www.symantec.com
Technical Support

Symantec Technical Support maintains support centers globally. Technical Support’s primary role is to respond to specific queries about product features and functionality. The Technical Support group also creates content for our online Knowledge Base. The Technical Support group works collaboratively with the other functional areas within Symantec to answer your questions in a timely fashion. For example, the Technical Support group works with Product Engineering and Symantec Security Response to provide alerting services and virus definition updates.

Symantec’s support offerings include the following:

- A range of support options that give you the flexibility to select the right amount of service for any size organization
- Telephone and/or Web-based support that provides rapid response and up-to-the-minute information
- Upgrade assurance that delivers software upgrades
- Global support purchased on a regional business hours or 24 hours a day, 7 days a week basis
- Premium service offerings that include Account Management Services

For information about Symantec’s support offerings, you can visit our Web site at the following URL:

www.symantec.com/business/support/

All support services will be delivered in accordance with your support agreement and the then-current enterprise technical support policy.

Contacting Technical Support

Customers with a current support agreement may access Technical Support information at the following URL:

www.symantec.com/business/support/

Before contacting Technical Support, make sure you have satisfied the system requirements that are listed in your product documentation. Also, you should be at the computer on which the problem occurred, in case it is necessary to replicate the problem.

When you contact Technical Support, please have the following information available:

- Product release level
Hardware information
Available memory, disk space, and NIC information
Operating system
Version and patch level
Network topology
Router, gateway, and IP address information
Problem description:
 - Error messages and log files
 - Troubleshooting that was performed before contacting Symantec
 - Recent software configuration changes and network changes

Licensing and registration
If your Symantec product requires registration or a license key, access our technical support Web page at the following URL:
www.symantec.com/business/support/

Customer service
Customer service information is available at the following URL:
www.symantec.com/business/support/
Customer Service is available to assist with non-technical questions, such as the following types of issues:
 - Questions regarding product licensing or serialization
 - Product registration updates, such as address or name changes
 - General product information (features, language availability, local dealers)
 - Latest information about product updates and upgrades
 - Information about upgrade assurance and support contracts
 - Information about the Symantec Buying Programs
 - Advice about Symantec's technical support options
 - Nontechnical presales questions
 - Issues that are related to CD-ROMs, DVDs, or manuals
Support agreement resources

If you want to contact Symantec regarding an existing support agreement, please contact the support agreement administration team for your region as follows:

<table>
<thead>
<tr>
<th>Region</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia-Pacific and Japan</td>
<td>customercare_apac@symantec.com</td>
</tr>
<tr>
<td>Europe, Middle-East, and Africa</td>
<td>semea@symantec.com</td>
</tr>
<tr>
<td>North America and Latin America</td>
<td>supportsolutions@symantec.com</td>
</tr>
</tbody>
</table>
Chapter 5 Solaris .. 79
Before you begin on Solaris .. 79
About the NetBackup sg driver 80
Determining if the NetBackup sg driver is installed 81
Special configuration for the Sun StorEdge Network Foundation HBA driver .. 82
About binding Fibre Channel HBA drivers 82
Configuring Solaris 10 x86 for multiple drive paths 83
Installing/reinstalling the sg and the st drivers 83
st.conf file example ... 85
sg.conf file example .. 86
sg.links file example .. 87
Preventing Solaris driver unloading 88
About Solaris robotic controls ... 89
About SCSI and FCP robotic controls on Solaris 89
About Solaris tape drive device files 90
About Berkeley-style close .. 91
About no rewind device files on Solaris 92
About fast-tape positioning (locate-block) on Solaris 92
About SPC-2 SCSI reserve on Solaris 92
Disabling SPC-2 SCSI reserve on Solaris 93
About nonstandard tape drives 93
Configuring SAN clients to recognize FT media servers 94
Adding the FT device entry to the st.conf file 94
Modifying the st.conf file so that Solaris discovers devices on two LUNS .. 95
Uninstalling the sg driver .. 95
Solaris command summary ... 96

Chapter 6 Windows ... 97
Before you begin on Windows .. 97
About tape device drivers on Windows 98
Attaching devices to a Windows system 98
Section 2 Robotic storage devices ... 99

Chapter 7 Robot overview ... 101

 About NetBackup robot types ... 101
 Robot attributes .. 102
 ACS robots ... 102
 TL4 robots .. 103
 TL8 robots .. 104
 TLD robots .. 105
 TLH robots .. 106
 TLM robots ... 107
 Table-driven robotics ... 108
 Robotic test utilities .. 108
 Robotic processes .. 109
 Processes by robot type ... 109
 Robotic process example ... 111

Chapter 8 ADIC Automated Media Library (AML) 113

 About ADIC Automated Media Library .. 113
 Sample TLM configuration ... 114
 Media requests for a TLM robot .. 115
 Configuring TLM robotic control ... 116
 Configuring TLM drives on the host ... 116
 Installing ADIC client software on UNIX 117
 Installing ADIC client software on Windows 117
 Configuring the DAS or Scalar DLC client name 118
 Allocating TLM drives on a DAS server 119
 Allocating TLM drives on a Scalar DLC server 120
 Configuring TLM drives in NetBackup .. 120
 Determining drive designations ... 121
 Configuring shared TLM drives .. 122
 Configuring the ADIC DAS server .. 122
 Configuring the ADIC Scalar DLC server 123
 Configuring the shared drives in NetBackup 124
 Providing common access to volumes .. 125
 Adding tapes to a TLM robot .. 125
 Removing tapes from a TLM robot ... 126
 Robot inventory operations on TLM robots 127
Chapter 11 Device configuration examples ... 173

A robot on a server example ... 173
Stand-alone drives on a server example .. 176
A robot and multiple servers example .. 179
 Configuration on the Windows server eel 181
 Configuration on the Windows server shark 181
 Configuration on the UNIX server whale 182
An ACS robot on a Windows server example 183
An ACS robot on a UNIX server example 186
A TLH robot on a UNIX server example 189
A TLM robot on a UNIX server example 191

Index .. 195
Introducing device configuration

This chapter includes the following topics:

■ Using this guide
■ General device configuration sequence
■ Use the support Web site
■ Read the NetBackup Release Notes

Using this guide

Use this guide to help set up and configure the operating systems of the hosts you use for NetBackup servers. Also use this guide for help with storage devices. This guide provides guidance about NetBackup requirements; it does not replace the vendor documentation.

This guide is organized as follows:

■ Information about operating systems.
■ Information about robotic storage devices.

Portions of this guide apply only to a specific NetBackup server type (for example, NetBackup Enterprise Server). Such topics are identified.

Read the "Before you start" sections (if applicable) of the chapters in this guide. These sections provide any important platform-specific instructions or may contain specific instructions or limitations for server types.

To determine if your hardware configuration is supported, see the following:

■ The NetBackup support Web site.
See “Use the support Web site” on page 15.

- The NetBackup release notes.
 See “Read the NetBackup Release Notes” on page 15.

Symantec tested the configuration file options in this guide; other configuration settings may also work.

To minimize configuration errors, you can cut and paste configuration details from a text file of the operating system chapters of this configuration guide. The format of this text file is similar to the printed version of the guide. Be sure to review the differences as explained at the beginning of the text file.

The NetBackup_DeviceConfig_Guide.txt file is installed with NetBackup server software in the following paths:

- /usr/openv/volmgr (UNIX)
- install_path\Veritas\Volmgr (Windows)

General device configuration sequence

Use the following general sequence when you configure devices:

- Physically connect the storage devices to the media server. Perform any hardware configuration steps that the device vendor or the operating system vendor specifies.

- Create any required system device files for the drives and robotic control. Device files are created automatically on Windows and on some UNIX platforms. Explicit configuration of device files is required on some UNIX servers to make full use of NetBackup features.
 For SCSI controlled libraries, NetBackup issues SCSI commands to the robotic devices. SCSI commands allow NetBackup to discover and configure devices automatically. You may have to configure the server operating system to allow device discovery.

- Add the storage devices to NetBackup and configure them.
 For instructions, see the NetBackup Administrator’s Guide, Volume I or the NetBackup Administration Console help.
 You can configure devices in NetBackup from the master server or the media server to which the devices are attached (the device host). For more information, see "To administer devices on other servers" in the NetBackup Administrator’s Guide, Volume I or the NetBackup Administration Console help.
Configuration cautions

Observe the following cautions:

- In multiple-initiator (multiple host bus adapter) environments, NetBackup uses SCSI reservation to avoid tape drive usage conflicts and possible data loss problems. SCSI reservation operates at the SCSI target level; the hardware that bridges Fibre Channel to SCSI must work correctly.

 By default, NetBackup uses SPC-2 SCSI reserve and release. Alternatively, you can use SCSI persistent reserve or disable SCSI reservation entirely.

 For information about the NetBackup use of SCSI reservation, see the following:
 - "Enable SCSI reserve" in the NetBackup Administrator’s Guide, Volume I.
 - "How NetBackup reserves drives" in the NetBackup Administrator’s Guide, Volume II.

- Symantec does not recommend or support the use of single-ended to differential SCSI converters on NetBackup controlled devices. You may encounter problems if you use these converters.

Use the support Web site

The Symantec Enterprise Support Web site contains device and library compatibility information for NetBackup.

It also contains supported platform information for the following:

- NetBackup Enterprise Server and NetBackup Server.
- NetBackup licensed optional software (for example, the Shared Storage Option for Tape).
- Server platform.
- Robot and drive types.

For the compatibility information, see the Compatibility List for NetBackup Server or NetBackup Enterprise Server. The following is the address for the site:

http://entsupport.symantec.com

Read the NetBackup Release Notes

To determine the server platforms that NetBackup supports, see the NetBackup Release Notes.
Introducing device configuration

Read the NetBackup Release Notes
Operating systems

■ Chapter 2. AIX
■ Chapter 3. HP-UX
■ Chapter 4. Linux
■ Chapter 5. Solaris
■ Chapter 6. Windows
This chapter includes the following topics:

- Before you begin on AIX
- RS/6000 AIX adapter number conventions
- About the SCSI pass-through driver ovpass
- Installing the ovpass driver
- Ensuring that the ovpass driver device files are accessible
- Upgrading the ovpass driver
- Removing the ovpass driver
- About configuring robotic control device files for IBM robots in AIX
- About configuring robotic control ovpass device files in AIX
- About configuring tape drive device files in AIX
- About Sony AIT drives
- AIX command summary

Before you begin on AIX

Observe the following points when you configure the operating system:

- Verify that NetBackup supports your server platform and devices. The Symantec support Web site contains server platform compatibility information. For the compatibility information, see the Compatibility List for NetBackup Server or NetBackup Enterprise Server. The following is the URL:
 http://entsupport.symantec.com
Attach all peripherals and reboot the system before you configure devices. For many configuration steps, you can use the `smit` System Management Interface Tool. For more information, see the `smit(1)` man page.

For SCSI controlled libraries, NetBackup issues SCSI commands to the robotic devices. To discover and communicate with SCSI connected devices, NetBackup uses the Symantec `ovpass` pass-through driver. It is included with NetBackup. You must configure the `ovpass` driver and create the device files. See “About configuring robotic control ovpass device files in AIX” on page 23. See “About configuring tape drive device files in AIX” on page 36.

To verify that the devices are configured correctly, use `smit` and `/usr/sbin/lsdev` command. For the shared storage options, ensure that the operating system detects the devices on the SAN before you install and configure the option.

To obtain error and debug information about devices and robotic software daemons, the `syslogd` daemon must be active. See `syslogd(1)` for more information.

After you configure the hardware, add the robots and the drives to NetBackup.

RS/6000 AIX adapter number conventions

The location code for an adapter consists of two pairs of digits with the format AA-BB, as follows:

- **AA** identifies the location code of the drawer that contains the adapter card, as follows:
 - If AA is 00, the adapter card is located in the CPU drawer or system unit, depending on the type of system.
 - If AA is not 00, the card is located in an I/O expansion drawer, as follows:
 - The first digit identifies the I/O bus; 0 corresponds to the standard I/O bus and 1 corresponds to the optional I/O bus.
 - The second digit identifies the slot on the I/O bus.

- **BB** identifies the I/O bus and the slot that contains the card, as follows:
 - The first digit of BB identifies the I/O bus that contains the adapter card, as follows:
 - If the card is in the CPU drawer or system unit, 0 represents the standard I/O bus and 1 represents the optional I/O bus. If the card is in an I/O expansion drawer, this digit is 0.
The second digit identifies the slot number on the I/O bus (or slot number in the I/O expansion drawer) that contains the card.

The following are examples of adapter numbers:

- 00-00 identifies the Standard I/O Planar.
- 00-05 indicates an adapter card that is in slot 5 of the standard I/O board. The board is in either the CPU drawer or the system unit, depending on the type of system.
- 00-12 indicates an adapter card that is in slot 2 of the optional I/O bus in the CPU drawer.
- 18-05 indicates an adapter card that is located in slot 5 of an I/O expansion drawer. The drawer is connected to the asynchronous expansion adapter that is located in slot 8 of the optional I/O bus in the CPU drawer.

About the SCSI pass-through driver ovpass

For SCSI-controlled robotic peripherals, Symantec provides the ovpass pass-through driver. NetBackup uses the ovpass driver for SCSI and FCP robot control.

See “Installing the ovpass driver” on page 21.

Note: If you use IBM robotic devices only, the Symantec ovpass driver is not required if you use the Atape driver. The Atape driver creates the `smc` device files for IBM robots that are controlled by SCSI or Fibre Channel.

See “About configuring robotic control device files for IBM robots in AIX” on page 23.

Note: You cannot use the System Manager Interface Tool (SMIT) to configure ovpass device files.

Installing the ovpass driver

Use the following procedure to install the ovpass driver.

To install the ovpass driver

- Enter the following command:

 `/usr/openv/volmgr/bin/driver/install_ovpass`
Ensuring that the ovpass driver device files are accessible

Use the following procedure to ensure that the ovpass driver device files are accessible after a computer reboot.

To ensure that the driver device files are accessible after a system boot

◆ Add the following command to the system startup script:

```
/usr/openv/volmgr/bin/driver/mkdev_ovpass
```

Upgrading the ovpass driver

Some versions of NetBackup earlier than release 4.5 used a version of the ovpass pass-through driver that did not support Fibre Channel protocol SCSI controllers. If an error occurs when you create a Fibre Channel Protocol device file, you may need to upgrade the NetBackup ovpass pass-through driver. The following upgrade procedure is required only if you an error occurs when you create a Fibre Channel SCSI device file.

If you upgrade to NetBackup 7.x from a NetBackup 6.x release or earlier, you must upgrade the ovpass driver.

Warning: This procedure removes any device files (/dev/ovpassn). If the device files are required, you must recreate them.

To upgrade to the latest pass-through driver

1. Remove the old ovpass driver:

```
/usr/openv/volmgr/bin/driver/remove_ovpass
```

2. Install the new ovpass driver:

```
/usr/openv/volmgr/bin/driver/install_ovpass
```

Removing the ovpass driver

Use the following procedure to remove the ovpass driver.
To remove the ovpass driver

Enter the following command:

```
/usr/openv/volmgr/bin/driver/remove_ovpass
```

About configuring robotic control device files for IBM robots in AIX

If you use IBM robots, Symantec recommends that you install the IBM AIX Atape driver. NetBackup discovers the device files when you configure devices.

For information about the driver, see the IBM documentation.

If you use robots other than IBM, Symantec recommends that you use the NetBackup ovpass driver.

See “About the SCSI pass-through driver ovpass” on page 21.

See “About configuring robotic control ovpass device files in AIX” on page 23.

About configuring robotic control ovpass device files in AIX

For robots other than IBM on AIX systems, NetBackup supports SCSI control and API control of robotic devices. SCSI control includes Fibre Channel Protocol (FCP), which is SCSI over Fibre Channel. A robotic device in a library moves the media between storage slots and the drives in the library.

IBM robotic control is described in a different topic.

See “About configuring robotic control device files for IBM robots in AIX” on page 23.

You must configure the method of robotic control, as follows:

- SCSI or Fibre Channel Protocol control.
 See “Configuring SCSI or FCP robotic controls in AIX” on page 24.

- API control over a LAN.
 See the "ADIC Automated Media Library (AML)" chapter of this guide.
 See the "IBM Automated Tape Library (ATL)" chapter of this guide.
 See the "Sun StorageTek ACSLS robots" chapter of this guide.

Examples of how to create device files are available. All examples assume that the ovpass driver is installed and that the robotic devices are in the Available state.

Examples are available.
See “Configuring robotic control at LUN 0” on page 31.

See “Configuring robotic control at LUN 1” on page 32.

See “Configuring robotic control at LUN 6” on page 33.

See “Configuring robotic control of a Fibre Channel attached library” on page 33.

Configuring SCSI or FCP robotic controls in AIX

To configure SCSI or Fibre Channel Protocol robotic control, you must create a device file in AIX for the robotic device. The device file is the interface between AIX and the device. The device file is derived from the NetBackup `ovpass` pass-through driver. A library may have more than one robotic device. Each robotic device requires a device file.

NetBackup uses the device files to configure robotic control. If you use device discovery in NetBackup, NetBackup discovers the robotic control device files (and hence the devices) automatically. If you add a robot manually in NetBackup, you must enter the pathname to the device file.

Table 2-1 Configuring SCSI or FCP robotic controls in AIX

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Procedure</th>
</tr>
</thead>
</table>
| 1 | Install the NetBackup SCSI pass-through driver `ovpass` | See “About the SCSI pass-through driver `ovpass`” on page 21.

If the `ovpass` device file already exists, you do not have to configure the robotic controls. Help to determine if the device files exist is available. See “Determining if the device file exists” on page 24. |
| 2 | Determine the controller name and SCSI address | See “Determining the controller name” on page 25. See “Determining the SCSI address” on page 26. |
| 3 | Create the device file | See “Creating the device file” on page 29. |

Examples of how to configure robotic control are available. See “SCSI robotic control configuration examples” on page 30.

Determining if the device file exists

If the `ovpass` device file already exists for the device, robotic control exists. Therefore, you do not have to configure the robotic controls. An `ovpass` device file would exist if one was configured already for NetBackup.
To determine if the device files exist

1. Display the current device files by using the AIX `lsdev` command. For SCSI device files, use the `-s scsi` option and argument. For Fibre Channel Protocol device files, use the `-s fcp` option and argument. The following are examples of the two options:

 `/usr/sbin/lsdev -C -s scsi`
 `/usr/sbin/lsdev -C -s fcp`

 If the device files exist, they appear in the `lsdev` output as ovpass0, ovpass1, and so on. In the following example, ovpass0 is a SCSI robotic device file for NetBackup:

 `ovpass0 Available 00-01-5,0 Veritas Media Changer`

2. If an `ovpassx` device file exists, you can determine to which robotic device it applies. To do so, correlate the `ovpass` device file location to the locations of the controllers.

 See “Determining the controller name” on page 25.

3. If an `ovpassx` device file does not exist, use the following procedures to create one:

 a. See “Determining the controller name” on page 25.
 b. See “Determining the SCSI address” on page 26.
 c. See “Alternative methods to determine the SCSI ID on AIX” on page 29.
 d. See “Creating the device file” on page 29.

Determining the controller name

To create a device file, you must know the controller name. To determine the controller name, use the following procedure.

For usage information for the AIX commands, see their man pages.
To determine the controller name

1 Display the I/O controllers in the system by using the following AIX command:

```
/usr/sbin/lsdev -C  | grep I/O
```

The output shows the name, the status, the location, and the description. The following example shows both a SCSI controller (scsi0) and a Fibre Channel SCSI controller (fcs0):

```
scsi0  Available 00-01  SCSI I/O Controller
fcs0  Available 10-68-01  FC SCSI I/O Controller  Protocol Device
```

If you have more than one SCSI controller, identify the appropriate controller by correlating the tape drive locations to the controllers. To do so, continue with the following steps.

2 Display the devices that are connected to the SCSI controllers by using the following `lsdev` command. For SCSI devices, use `scsi` for the `type`; for Fibre Channel Protocol devices, use `fcp` for the `type`.

```
/usr/sbin/lsdev -C -s type
```

The following are examples of SCSI drive and Fibre Channel SCSI drive output:

```
rmt0  Available 00-01-00-3,0  Other SCSI Tape Drive
rmt1  Available 10-68-01  Other FC SCSI Tape Drive
```

3 Correlate the location of the drives with the names of the controllers.

For example, the SCSI tape drive at location 00-01-00-3,0 is attached to the controller at 00-01. So the controller name is scsi0.

Determining the SCSI address

To create a device file, you must know the SCSI address, which is a SCSI ID and a logical unit number (LUN).

A library may have more than one tape drive and more than one robotic control device. Usually, the SCSI ID identifies the library, and the LUNs identify the tape drives and the robotic control devices in the library.

However, a Fibre Channel attached library may have more than one SCSI ID; each ID corresponds to a physical connection (port) on the library. The LUNs then identify the tape drives and the robotic devices in each partition of the library.

AIX commands do not reveal the SCSI addresses of robotic devices that do not have device files.
The following information can help you determine the SCSI ID and LUN of a robotic device:

- To determine the SCSI ID, you must first determine the SCSI addresses of the tape drives. Then, use the tape drive addresses to infer the SCSI ID of the robotic device.
 For the libraries that have more than one robotic device, you must determine the SCSI ID and LUN for each robotic device.
 To determine the SCSI ID, use the procedure later in this subsection.

- To determine the LUN, refer to the vendor documentation. How the library assigns LUNs to its devices depends on the library:
 - The library may use a specific LUN for the robotic control device. For example, LUN 0 may be the robotic device and LUN 1 and higher may be the tape drives.
 - The library may include the management software that assigns LUNs when you configure it. The software also may let you determine the LUNs for the drives and robotic devices.
 - The library may use physical switches (such as DIP switches) that let you specify the LUNs for the drives and robotic devices.

For usage information for the AIX commands, see their man pages.
AIX may create device files automatically for some SCSI attached IBM libraries. For those libraries, more information is available.
See “About the IBM library SCSI address” on page 29.
To determine the SCSI ID for a robotic device

1. Display the SCSI and Fibre Channel devices in the system by using the following `lsdev` command. For SCSI devices, use `scsi` for the `type`; for Fibre Channel Protocol devices, use `fcp` for the `type`.

   ```
   /usr/sbin/lsdev -C -s type
   ```

 The following are examples of a SCSI drive and a Fibre Channel SCSI drive:

   ```
   rmt0 Available 00-01-00-3,0 Other SCSI Tape Drive
   rmt1 Available 10-68-01 Other FC SCSI Tape Drive
   ```

2. For each tape drive in the library, inspect the ODM database for the SCSI ID of the tape drive. Use the `odmget` command as in the following example (`rmtX` is the name of the tape device):

   ```
   /usr/bin/odmget -q "name=rmtX" CuAt
   ```

 The following example output shows that rmt0 is at SCSI ID 0x1009ef.

   ```
   CuAt:
   name = "rmt0"
   attribute = "scsi_id"
   value = "0x1009ef"
   type = "R"
   generic = "DU"
   rep = "s"
   nls_index = 6
   ```

 For a Fibre Channel Protocol controlled device, the SCSI ID is the ID of the N_Port on the robotic device (the destination ID (D_ID)).

3. Determine the SCSI ID to use for each device file, as follows:

 - If all tape drives in the library have the same SCSI ID and one robotic device exists, use that SCSI ID.
 - If all tape drives in the library have the same SCSI ID and more than one robotic device exists: Create a device file for each robotic device. Use the same SCSI ID for each device file.
 - If the tape drives have more than one SCSI ID, a robotic device likely exists for each SCSI ID. Create a device file for each SCSI ID.

 To determine the LUN of each robotic device, consult the vendor documentation.
Alternative methods to determine the SCSI ID on AIX

Several alternative methods exist to determine the SCSI ID of a robotic device on AIX, as follows:

- Use the `lsattr` command rather than the `odmget` command. For example, the following command shows the attributes of tape device rmt0:

  ```
  /usr/sbin/lsattr -l rmt0 -E -H
  ```

- In a Fibre Channel switch environment, inspect the name server for the switch (if available). Each vendor uses a unique method to show address information. Consult the documentation for the switch vendor.

- In a Fibre Channel bridge environment, inspect the bridge for mapping information (if available). Each vendor uses a unique method to show address information. Consult the documentation for the bridge vendor.

See “About the IBM library SCSI address” on page 29.

About the IBM library SCSI address

AIX may create device files automatically for some IBM libraries that use the IBM Atape driver. Symantec recommends that you use the Atape paths. NetBackup device discovery discovers the Atape paths and configures NetBackup to use them.

Creating the device file

If the ovpass device file does not exist, use the following procedure to create it. Use the controller name and SCSI address you determined for the robotic control device.

NetBackup uses the device file to configure robotic control. If you use device discovery in NetBackup, NetBackup discovers the robotic control device file (and hence the device) automatically. If you add the robot manually, you must enter the pathname to the device file. The device files reside in the /dev directory.

Examples of how to create SCSI and Fibre Channel device files are available. See “SCSI robotic control configuration examples” on page 30.

If an smc device file exists for an IBM library, remove the smc device file before you configure the ovpass device file. For instructions, see the IBM AIX documentation.

If an error occurs when you configure a Fibre Channel Protocol device file, upgrade the SCSI pass-through driver. The error may be a `mkdev` command error code 0514-0520.

See “Upgrading the ovpass driver” on page 22.
To create a robotic control device file

1. Create the device file by using the AIX `mkdev` command. The following is the command syntax:

```
mkdev -c media_changer -s type -t ovpass -p controller -w scsi_id,lun
```

The following are the arguments for the command:

- `-s type` is `scsi` for a SCSI attached robot or `fcp` for a Fibre Channel attached robot.
- `-p controller` is the logical identifier of the drive’s SCSI adapter, such as scsi0, fscsi0, or vscsi1.
- `-w scsi_id` is the SCSI ID of the robotic connection. For a Fibre Channel Protocol controlled device, the SCSI ID is the ID of the N_Port on the robotic device (the destination ID (D_ID)).
- `lun` (the second argument to the `-w` option) is the logical unit number of the robotic connection.

The following is an example:

```
mkdev -c media_changer -s fcp -t ovpass -p fscsi0 -w 0x111ca,1
```

2. To verify, display the device files by using the `lsdev` command. For SCSI devices, use `scsi` for the `type`; for Fibre Channel Protocol devices, use `fcp` for the `type`.

```
/usr/sbin/lsdev -C -s type
```

In the following example output, ovpass0 is a SCSI robotic control device file:

```
hdisk0 Available 00-01-00-0,0 400 MB SCSI Disk Drive
hdisk1 Available 00-01-00-1,0 400 MB SCSI Disk Drive
rmt0 Available 00-01-00-3,0 Other SCSI Tape Drive
ovpass0 Available 00-01-5,0 Veritas Media Changer
```

SCSI robotic control configuration examples

For examples of how to create device files for use with NetBackup, see the following. All examples assume that the ovpass driver is installed and that the robotic devices are in the **Available** state.
Configuring robotic control at LUN 0

This topic provides an example of how to configure control of a robot at LUN 0. For this example, assume that the robot is a LUN 0 controlled robot. The SCSI controller is controller 1 (00-01) at SCSI ID 5.

To configure robot control at LUN 0

1. Determine the logical identifier for the SCSI controller as follows:

 `/usr/sbin/lsdev -C -c adapter | grep SCSI`

 The following output shows that scsi0 is the logical name for SCSI controller 1.

   ```
   scsi0 Available 00-01 SCSI I/O Controller
   ```

2. Check if the ovpass device file exists at SCSI ID 5.

 `/usr/sbin/lsdev -C -s scsi`

 The output shows the device files exist for tape and disk. However, a device file does not exist for the controller scsi0 and SCSI ID 5.

   ```
   hdisk0 Available 00-01-00-0,0 400 MB SCSI Disk Drive
   rmt0   Available 00-01-00-3,0 Other SCSI Tape Drive
   ```

3. Create the device file by using the following command:

 `mkdev -c media_changer -t ovpass -s scsi -p scsi0 -w 5,0`

4. Display the device files by using the following command:

 `/usr/sbin/lsdev -C -s scsi`

   ```
   hdisk0 Available 00-01-00-0,0 400 MB SCSI Disk Drive
   rmt0   Available 00-01-00-3,0 Other SCSI Tape Drive
   ovpass0 Available 00-01-5,0   Veritas Media Changer
   ```

5. To configure the robotic control manually in NetBackup, use the following device file pathname:

 `/dev/ovpass0`
Configuring robotic control at LUN 1

This topic provides an example of how to configure control of a robot at LUN 1. For this example, assume that the robot is a LUN 1 controlled robot. The SCSI controller is controller 1 (00-01) at SCSI ID 3.

To configure robot control at LUN 1

1. Determine the logical identifier for the SCSI controller:

   ```
   /usr/sbin/lsdev -C -c adapter | grep -i SCSI
   ```

 The following output shows that scsi0 is the logical name for SCSI controller 1:

   ```
   scsi0 Available 00-01 SCSI I/O Controller
   ```

2. Check if the device file exists for ovpass at SCSI ID 5, as follows:

   ```
   /usr/sbin/lsdev -C -s scsi
   ```

 The following output shows that the device files exist for tape and disk. However, a device file does not exist for the controller scsi0, SCSI ID 3, and LUN 1:

   ```
   hdisk0 Available 00-01-00-0,0 400 MB SCSI Disk Drive
   rmt0 Available 00-01-00-3,0 Other SCSI Tape Drive
   ```

3. Create the device file by using the following command:

   ```
   mkdev -c media_changer -t ovpass -s scsi -p scsi0 -w 3,1
   ```

4. Display the device files by using the following command:

   ```
   /usr/sbin/lsdev -C -s scsi
   ```

   ```
   hdisk0 Available 00-01-00-0,0 400 MB SCSI Disk Drive
   hdisk1 Available 00-01-00-1,0 400 MB SCSI Disk Drive
   rmt0 Available 00-01-00-3,0 Other SCSI Tape Drive
   ovpass0 Available 00-01-3,1 Veritas Media Changer
   ```

5. To configure the robotic control manually in NetBackup, use the following device file pathname:

   ```
   /dev/ovpass0
   ```
Configuring robotic control at LUN 6

This topic provides an example of how to configure control of a robot at LUN 6. Assume the robot and the drives are connected to an SCSI adapter. Assume that the drives are at SCSI IDs 4 and 5 and the robotic device is at SCSI ID 6.

To configure robot control at LUN 6

1. Display the SCSI controllers:
   ```bash
   lsdev -C | grep scsi
   scsi0 Available 00-02 SCSI I/O Controller
  asco10 Available 00-04 Wide SCSI I/O Controller Adapter
   vscsi0 Available 00-04-0,0 SCSI I/O Controller Protocol Device
   vscsi1 Available 00-04-0,1 SCSI I/O Controller Protocol Device
   ```

2. Display the tape drives:
   ```bash
   lsdev -C -c tape
   rmt2 Available 00-04-01-4,0 Other SCSI Tape Drive
   rmt3 Available 00-04-01-5,0 Other SCSI Tape Drive
   ```
 The drives are on controller 00-04-01 (vscsi1).

3. Use vscsi1 as the controller name when you create the ovpass device file:
   ```bash
   mkdev -c media_changer -t ovpass -s scsi -p vscsi1 -w 6,0
   ```

Configuring robotic control of a Fibre Channel attached library

This topic provides an example of how to configure control of a robot attached by Fibre Channel. In this example, the library contains two robotic devices. For brevity, this example shows only the Fibre Channel devices.
To configure robotic control for a Fibre Channel device

1. Display the I/O controllers in the system by using the following AIX command:

   ```bash
   /usr/sbin/lsdev -C | grep I/O
   fscsi0   Available 10-68-01 FC SCSI I/O Controller Protocol Device
   fscsi1   Available 20-58-01 FC SCSI I/O Controller Protocol Device
   ```

2. Display the Fibre Channel devices in the system by using the following command:

   ```bash
   /usr/sbin/lsdev -C -s fcp
   rmt0     Available 10-68-01 Other FC SCSI Tape Drive
   rmt1     Available 10-68-01 Other FC SCSI Tape Drive
   rmt2     Available 10-68-01 Other FC SCSI Tape Drive
   rmt3     Available 10-68-01 Other FC SCSI Tape Drive
   rmt4     Available 10-68-01 Other FC SCSI Tape Drive
   rmt5     Available 10-68-01 Other FC SCSI Tape Drive
   ```

 All tape drives are connected to controller 10-68-01, which is the controller named fscsi0.
3 Display the attributes for the tape drives by using the `odmget` command. The following example shows excerpts from the output of rmt0 and rmt3:

```
/usr/bin/odmget -q "name=rmt0" CuAt
CuAt:
    name = "rmt0"
    attribute = "scsi_id"
    value = "0x11400"
    type = "R"
    generic = "D"
    rep = "s"
    nls_index = 6

/usr/bin/odmget -q "name=rmt3" CuAt
CuAt:
    name = "rmt3"
    attribute = "scsi_id"
    value = "0x11500"
    type = "R"
    generic = "D"
    rep = "s"
    nls_index = 6
```

In this example, rmt0 through rmt2 have SCSI ID 0x11400, and rmt3 through rmt5 have SCSI ID 0x11500. Because two SCSI IDs exist, two robotic devices exist in this library.

4 The library uses LUN 0 for robotic control (determined from the library configuration software). Therefore, configure the two robotic control device files by using the following commands:

```
mkdev -c media_changer -s fcp -t ovpass -p fscsi0 -w 0x11400,0
mkdev -c media_changer -s fcp -t ovpass -p fscsi0 -w 0x11500,0
```
5 Display the Fibre Channel protocol devices by using the following command:

```
/usr/sbin/lsdev -C -s fcp
```

- ovpass0 Available 10-68-01 Veritas Media Changer
- ovpass1 Available 10-68-01 Veritas Media Changer
- rmt0 Available 10-68-01 Other FC SCSI Tape Drive
- rmt1 Available 10-68-01 Other FC SCSI Tape Drive
- rmt2 Available 10-68-01 Other FC SCSI Tape Drive
- rmt3 Available 10-68-01 Other FC SCSI Tape Drive
- rmt4 Available 10-68-01 Other FC SCSI Tape Drive
- rmt5 Available 10-68-01 Other FC SCSI Tape Drive

6 To configure the robotic control manually in NetBackup, use the following device file pathnames when you configure devices in NetBackup:

```
/dev/ovpass0
/dev/ovpass1
```

About configuring tape drive device files in AIX

The following topics provide information about configuring tape drive device files on AIX systems.

- **About choosing a tape driver**
 See “About choosing a tape driver” on page 37.

- **About extended-file marks for drives**
 See “About extended-file marks for drives” on page 37.

- **About fast-tape positioning (locate-block) on AIX**
 See “About fast-tape positioning (locate-block) on AIX” on page 38.

- **About non-QIC tape drives**
 See “About non-QIC tape drives” on page 37.

- **About SPC-2 SCSI reserve on AIX**
 See “About SPC-2 SCSI reserve on AIX” on page 42.

- **Creating no rewind device file example**
 See “Creating a no rewind device file” on page 40.

- **Creating no rewind device files for tape drives**
 See “Creating no rewind device files for tape drives” on page 38.

- **Disabling SPC-2 SCSI reserve in AIX**
 See “Disabling SPC-2 SCSI reserve in AIX” on page 43.
About configuring tape drive device files in AIX

- Using multiple tape densities
 See “Using multiple tape densities” on page 42.

About choosing a tape driver

If you use IBM tape drives, Symantec recommends that you install the IBM AIX Atape driver. For information about the driver, see the IBM documentation.

If you use other tape drives, Symantec recommends that you use the IBM AIX ost (other SCSI tape) driver. For information about the driver, see the IBM documentation.

About non-QIC tape drives

Variable length block and fixed length block refer to how the operating system reads from and writes to a tape. Variable-mode devices allow more flexibility to read previously written tapes. Many tape devices can be accessed in either mode. NetBackup assumes variable length for non-quarter inch cartridge (QIC) drives.

For more information, see the `chdev(1)` and `smit(1)` man pages and the system management guide. The `smit` application is the most convenient way to change from fixed to variable-length-block devices manually.

Warning: For NetBackup, you must configure non-QIC tape drives as variable-length-block devices. Otherwise NetBackup can write data but may not be able to read it correctly. During a read, you may see a not in tar format error.

When you add a non-QIC tape drive to NetBackup, NetBackup issues the `chdev` command to configure the drive as a variable length block device. For reference, the following is the command that NetBackup uses to configure a drive for variable mode:

```
/usr/sbin/chdev -l Dev -a block_size=0
```

Dev represents the logical identifier for the drive (for example: rmt0 or rmt1). Therefore, you do not have to configure the drive manually for variable mode.

About extended-file marks for drives

If a tape drive supports extended file marks, you must configure it to use them (for example, 8-mm drives). Otherwise, NetBackup may not be able to use those drives.

For information, see the AIX `chdev(1)` and `smit(1)` man pages.
When you add a tape drive to NetBackup, NetBackup issues the `chdev` command to configure the drive to use extended file marks. For reference, the following is the command that NetBackup uses:

```
/usr/sbin/chdev -l Dev -a extfm=yes
```

Replace `Dev` with the logical identifier for the drive (such as `rmt0` or `rmt1`).

Therefore, you do not have to configure the drive manually for extended file marks.

About fast-tape positioning (locate-block) on AIX

Applies to AIT, DLT, Exabyte, and half-inch cartridge tape drives.

To position a tape to a specific block, NetBackup supports the SCSI `locate-block` command.

NetBackup uses the `locate-block` command by default.

Symantec recommends that you do not disable locate-block positioning. If you need to disable it, execute the following command:

```
touch /usr/openv/volmgr/database/NO_LOCATEBLOCK
```

With locate-block positioning disabled, NetBackup uses the forward-space-file/record method.

Creating no rewind device files for tape drives

Use the following procedure to check for and create a no rewind device file.
To check for and create a no rewind device file

1. Display the I/O controllers in the system by using the following command:

 /usr/sbin/lsdev -C | grep I/O

 The following sample output shows that SCSI controller 1 (00-01) has been assigned the logical identifier scsi0.

 scsi0 Available 00-01 SCSI I/O Controller

2. Display the SCSI and Fibre Channel devices in the system by using the following command. For SCSI devices, use scsi for the type; for Fibre Channel Protocol devices, use fcp for the type.

 /usr/sbin/lsdev -C -s type

 The following example shows two disk drives and a tape drive:

 hdisk0 Available 00-01-00-0,0 400 MB SCSI Disk Drive
 hdisk1 Available 00-01-00-1,0 400 MB SCSI Disk Drive
 rmt0 Available 00-01-00-3,0 Other SCSI Tape Drive

 If the device files for the tape drives exist, they appear in the output as rmt0, rmt1, and so on. The previous example output shows rmt0.

3. If a device file does not exist for the wanted tape drive, create it by using the following command:

 /usr/sbin/mkdev -c tape -s scsi -t ost -p controller -w id,lun

 The following are the arguments for the command:

 - controller is the logical identifier of the drive’s SCSI adapter, such as scsi0, fscsi0, or vscsi1.
 - scsi_id is the SCSI ID of the drive connection.
 - lun is the logical unit number of the drive connection.

 For example, the following command creates a device file for a non-IBM 8-mm drive connected to controller scsi0 at SCSI address 5,0:

 mkdev -c tape -s scsi -t ost -p scsi0 -w 5,0
4 To verify, display the SCSI device files by using the `lsdev` command, as follows:

```
/usr/sbin/lsdev -C -s scsi
```

```
hdisk0 Available 00-01-00-0,0 400 MB SCSI Disk Drive
hdisk1 Available 00-01-00-1,0 400 MB SCSI Disk Drive
rmt0 Available 00-01-00-3,0 Other SCSI Tape Drive
rmt1 Available 00-01-00-5,0 Other SCSI Tape Drive
```

The output shows that the `rmt1` device file was created.

5 If the device files do not exist on an FCP controller, use the following command to create them:

```
/usr/sbin/cfgmgr -l
```

`device` is the controller number from step 1.

You may receive a message that a device package is required for an FCP changer. NetBackup uses the `ovpass` driver for medium changers, so you can disregard the message.

6 Ensure that the device is configured for variable-mode and extended file marks. Use the `chdev` command, as follows (`dev` is the logical identifier for the drive (for example, `rmt1`)).

```
/usr/sbin/chdev -l dev -a block_size=0
/usr/sbin/chdev -l dev -a extfm=yes
```

7 To configure the drive manually in NetBackup, enter the following device file pathname:

```
/dev/rmt1.1
```

Creating a no rewind device file

This topic provides an example of how to create a no rewind device file on AIX for NetBackup. Assume the device files for the wanted SCSI 8-mm tape drive (controller 1, SCSI ID 5) do not exist.
To create a no rewind device file for SCSI ID 5

1 Determine the logical identifier for the SCSI controller as follows:

/usr/sbin/lsdev -C -c adapter | grep SCSI

The following output shows that scsi0 is the logical name for SCSI controller 1:

scsi0 Available 00-01 SCSI I/O Controller

2 Determine if the device files exist for any device at SCSI ID 5.

/usr/sbin/lsdev -C -s scsi

The following output shows that some device files exist for tape and disk. However, a device files does not exist for the 8-mm tape drive at controller 1 (scsi0) and SCSI ID 5 (5,0):

hdisk0 Available 00-01-00-0,0 400 MB SCSI Disk Drive
hdisk1 Available 00-01-00-1,0 400 MB SCSI Disk Drive
rmt0 Available 00-01-00-3,0 Other SCSI Tape Drive

3 Create the device file by using the following command:

mkdev -c tape -t ost -s scsi -p scsi0 -w 5,0

4 Display the device files by issuing the following command:

/usr/sbin/lsdev -C -s scsi
hdisk0 Available 00-01-00-0,0 400 MB SCSI Disk Drive
hdisk1 Available 00-01-00-1,0 400 MB SCSI Disk Drive
rmt0 Available 00-01-00-3,0 Other SCSI Tape Drive
rmt1 Available 00-01-00-5,0 Other SCSI Tape Drive

5 To ensure that the tape device is configured for variable-mode and extended file marks, use the following commands:

chdev -1 rmt1 -a block_size=0
chdev -1 rmt1 -a extfm=yes

6 To configure the drive manually in NetBackup, enter the following device file pathname:

/dev/rmt1.1
Using multiple tape densities

After you create the device files for your tape drives, you can configure densities on the drives that support multiple densities. Exabyte 8500C is an example of a tape drive for which you can use different densities.

AIX supports two configuration settings for density, although not all tape drives support multiple densities. The default density for both density setting 1 and density setting 2 is 0, which means maximum density.

The following procedure is an example of using the `chdev` command to modify the density settings. Alternatively, you can use the System Manager Interface Tool (SMIT).

To modify the density settings

- The following commands modify both of the tape drive device files:

  ```
  chdev -l tapedev -a density_set_1=density
  chdev -l tapedev -a density_set_2=density
  ```

 The following describe the arguments to the command options:

 - `tapedev` is the logical identifier for the drive, such as rmt0 or rmt1.
 - `density` is a decimal number from 0 to 255 that represents the wanted density. Zero (0) selects the default density for the tape drive, which is usually the drive's high density setting. Permitted values and their meanings vary with different types of tape drives.

 To use density setting 1, use the following no rewind on close device file when you configure the device in NetBackup:

  ```
  /dev/rmt*.1
  ```

 To use density setting 2, use the following no rewind on close device file when you configure the device in NetBackup:

  ```
  /dev/rmt*.5
  ```

About SPC-2 SCSI reserve on AIX

By default, NetBackup uses SPC-2 SCSI reserve and release for tape drive reservations in shared drive environments. The NetBackup Shared Storage Option provides shared drive functionality in NetBackup.

Alternatively, you can use SCSI persistent reserve for shared tape drive reservations in NetBackup, as follows:
For the tape drives that support SPC-3 Compatible Reservation Handling (CRH), you can use SCSI persistent reserve by enabling it in NetBackup. No special configuration in AIX is required.

For the tape drives that do not support CRH, you must disable SPC-2 SCSI reserve in AIX for those drives. After you disable SPC-2 SCSI reserve, you can use persistent reserve by enabling it in NetBackup. If the drive does not support CRH and you do not disable SPC-2 SCSI reserve, access attempts to the drive fail.

See “Disabling SPC-2 SCSI reserve in AIX” on page 43.

Warning: If the tape driver does not let you disable SPC-2 SCSI reserve, do not use SCSI persistent reserve with the drives that do not support CRH. The sctape driver is an example of a tape driver that lets you disable SPC-2 SCSI reserve.

For more information about NetBackup and SCSI reservations, see the following:

- The description of the Enable SCSI Reserve Media host property in the following:
 - The *NetBackup Administrator’s Guide for UNIX and Linux, Volume I*
 - The *NetBackup Administrator’s Guide for Windows, Volume I*
- The "How NetBackup reserves drives" topic in the following:
 - The *NetBackup Administrator’s Guide for UNIX and Linux, Volume II*
 - The *NetBackup Administrator’s Guide for Windows, Volume II*

Disabling SPC-2 SCSI reserve in AIX

To disable SPC-2 SCSI reserve, use the AIX chdev command to change the reserve attribute for the device file for the tape drive.

For information about the chdev command, see the AIX chdev man page.

To disable SPC-2 SCSI reserve in AIX

- Invoked the following command:

  ```
  chdev -1 name -a res_support=no
  ```

 Replace `name` with the name of the device file, such as `rmt0`.
About Sony AIT drives

Sony S-AIT drives have DIP switches (SWA and SWB) located on the bottom of the drive.

For the NetBackup Shared Storage Option, you must set the SWA-1 (No Reply Unit Attention After Process Login) switch correctly. Its factory setting depends on the serial number of the drive.

If the drive has an early serial number, switch SWA-1 may be OFF. If so, change the switch to ON.

Drives with newer serial numbers have SWA-1 set to ON as the default.

These newer serial numbers are as follows:

- SDZ-130:01442007 and later
- SDZ-130/L:01200696 and later

Also, for the drives that have a date of May 17, 2004 and later, the DIP switch is set to ON.

The following table shows the dip switch settings for the newer serial number drives.

<table>
<thead>
<tr>
<th>Table 2-2 DIP switch positions for AIT drives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch</td>
</tr>
<tr>
<td>SWA-1</td>
</tr>
<tr>
<td>SWA-2</td>
</tr>
<tr>
<td>SWA-3</td>
</tr>
<tr>
<td>SWA-4</td>
</tr>
<tr>
<td>SWA-5</td>
</tr>
<tr>
<td>SWA-6</td>
</tr>
<tr>
<td>SWA-7</td>
</tr>
<tr>
<td>SWA-8</td>
</tr>
</tbody>
</table>

AIX command summary

The following is a summary of commands that may be useful when you configure devices. For examples of their usage, see the procedures in this chapter.
- `/usr/openv/volmgr/bin/driver/install_ovpass`
 Installs the `ovpass` driver for the first time.

- `/usr/openv/volmgr/bin/driver/remove_ovpass`
 Removes the `ovpass` driver.

- `/usr/openv/volmgr/bin/driver/mkdev_ovpass`
 Place this command in the system startup script to ensure that the `ovpass` driver device files are accessible after each system boot.

- `/usr/sbin/lsdev -C | grep I/O`
 Displays the adapters that are physically available on your server.

- `/usr/sbin/lsdev -C -s filetype`
 Displays the device files that have been created, where `filetype` defines the type of file displayed: `scsi` displays SCSI files and `fcp` displays Fibre Channel files.

- `mkdev -c media_changer -s scsi -t ovpass -p controller -w id, lun`
 Creates the device files for the robotic control SCSI ID. `controller` is the logical identifier of the drive SCSI adapter (such as `scsi0` or `scsi1`), `id` is the SCSI ID of the robotic connection, and `lun` is the logical unit number of the robotic connection.

- `mkdev -c media_changer -s fcp -t ovpass -p controller -w scsi_id, lun`
 Creates the device files for the robotic control Fibre Channel SCSI ID. `controller` is the logical identifier of the drive SCSI adapter (such as `scsi0` or `scsi1`), `scsi_id` is the Fibre Channel SCSI ID of the robotic connection, and `lun` is the logical unit number of the robotic connection.

- `mkdev -c tape -s scsi -t ost -p controller -w id, lun`
 Creates the device files for tapes. `controller` is the logical identifier of the drive SCSI adapter (such as `scsi0` or `scsi1`), `id` is the SCSI ID of the robotic connection, and `lun` is the logical unit number of the robotic connection.

- `/usr/sbin/chdev -l dev -a block_size=0`
 Configures the drive with logical identifier specified by `dev` (for example: `rmt0`) to variable mode.

- `/usr/sbin/chdev -l dev -a extfm=yes`
 Configures the drive with logical identifier specified by `dev` (for example: `rmt0`) for extended file marks.

Where `ovpass_id` is the logical identifier assigned to the device.
- `/etc/lsattr -l dev -E -H`
 Displays the device information, where `dev` is the name of the device (for example, `rmt1`).

- `/usr/sbin/cfgmgr -l device`
 Creates the device files on a Fibre Channel Protocol controller, where `device` is the controller number (for example, `fscsi0`).

- `/usr/bin/odmget -q "name=rmtX" CuAt`
 Displays the device attributes for the device (`rmtX`). This command can be used to determine SCSI target and LUN pairs when you configure Fibre Channel devices.
 Where `rmtX` is the name of the tape device (for example: `rmt0` or `rmt1`).
This chapter includes the following topics:

- Before you begin on HP-UX
- About robotic control on HP-UX
- About HP-UX device addressing schemes
- About tape drive device file requirements
- About device drivers and files for persistent DSFs
- About configuring persistent DSFs
- About HP-UX legacy device drivers and files
- Creating device files for SAN clients on HP-UX
- About configuring legacy device files
- About SPC-2 SCSI reserve on HP-UX
- Disabling SPC-2 SCSI reserve in HP-UX
- About disabling the HP-UX EMS Tape Device Monitor for a SAN
- HP-UX command summary

Before you begin on HP-UX

Observe the following points when you configure the operating system:

- Verify that NetBackup supports your server platform and devices. The Symantec support Web site contains server platform compatibility information. For the compatibility information, see the NetBackup Operating System Compatibility List at the following URL:
For SCSI controlled libraries, NetBackup issues SCSI commands to the robotic devices. For NetBackup to function correctly, the properly named device files must exist.

To verify that the devices are configured correctly, use the HP-UX `sam` utility and the `ioscan -f` command. For the NetBackup Shared Storage Option, ensure that the operating system detects the devices on the SAN.

Some HP SCSI adapters do not support SCSI pass through; therefore, devices on such adapters are not discovered automatically.

After you configure the hardware, add the robots and the drives to NetBackup.

About robotic control on HP-UX

Several options exist for robotic control, as follows:

- **SCSI or Fibre Channel Protocol control.**
 SCSI control includes Fibre Channel Protocol (FCP), which is SCSI over Fibre Channel. A robotic device in a library moves the media between storage slots and the drives in the library.
 See “About HP-UX device addressing schemes” on page 48.

- **API control over a LAN.**
 See the "ADIC Automated Media Library (AML)" topic.
 See the "IBM Automated Tape Library (ATL)" topic.
 See the "Sun StorageTek ACSLS robots" topic.
 If you use API control, you still must configure tape drive device file access in HP-UX.

About HP-UX device addressing schemes

NetBackup supports the following two HP-UX device addressing schemes for mass storage devices:

- **Agile addressing**, which was introduced in HP-UX 11i v3. Agile addressing uses persistent device special files (DSFs) for devices. NetBackup device discovery finds persistent DSFs only. Therefore, Symantec recommends that you use persistent DSFs.
 See “About device drivers and files for persistent DSFs” on page 50.
 See “About configuring persistent DSFs” on page 52.

- **The legacy naming model.**
 Legacy device files are supported in HP-UX 11i v3 and earlier.
If you use the legacy model, you must configure devices manually in NetBackup. You cannot use NetBackup device discovery and automatic configuration. See “About HP-UX legacy device drivers and files” on page 54. See “About configuring legacy device files” on page 57.

When HP-UX 11i v3 is installed, both legacy and persistent DSFs are created on the system. Both types of DSFs can coexist and may be used simultaneously to access mass storage devices.

NetBackup requires specific device file capabilities for tape drives. See “About tape drive device file requirements” on page 49.

You may be required to perform other HP-UX configuration. See “About SPC-2 SCSI reserve on HP-UX” on page 68.

See “Creating device files for SAN clients on HP-UX” on page 56.

See “About disabling the HP-UX EMS Tape Device Monitor for a SAN” on page 68.

See “Disabling SPC-2 SCSI reserve in HP-UX” on page 68.

About tape drive device file requirements

The following table describes the requirements for tape drive device files.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkeley-style close</td>
<td>NetBackup requires Berkeley-style close for tape drive device files. The letter b in the file name indicates Berkeley-style close device files. In Berkeley-style close, the tape position remains unchanged by a device close operation. (Conversely, in AT&T-style close, the drive advances the tape to just after the next end-of-file (EOF) marker.) To establish the correct position for the next tape operation, applications must assume the tape's position after a close. NetBackup assumes Berkeley-style close on HP-UX systems.</td>
</tr>
</tbody>
</table>
Table 3-1 Tape drive device file requirements (continued)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast-tape positioning</td>
<td>HP-UX supports locate-block for most drive types for Fast Wide GSC SCSI adapters. For a list of drive types that NetBackup supports, see the Symantec support Web site. NetBackup uses the locate-block command by default if a pass-through path is configured. To disable locate-block positioning, execute the following command: touch /usr/openv/volmgr/database/NO_LOCATEBLOCK When locate-block positioning is disabled, NetBackup uses the forward-space-file/record method.</td>
</tr>
<tr>
<td>(locate-block)</td>
<td></td>
</tr>
<tr>
<td>No rewind on close</td>
<td>NetBackup requires no rewind on close for tape devices. The letter n in the file name indicates no rewind device files.</td>
</tr>
</tbody>
</table>

About device drivers and files for persistent DSFs

NetBackup supports persistent device special files (DSFs) for robotic tape libraries and tape drives. Persistent DSFs are a component of a new storage stack addressing model HP calls agile addressing. The device World Wide Identifier (WWID) identifies a device; a device path does not identify a device. The device file name of the logical unit is independent of the paths that lead to the LUN.

When HP-UX 11i v3 is installed, both persistent DSFs and legacy device files are created on the system.

You can use persistent DSFs on some HP-UX servers and legacy device files on others. However, if you use legacy device files, you must configure devices manually in NetBackup.

Note: NetBackup device discovery finds persistent DSFs only. Therefore, Symantec recommends that you use persistent DSFs.

See “About legacy pass-through paths for tape drives” on page 56.

See “About legacy tape drive device files” on page 55.

About device drivers for persistent DSFs

The following are the device drivers required to use persistent DSFs:

- The eschgr driver for robotic control.
The estape driver for tape drives.

For IBM tape drives, the atdd driver. NetBackup requires a minimum atdd driver level. See the NetBackup Hardware Compatibility List for IBM atdd driver levels that are supported and atdd configuration information.
http://www.symantec.com/docs/TECH76495
Also see the NetBackup Operating System Compatibility List for the minimum OS patch level that is required to run on HP-UX:
http://www.symantec.com/docs/TECH76648

About persistent DSFs for robotic control

The following is the persistent DSF name format for robotic control:
/dev/rchgr/autoch#

The # represents the instance number. For example, if HP-UX discovers two robotic devices (auto-changers) and assigns them instance numbers 0 and 1 respectively, HP-UX automatically creates the following device files:

/dev/rchgr/autoch0
/dev/rchgr/autoch1

About persistent DSFs for tape drive access

The following is the persistent DSF name format for tape drive read and write access:
/dev/rtape/tape#_BESTnb

The following describe the DSF name format:
- The # represents the instance number.
- BEST indicates the highest density.
- n indicates no rewind on close.
- b indicates Berkeley-style close.

About persistent DSF pass-through paths

Although NetBackup requires the /dev/rtape DSFs to configure tape drives, NetBackup uses pass-through device files for drive access.

NetBackup creates pass-through paths for all valid /dev/rtape paths. NetBackup creates the paths during device discovery or when you run the /usr/openv/volmgr/bin/scan command. The following is the file name format:
The # represents the instance number that matches the number in the
/dev/rtape/tape#_BESTnb device file or that is retrieved from the ioscan output.

Although NetBackup uses the pass-through device files during tape drive
operations, you specify the /dev/rtape device files if you configure the drives
manually in NetBackup. NetBackup then uses the appropriate pass-through device
files.

See “Creating persistent DSF pass-through paths” on page 53.

About configuring persistent DSFs

Configure persistent DSFs for the following:

■ Robotic control.
 See “Creating HP-UX persistent DSFs” on page 52.
 See “Upgrading NetBackup to use HP-UX persistent DSFs” on page 53.

■ Tape drive read and write accesss.
 See “Creating HP-UX persistent DSFs” on page 52.
 See “Creating persistent DSF pass-through paths” on page 53.

Creating HP-UX persistent DSFs

By default, new installations of HP-UX 11i v3 and later create both persistent
DSFs and legacy device files for the eschgr and estape drivers. However, you can
reinstall or create the persistent DSFs.

First connect the devices to the system. Then, create persistent DSFs on every
server on which you want to use the new persistent DSFs.

To create the persistent DSFs automatically

◆ Depending on the driver, enter the following command as root:
 For the eschgr autochanger driver, enter insf –d eschgr.
 For the estape tape driver, enter insf –d estape.
 For the IBM atdd tape driver, enter insf –d atdd

To refresh the device path for all devices that use a driver, adding the –e
option to the command line.

For more information about using the HP-UX insf command, see the man
page.
Upgrading NetBackup to use HP-UX persistent DSFs

Use the following procedure to configure an existing NetBackup environment to use persistent DSFs after you upgrade a media server to HP-UX 11i v3.

The following procedure also removes the legacy paths from the NetBackup device configuration. To save the legacy paths, you can use the NetBackup `tpconfig` utility to disable the old paths but retain them in the device configuration.

If you run the NetBackup **Device Configuration Wizard** before you perform this change, NetBackup adds the new DSF paths to the device configuration. However, the legacy paths remain configured as alternate paths.

To change a NetBackup media server to use the new DSFs

1. Add the following entry to the `/usr/openv/volmgr/vm.conf` file (the syntax must be as specified in all capital letters):

 AUTO_PATH_CORRECTION=YES

 The `AUTO_PATH_CORRECTION` entry directs NetBackup to scan for device paths when the `ltid` device daemon starts.

2. After adding the entry to the `vm.conf` file and with no current jobs running on the media server, run the following command:

 `/usr/openv/volmgr/bin/stopltid`

3. Wait a few minutes for the service to stop, then restart `ltid` by running the following command:

 `/usr/openv/volmgr/bin/ltid`

 Upon start-up, `ltid` scans for device paths, adds the new DSFs, and then purges the legacy DSFs from your NetBackup configuration for the media server.

 After `ltid` starts, only the new persistent DSF paths should be configured in NetBackup.

4. After the services are started and device paths updated, you can (but do not have to) remove the `AUTO_PATH_CORRECTION=YES` entry from the `vm.conf` file.

Creating persistent DSF pass-through paths

NetBackup creates pass-through paths for all valid `/dev/rtape` paths. NetBackup creates the paths during device discovery or when you run the `/usr/openv/volmgr/bin/scan` command.

However, you can create them manually. The following example shows how to create a pass-through device file for a persistent DSF.
To create a pass-through path for a tape drive

- Enter the following command (# is the instance number of the device from the ioscan output):

 mksf -P -C tape -I #

 For more information about using the HP-UX mksf command, see the man page.

About HP-UX legacy device drivers and files

Legacy device files are the old style device files that are not part of the HP-UX agile addressing scheme.

NetBackup does not discover legacy device files. If you use legacy device files, you must configure devices manually in NetBackup.

Note: NetBackup device discovery finds persistent DSFs only. Therefore, Symantec recommends that you use persistent DSFs.

See “About device drivers and files for persistent DSFs” on page 50.

About device drivers for legacy device files

The following are the drivers supported:

- The sctl driver for robotic control.
- The stape driver for tape drives.
- For IBM tape drives, the atdd driver. NetBackup requires a minimum atdd driver level. See the NetBackup Hardware Compatibility List for IBM atdd driver levels that are supported and atdd configuration information.
 http://www.symantec.com/docs/TECH76495
 NetBackup also supports the use of the IBM atdd tape driver on HP-UX 11i v3.
 Also see the NetBackup Operating System Compatibility List for the minimum OS patch level that is required to run on HP-UX:
 http://www.symantec.com/docs/TECH76648

About legacy robotic control device files

For SCSI robotic control, NetBackup can use the /dev/sctl device files. The device file names have the following format:

/dev/sctl/cCARDtTARGETLUN c Major 0xIITL00
Where:
- **CARD** is the card instance number of the adapter.
- **TARGET** is the SCSI ID of the robotic control.
- **LUN** is the SCSI logical unit number (LUN) of the robot.
- **Major** is the character major number (from the `lsdev` command).
- **II** are two hexadecimal digits that represent the card instance number.
- **T** is a hexadecimal digit that represents the SCSI ID of robotic control.
- **L** is a hexadecimal digit that represents the SCSI LUN of the robotic control.

A library may have more than one robotic device. Each robotic device requires a device file.
See “Creating legacy SCSI and FCP robotic controls on HP-UX” on page 57.

About legacy tape drive device files

NetBackup requires the `/dev/rmt` device files to configure tape drives.

The device file names have the following format:
```
/dev/rmt/c#t#d#BESTnb
```

The following describe the device file names:
- **c#** is the card instance number.
- **t#** is the SCSI ID.
- **d#** is the device LUN.
- **BEST** indicates the highest density format and data compression the device supports.
- **n** indicates no rewind on close.
- **b** indicates Berkeley-style close.

The following are examples of tape drive device files:
```
/dev/rmt/c7t0d0BESTnb
/dev/rmt/c7t1d0BESTnb
/dev/rmt/c7t4d0BESTnb
/dev/rmt/c7t5d0BESTnb
```

See “About creating legacy tape drive device files” on page 64.
About legacy pass-through paths for tape drives

Although NetBackup requires the /dev/rmt device files to configure tape drives, NetBackup uses pass-through device files for drive access.

On media servers, NetBackup automatically creates pass-through device files if the appropriate /dev/rmt tape drive device files exist. NetBackup creates the pass-through device files in the /dev/sctl directory.

NetBackup does not modify or delete any existing pass-through paths.

NetBackup does not detect the type of adapter cards that are installed in the system. Therefore, NetBackup creates pass-through paths for tape drives connected to the adapter cards that do not support pass through. These pass-through paths do not cause problems.

Although NetBackup uses the pass-through device files during tape drive operations, you specify the /dev/rmt device files when you configure the drives in NetBackup. NetBackup then uses the appropriate pass-through device files.

Usually, you do not have to create pass-through paths for drives. However, instructions to do so are provided for reference.

NetBackup SAN clients require legacy pass-through device files.

See “Creating device files for SAN clients on HP-UX” on page 56.

Note: Pass-through paths are not supported on HP-PB adapters such as HP28696A - Wide SCSI or HP 28655A - SE SCSI.

See “Creating tape drive pass-through device files” on page 64.

See “About device drivers and files for persistent DSFs” on page 50.

Creating device files for SAN clients on HP-UX

NetBackup SAN clients use tape drivers and SCSI pass-through methods for Fibre Transport traffic to NetBackup FT media servers. On HP-UX systems, NetBackup SAN clients require the sctl driver and pass-through tape drive device files.

The following table describes the tasks that create the device files. Before you create the device files, the NetBackup FT media server must be active and the SAN must be zoned correctly as described in the *NetBackup SAN Client and Fibre Transport Guide.*
Table 3-2 SAN Client device file tasks

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>If the sctl driver is not the default pass-through driver on your system, install and configure the sctl driver.</td>
<td>See the HP-UX scsi_ctl(7) man page.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Create the pass-through paths required.</td>
<td>See “About legacy pass-through paths for tape drives” on page 56. See “Creating tape drive pass-through device files” on page 64.</td>
</tr>
</tbody>
</table>

The media server FT devices appear as ARCHIVE Python tape devices during SCSI inquiry from the SAN client. However, they are not tape devices and do not appear as tape devices in NetBackup device discovery.

About configuring legacy device files

You can use legacy device files for the following:

- Robotic control using SCSI or Fibre Channel Protocol control.
 - SCSI control includes Fibre Channel Protocol (FCP), which is SCSI over Fibre Channel. A robotic device in a library moves the media between storage slots and the drives in the library.
 - See “Creating legacy SCSI and FCP robotic controls on HP-UX” on page 57.

- Tape drive read and write access.
 - See “About creating legacy tape drive device files” on page 64.
 - See “Creating tape drive pass-through device files” on page 64.

- SAN client pass-through paths for Fibre Transport traffic to NetBackup media servers.
 - See “Creating device files for SAN clients on HP-UX” on page 56.

Creating legacy SCSI and FCP robotic controls on HP-UX

You must create the robotic control device files for the sctl driver manually; they are not created automatically when the system boots.

Before you create the device files, you must do the following:

- Install and configure the sctl driver. For more information, see the HP-UX scsi_ctl(7) man page.
The sctl driver may be the default pass-through driver on your system. If so, you do not have to configure the kernel to use the sctl pass-through driver.

- Install and configure the schgr device driver. For more information, see the HP-UX autochanger(7) man page.
- Attach the devices.

Examples of how to create the device files are available.

See “Example of how to create a sctl device file for SCSI (PA-RISC)” on page 59.

See “Example of how to create a sctl device file for FCP (PA-RISC)” on page 60.

See “Example of how to create sctl device files for FCP (Itanium)” on page 62.

To create sctl device files

1. Invoke the ioscan -f command to obtain SCSI bus and robotic control information.

2. Examine the output for the card instance number and the SCSI ID and LUN of the robotic device, as follows:
 - The instance number of the card is in the I column of the output.
 - The H/W Path column of the changer output (schgr) includes the SCSI ID and LUN. Use the card's H/W Path value to filter the changer's H/W Path entry; the SCSI ID and the LUN remain.

3. Determine the character major number of the sctl driver by using the following command:

    ```
    lsdev -d sctl
    ```

 Examine the output for an entry that shows sctl in the Driver column.

4. Use the following commands to create the device file for the SCSI robotic control:

    ```
    mkdir /dev/sctl
    cd /dev/sctl
    /usr/sbin/mknod cCARD tTARGET lLUN c Major 0xIITL00
    ```

 Where:
 - **CARD** is the card instance number of the adapter.
 - **TARGET** is the SCSI ID of the robotic control.
 - **LUN** is the SCSI logical unit number (LUN) of the robot.
 - **Major** is the character major number (from the lsdev command).
II are two hexadecimal digits that represent the card instance number.

T is a hexadecimal digit that represents the SCSI ID of robotic control.

L is a hexadecimal digit that represents the SCSI LUN of the robotic control.

Example of how to create a sctl device file for SCSI (PA-RISC)

In this example, the following robots exist:

- An ADIC Scalar 100 library is on a SCSI bus with an instance number of 7, SCSI ID 2, and LUN 0.

- The robotic control for an IBM ULT3583-TL library is on the same SCSI bus at SCSI ID 3 and LUN 0.

To create SCSI robotic device files for HP-UX PA-RISC

1. Invoke the `ioscan -f` command, as follows:

   ```
   $ ioscan -f
   Class   I   H/W Path   Driver   S/W State H/W Type Description
   ext_bus  7  0/7/0/1  c720    CLAIMED INTERFACE SCSI C896 Fast Wide LVD
   target   10 0/7/0/1.0 tgt   CLAIMED DEVICE
   tape     65 0/7/0/1.0.0 stape CLAIMED DEVICE QUANTUM SuperDLT1
   target   11 0/7/0/1.1 tgt   CLAIMED DEVICE
   tape     66 0/7/0/1.1.0 stape CLAIMED DEVICE QUANTUM SuperDLT1
   target   12 0/7/0/1.2 tgt   CLAIMED DEVICE
   autoch   14 0/7/0/1.2.0 schgr CLAIMED DEVICE ADIC Scalar 100
   target   13 0/7/0/1.3 tgt   CLAIMED DEVICE
   autoch   19 0/7/0/1.3.0 schgr CLAIMED DEVICE IBM ULT3583-TL
   target   14 0/7/0/1.4 tgt   CLAIMED DEVICE
   tape     21 0/7/0/1.4.0 atdd CLAIMED DEVICE IBM ULT3580-TD1
   target   15 0/7/0/1.5 tgt   CLAIMED DEVICE
   tape     19 0/7/0/1.5.0 atdd CLAIMED DEVICE IBM ULT3580-TD1
   ```

2. Examine the output for the card instance number and the SCSI ID and LUN of the robotic device, as follows:

 The card H/W Path is 0/7/0/1; the card instance number (I column) is 7. Apply the H/W Path value as a mask. The ADIC robotic device (schgr) is at SCSI ID 2, LUN 0 on this bus. The IBM robotic device (schgr) is at SCSI ID 3, LUN 0 on this bus.
3 Determine the character major number of the sctl driver by using the following command:

```
lsdev -d sctl
```

<table>
<thead>
<tr>
<th>Character</th>
<th>Block</th>
<th>Driver</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>203</td>
<td>-1</td>
<td>sctl</td>
<td>ctrl</td>
</tr>
</tbody>
</table>

The output from this command shows that the character major number for the sctl driver is 203.

4 The commands to create the device files follow. For the ADIC robot, the card instance number is 7, the target is 2, and the LUN is 0. For the IBM robot, the card instance number is 7, the SCSI ID is 3, and the LUN is 0.

```
cd /dev/sctl
/usr/sbin/mknod c7t2l0 c 203 0x072000
/usr/sbin/mknod c7t3l0 c 203 0x073000
```

If you add the robots to NetBackup manually, you specify the following for ADIC robotic control and IBM robotic control respectively:

```
/dev/sctl/c7t2l0
/dev/sctl/c7t3l0
```

Example of how to create a sctl device file for FCP (PA-RISC)

The following example shows how create a sctl device file for an HP VLS9000 robot. NetBackup uses the device file for robotic control.
To create an FCP robotic device file for HP-UX PA-RISC

1. Invoke the `ioscan -f` command. The following output example is edited for readability:

```
ioscan -f
Class  I  H/W Path   Driver  S/W State  H/W Type  Description
=============================================================================
fc  0  0/2/0/0    td        CLAIMED  INTERFACE  HP Tachyon XL2 Fibre
    Channel Mass Storage Adapter
fcp 4  0/2/0/0.10  fcp      CLAIMED  INTERFACE  FCP Domain
ext_bus 6  0/2/0/0.10.11.255.0  fcpdev  CLAIMED  INTERFACE  FCP Device Interface
target 5  0/2/0/0.10.11.255.0.0  tgt      CLAIMED  DEVICE
autoch 2  0/2/0/0.10.11.255.0.0.0  schgr    CLAIMED  DEVICE  HP  VLS
tape  6  0/2/0/0.10.11.255.0.0.1  stape    CLAIMED  DEVICE  HP  Ultrium 4-SCSI
tape  7  0/2/0/0.10.11.255.0.0.3  stape    CLAIMED  DEVICE  HP  Ultrium 4-SCSI
```

2. Examine the output for the card instance number and the SCSI ID and LUN of the robotic device. In this example, the interface card instance number (the I column) is 6. If you use the card’s H/W Path value as a mask (0/2/0/0.10.11.255.0), you see the following:

- An HP VLS9000 robot is at SCSI ID 0, LUN 0.
- Three Ultrium 4-SCSI drives are at SCSI ID 0 and LUN 1, LUN 2, and LUN 3.
3 Determine the character major number of the sctl driver by using the lsdev command, as follows:

```bash
lsdev -d sctl
```

<table>
<thead>
<tr>
<th>Character</th>
<th>Block</th>
<th>Driver</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>203</td>
<td>-1</td>
<td>sctl</td>
<td>ctl</td>
</tr>
</tbody>
</table>

The output from this command shows that the character major number for the sctl driver is 203.

4 The commands to create the device file for the HP VLS9000 robotic control are as follows. The card instance number is 6, the target is 0, and the LUN is 0.

```bash
cd /dev/sctl
/usr/sbin/mknod c6t0l0 c 203 0x060000
```

If you add the robot to NetBackup manually, specify the following pathname for robotic control:

```
/dev/sctl/c6t0l0
```

Example of how to create sctl device files for FCP (Itanium)

With Fibre Channel, the hardware paths are longer than with SCSI.

In this example, the following devices are attached to the host.

- An HP EML E-Series robot with four HP drives (two LTO2 and two LTO3 drives). A separate path exists for each drive pair. The robotic control is through card instance 12 (0/4/1/1.2.12.255.0).

- An HP VLS 6000 robot with six drives. The robot is partitioned into two virtual libraries, three Quantum SDLT320 drives in one library and three HP LTO3 drives in the other library. Separate robotic control exists for each library.
To create FCP robotic device files for HP-UX Itanium

1. Invoke the `ioscan -f` command. The following is a command output excerpt that shows the Fibre Channel devices on a host:

```plaintext
ext_bus  4  0/4/1.2.10.255.0  fcd_vbus  CLAIMED INTERFACE FCP Device Interface
target   7  0/4/1.2.10.255.0.0  tgt     CLAIMED DEVICE HP Ulterium 3-SCSI
tape     18 0/4/1.2.10.255.0.0.0 stape CLAIMED DEVICE HP Ultrium 3-SCSI
tape     20 0/4/1.2.10.255.0.0.1 stape CLAIMED DEVICE HP Ulterium 3-SCSI
ext_bus 13 0/4/1.2.11.255.0  fcd_vbus CLAIMED INTERFACE FCP Device Interface
target   8  0/4/1.2.11.255.0.0  tgt     CLAIMED DEVICE HP VLS
tape     22 0/4/1.2.11.255.0.0.0 stape CLAIMED DEVICE QUANTUM SDLT320
tape     23 0/4/1.2.11.255.0.0.0.2 stape CLAIMED DEVICE QUANTUM SDLT320
tape     24 0/4/1.2.11.255.0.0.0.3 stape CLAIMED DEVICE QUANTUM SDLT320
autoch   5  0/4/1.2.11.255.0.0.4 schgr CLAIMED DEVICE HP VLS
tape     25 0/4/1.2.11.255.0.0.0.5 stape CLAIMED DEVICE HP Ulterium 3-SCSI
tape     26 0/4/1.2.11.255.0.0.0.6 stape CLAIMED DEVICE HP Ulterium 3-SCSI
tape     27 0/4/1.2.11.255.0.0.0.7 stape CLAIMED DEVICE HP Ulterium 3-SCSI
ext_bus 12 0/4/1.2.12.255.0  fcd_vbus CLAIMED INTERFACE FCP Device Interface
target   6  0/4/1.2.12.255.0.0  tgt     CLAIMED DEVICE
autoch   1  0/4/1.2.12.255.0.0.0 schgr CLAIMED DEVICE HP EML E-Series
tape     19 0/4/1.2.12.255.0.0.0.1 stape CLAIMED DEVICE HP Ulterium 2-SCSI
tape     21 0/4/1.2.12.255.0.0.0.2 stape CLAIMED DEVICE HP Ulterium 2-SCSI
```

2. Examine the output for the card instance number and the SCSI ID and LUN of the robotic device.

In this example, the following devices are attached to this host:

- The robotic control for the HP EML E-Series robot is through card instance 12 (0/4/1.2.12.255.0). Two of the drives are accessed through the same path, and the other two are accessed through card instance 4 (0/4/1.2.10.255.0).
- The robotic controls for the HP VLS 6000 robot partitions are through card instance 13. Robotic control for one partition is at SCSI ID 0 and LUN 0. Robotic control for the other partition is at SCSI ID 0 and LUN 4.
Determine the character major number of the sctl driver by using the following command:

```
lsdev -d sctl
```

<table>
<thead>
<tr>
<th>Character</th>
<th>Block</th>
<th>Driver</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>203</td>
<td>-1</td>
<td>sctl</td>
<td>ctl</td>
</tr>
</tbody>
</table>

The output from this command shows that the character major number for the sctl driver is 203.

The commands to create the devices file for the robotic controls are as follows:

```
cd /dev/sctl
/usr/sbin/mknod c12t0l0 c 203 0x0c0000
/usr/sbin/mknod c13t0l0 c 203 0x0d0000
/usr/sbin/mknod c13t0l4 c 203 0x0d0400
```

If you add the robots to NetBackup manually, you specify the following pathnames for robotic control. The first device file is for the HP EML E-Series robot. The second and third device files are for the VLS 6000 robot (two robotic devices).

```
/dev/sctl/c12t0l0
/dev/sctl/c13t0l0
/dev/sctl/c13t0l4
```

About creating legacy tape drive device files

By default, HP-UX creates tape drive device files when the system is booted. However, the tape driver must be installed and configured, and the devices must be attached and operational.

Alternatively, you can create tape drive device files manually. To do so, use either the HP-UX System Administration Manager (SAM) utility or the `insf(1M)` command. For information, see the HP-UX documentation.

Creating tape drive pass-through device files

On media servers, NetBackup creates pass-through paths for tape drives automatically. However, you can create them manually.

Use one of the following two procedures:

- Create pass-through tape drive device files

 See “To create pass-through tape drive device files” on page 65.

- Create SAN client pass-through device files
See “To create SAN client pass-through device files” on page 67.

To create pass-through tape drive device files

1. Determine the devices that are attached to the SCSI bus by using the HP-UX `ioscan -f` command, as follows:

```
ioscan -f
```

<table>
<thead>
<tr>
<th>Class</th>
<th>I</th>
<th>H/W Path</th>
<th>Driver</th>
<th>S/W State</th>
<th>H/W Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ext_bus</td>
<td>7</td>
<td>0/7/0/</td>
<td>c720</td>
<td>CLAIMED</td>
<td>INTERFACE</td>
<td>SCSI C896 Fast Wide LVD</td>
</tr>
<tr>
<td>target</td>
<td>10</td>
<td>0/7/0/1.0</td>
<td>tgt</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td></td>
</tr>
<tr>
<td>tape</td>
<td>65</td>
<td>0/7/0/1.0.0</td>
<td>stape</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td>QUANTUM SuperDLT1</td>
</tr>
<tr>
<td>target</td>
<td>11</td>
<td>0/7/0/1.1</td>
<td>tgt</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td></td>
</tr>
<tr>
<td>tape</td>
<td>66</td>
<td>0/7/0/1.1.0</td>
<td>stape</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td>QUANTUM SuperDLT1</td>
</tr>
<tr>
<td>target</td>
<td>12</td>
<td>0/7/0/1.2</td>
<td>tgt</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td></td>
</tr>
<tr>
<td>autoch</td>
<td>14</td>
<td>0/7/0/1.2.0</td>
<td>schgr</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td>ADIC Scalar 100</td>
</tr>
<tr>
<td>target</td>
<td>13</td>
<td>0/7/0/1.3</td>
<td>tgt</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td></td>
</tr>
<tr>
<td>autoch</td>
<td>19</td>
<td>0/7/0/1.3.0</td>
<td>schgr</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td>IBM ULT3583-TL</td>
</tr>
<tr>
<td>target</td>
<td>14</td>
<td>0/7/0/1.4</td>
<td>tgt</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td></td>
</tr>
<tr>
<td>tape</td>
<td>21</td>
<td>0/7/0/1.4.0</td>
<td>atdd</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td>IBM ULT3580-TD1</td>
</tr>
<tr>
<td>target</td>
<td>15</td>
<td>0/7/0/1.5</td>
<td>tgt</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td></td>
</tr>
<tr>
<td>tape</td>
<td>19</td>
<td>0/7/0/1.5.0</td>
<td>atdd</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td>IBM ULT3580-TD1</td>
</tr>
</tbody>
</table>

This example output shows the following:

- The robotic control for an ADIC Scalar 100 library is on a SCSI bus with an instance number of 7. The SCSI ID is 2, and the LUN is 0. The robotic control for an IBM ULT3583-TL library is on the same SCSI bus at SCSI ID 3 and LUN 0.

- The ADIC library contains two Quantum Super DLT drives. One has a SCSI ID of 0 and a LUN of 0. The other has a SCSI ID of 1 and a LUN of 0.

- The IBM library contains two IBM Ultrium LTO drives. One has a SCSI ID of 4 and a LUN of 0. The other has a SCSI ID of 5 and a LUN of 0.

Use the IBM `atdd` driver when you configure IBM tape drives on HP-UX. Configure `atdd` and BEST device paths according to the IBM driver documentation. Do not configure `atdd` for robotic control of IBM robots.
For the latest recommended `atdd` driver version from IBM, check the Symantec support Web site.

2 Create the pass-through device files for the tape drives, as follows:

```bash
cd /dev/sctl
/usr/sbin/mknod c7t0l0 c 203 0x070000
/usr/sbin/mknod c7t1l0 c 203 0x071000
/usr/sbin/mknod c7t4l0 c 203 0x074000
/usr/sbin/mknod c7t5l0 c 203 0x075000
```

When you use the HP-UX `mknod` command for tape drives, the target is the SCSI ID of the tape drive. It is not the SCSI ID of the robotic control.

The previous commands create the following pass-through device files.

```bash
/dev/sctl/c7t0l0
/dev/sctl/c7t1l0
/dev/sctl/c7t4l0
/dev/sctl/c7t5l0
```

Although the pass-through device files for tape drives are used during NetBackup operation, they are not used during NetBackup configuration. During NetBackup tape drive configuration, use the following device files to configure the tape drives.

```bash
/dev/rmt/c7t0d0BESTnb
/dev/rmt/c7t1d0BESTnb
/dev/rmt/c7t4d0BESTnb
/dev/rmt/c7t5d0BESTnb
```
To create SAN client pass-through device files

1. Determine the devices that are attached to the SCSI bus by using the HP-UX `ioscan -f` command, as follows:

```
ioscan -f
```

<table>
<thead>
<tr>
<th>Class</th>
<th>I</th>
<th>H/W Path</th>
<th>Driver</th>
<th>S/W State</th>
<th>H/W Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ext_bus</td>
<td>9</td>
<td>0/3/1/0.1.22.255.0</td>
<td>fcd_vbus</td>
<td>CLAIMED</td>
<td>INTERFACE</td>
<td>FCP Device Interface</td>
</tr>
<tr>
<td>target</td>
<td>4</td>
<td>0/3/1/0.1.22.255.0.0</td>
<td>tgt</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td></td>
</tr>
<tr>
<td>tape</td>
<td>6</td>
<td>0/3/1/0.1.22.255.0.0.0</td>
<td>stape</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td>ARCHIVE Python</td>
</tr>
<tr>
<td>tape</td>
<td>7</td>
<td>0/3/1/0.1.22.255.0.0.1</td>
<td>stape</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td>ARCHIVE Python</td>
</tr>
</tbody>
</table>

This example output shows that the instance number of the Fibre Channel HBA is 9. It also shows that the target mode drivers on the Fibre Transport media server appear as `ARCHIVE Python` devices. One has a SCSI ID of 0 and a LUN of 0; the other has a SCSI ID of 0 and a LUN of 1.

2. Determine the character major number of the sctl driver by using the following command:

```
lsdev -d sctl
```

```
Character  Block  Driver  Class
203         -1      sctl    ctl
```

The output from this command shows that the character major number for the sctl driver is 203.

3. Create the pass-through device files, as follows:

```
cd /dev/sctl
/usr/sbin/mknod c9t0l0 c 203 0x090000
/usr/sbin/mknod c9t0l1 c 203 0x090100
```

The following describes the device file name:

- **c9** defines the instance number of the interface card.
- **t0** defines the SCSI ID (the target).
- **l1** defines the LUN (the first character is the letter “l”).

4. Verify that the device files were created, as follows:

```
# ls -l /dev/sctl
```

```
total 0
-crw-r--r-- 1 root sys 203 0x090000 Nov 1 13:19 c9t0l0
-crw-r--r-- 1 root sys 203 0x090100 Nov 1 13:19 c9t0l1
```
About SPC-2 SCSI reserve on HP-UX

By default, NetBackup uses SPC-2 SCSI reserve and release for tape drive reservations in shared drive environments. However, you must disable SPC-2 SCSI reserve and release in HP-UX. If you do not, conflicts occur between the operating system and NetBackup. The NetBackup Shared Storage Option provides shared drive functionality in NetBackup.

Symantec recommends that you use the SAM utility to disable SPC-2 SCSI reserve and release.

As an alternative to SCSI reserve and release, you can use SCSI persistent reserve in NetBackup for shared tape drive reservations. If you use SCSI persistent reserve, you still must disable SPC-2 SCSI reserve and release in HP-UX.

For more information about NetBackup and SCSI reservations, see the following:

- The description of the **Enable SCSI Reserve Media** host property in the following:
 - The *NetBackup Administrator's Guide for UNIX and Linux, Volume I*
 - The *NetBackup Administrator's Guide for Windows, Volume I*
- The "How NetBackup reserves drives" topic in the following:
 - The *NetBackup Administrator's Guide for UNIX and Linux, Volume II*
 - The *NetBackup Administrator's Guide for Windows, Volume II*

Disabling SPC-2 SCSI reserve in HP-UX

Use the following procedure to disable SPC-2 SCSI reserve in HP-UX.

To disable SPC-2 SCSI reserve in HP-UX

1. Set the `st_ats_enabled` kernel parameter to 0 (zero).
2. Reboot the system.

About disabling the HP-UX EMS Tape Device Monitor for a SAN

This topic is a NetBackup Enterprise Server topic.

You should configure the Tape Device Monitor (`dm_stape`) so it does not run on HP-UX hosts in a SAN configuration. The Tape Device Monitor is a component of the Event Monitoring System (EMS). The EMS service periodically polls the tape
devices to monitor their conditions. When a server polls the devices while another server uses a tape device, backup operations may time out and fail.

You can avoid the situation as follows:

- To disable EMS completely, run the HP-UX Hardware Monitoring Request Manager and select (K)ill (disable) Monitoring. Invoke the Hardware Monitoring Request Manager by using the /etc/opt/resmon/libin/monconfig command.

- To configure EMS so it does not log any events or poll devices, set the POLL_INTERVAL value to 0 (zero). The POLL_INTERVAL parameter is in the following HP-UX configuration file:
 /var/stm/config/tools/monitor/dm_stape.cfg
 EMS runs but does not send any SCSI commands.

HP-UX command summary

The following is a summary of commands that may be useful when you configure and verify devices. For usage examples, see the procedures in this chapter.

- `ioscan -C class -f`
 Shows the information about the physical interfaces. Numeric information is displayed in decimal.

 class is the type of interface, as follows:

 - tape specifies tape drives.
 - ext_bus specifies SCSI controllers.

- `mknod /dev/spt/cCARDtTARGETlLUN c Major 0xIIITL00`
 Creates the device files for SCSI robotic or tape drive controls.

The following describe the device file names:

- **CARD** is the card instance number of the adapter.
- **TARGET** is the SCSI ID of the robotic control.
- **LUN** is the SCSI logical unit number (LUN) of the robot.
- **Major** is the character major number (from the `lsdev` command).
- **II** are two hexadecimal digits that represent the card instance number.
- **T** is a hexadecimal digit that represents the SCSI ID of robotic control.
- **L** is a hexadecimal digit that represents the SCSI LUN of the robotic control.

- `lsdev -d driver`
Displays the information about the SCSI robotic control drivers.

- `mksf -C tape -H hw-path -b BEST -u -n`

Creates the device files for tape drives. The `hw-path` is the hardware path of the tape drive, as specified by the `ioscan` command.
This chapter includes the following topics:

- Before you begin on Linux
- About the required Linux SCSI drivers
- Verifying the Linux drivers
- About configuring robot and drive control for the Linux 2.6 kernel
- Verifying the device configuration
- About SAN clients on Linux
- About SCSI persistent bindings
- About Emulex HBAs
- Utilities to test SCSI devices
- Linux command summary

Before you begin on Linux

Observe the following important points when you configure the operating system:

- Verify that NetBackup supports your server platform and devices. The Symantec support Web site contains server platform compatibility information. For the compatibility information, see the Compatibility List for NetBackup Server or NetBackup Enterprise Server. The following is the URL: http://entsupport.symantec.com

- For SCSI controlled libraries, NetBackup issues SCSI commands to the robotic devices. For NetBackup to function correctly, the properly named device files must exist. Information about how to configure device files is available.
See “About configuring robot and drive control for the Linux 2.6 kernel” on page 74.

- Verify that a SCSI low-level driver is installed for each HBA in your system, as follows:
 - Follow the HBA vendor’s installation guide to install or load the driver in the kernel.
 - Configure the kernel for SCSI tape support and SCSI generic support.
 - Probe all LUNs on each SCSI device and enable the SCSI low-level driver for the HBA.
 - Enable multi-LUN support for the kernel according to the Linux documentation.

For more information, refer to your HBA vendor documentation.

- Multipath configurations (multiple paths to robots and drives) are supported only with the following configurations:
 - Native path (/dev/nstx, /dev/sgx)
 - The sysfs file system that is mounted on /sys

After you configure the hardware, add the robots and the drives to NetBackup.

About the required Linux SCSI drivers

To use SCSI tape drives and robotic libraries, the following drivers must be configured in the kernel or loaded as modules:

- Linux SCSI generic (sg) driver. This driver allows pass-through commands to SCSI tape drives and control of robotic devices.

 If you do not use a pass-through driver, performance suffers. NetBackup and its processes use the pass-through driver as follows:

 - To scan drives
 - For SCSI reservations
 - For SCSI locate-block operations
 - For SAN error recovery
 - For Quantum SDLT performance optimization
 - To collect robot and drive information
 - To collect Tape Alert information from tape drives
 - For WORM tape support
For future features and enhancements

- SCSI tape (st) driver. This driver allows the use of SCSI tape drives.
- Standard SCSI driver.
- SCSI-adapter driver.

The standard Enterprise Linux releases have the sg and the st modules available for loading. The modules are loaded as needed. Also, you can load these modules if they are not in the kernel. Use the following commands:

```
/sbin/modprobe st
/sbin/modprobe sg
```

st driver support for additional tape devices

The `st` tape driver supports up to 32 tape devices in its default configuration. This configuration provides eight minor device numbers.

Because NetBackup uses only one minor number, you can modify the driver to support up to the following:

- 64 tape devices (with four minor device numbers)
- 128 tape devices (with two minor device numbers)

The following table shows the `ST_NBR_MODE_BITS` parameter values.

Modify the `ST_NBR_MODE_BITS` parameter in the `st.h` file; use a value from the table. The `st.h` file resides in the `/drivers/scsi` directory. The path to the `/drivers/scsi` directory depends on the Linux version and build. In the following two example paths, the first is on a RedHat Linux system and the second is on a SUSE Linux system:

```
/usr/src/redhat/BUILD/kernel-2.6.18/linux-2.6.18.x86_64/drivers/scsi
/usr/src/linux-2.6.16.60-0.21/drivers/scsi
```

<table>
<thead>
<tr>
<th>Number of tape drives to support</th>
<th>Use this value for <code>ST_NBR_MODE_BITS</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4-1 `st.h ST_NBR_MODE_BITS` values
About st buffer size and performance

Internal st tape driver buffers have a default size of 32K. You may improve performance if you set those buffers to match the default block size that the NetBackup bptm process uses. The default block size for bptm is 64K.

Modify the ST_BUFFER_BLOCKS parameter in the st_options.h file; set the value to 64.

Depending on the available system memory, you also may need to reduce the number of buffers to allow. To do so, modify the ST_MAX_BUFFERS parameter in the st_options.h file. The default value is 4.

To incorporate these source changes into your system, follow the operating system guidelines.

About the st driver debug mode

You can enable debug mode for the st tape driver. Debug mode echoes each command and its result to the system log. For details, see the Linux documentation.

Verifying the Linux drivers

NetBackup requires specific Linux drivers.

See “About the required Linux SCSI drivers” on page 72.

You can use the /sbin/lsmod command to verify that the st and the sg drivers are loaded in the kernel.

To verify that the drivers are installed and loaded in the kernel

- Invoke the lsmod command as follows:

```
lsmod
```

<table>
<thead>
<tr>
<th>Module</th>
<th>Size</th>
<th>Used by</th>
</tr>
</thead>
<tbody>
<tr>
<td>sg</td>
<td>14844</td>
<td>0</td>
</tr>
<tr>
<td>st</td>
<td>24556</td>
<td>0</td>
</tr>
</tbody>
</table>

About configuring robot and drive control for the Linux 2.6 kernel

NetBackup supports SCSI control and API control of robotic devices. SCSI control includes Fibre Channel Protocol (FCP), which is SCSI over Fibre Channel.
You must configure the control method, as follows:

- **SCSI or Fibre Channel Protocol control.**
 NetBackup uses device files to configure control for SCSI tape devices, including robotic devices. (A robotic device in a library moves the media between storage slots and the drives in the library.)
 See “About the Linux 2.6 kernel robotic control device files” on page 75.
 See “About the Linux 2.6 kernel tape drive device files” on page 75.

- **API control over a LAN.**
 See the "ADIC Automated Media Library (AML)" topic of this guide.
 See the "IBM Automated Tape Library (ATL)" topic of this guide.
 See the "Sun StorageTek ACSLS robots" topic of this guide.

About the Linux 2.6 kernel robotic control device files

For robotic devices, NetBackup uses the `/dev/sgx` device files, where `x` is a decimal number from 0 to 255. Linux should create the device files automatically. If the device files do not exist, see the Linux documentation for information about how to create them.

If you use device discovery, NetBackup looks for `/dev/sgx` robotic control device files. NetBackup discovers the robotic control device files (and hence the devices) automatically. Alternatively, if you add a robot manually in NetBackup, you must enter the pathname to the device file for that robotic device.

About the Linux 2.6 kernel tape drive device files

For tape drive device files, NetBackup uses the `/dev/nstx` files (`n` indicates the no rewind device file). The Linux driver should create the device files automatically. If the device files do not exist, see the Linux documentation for information about how to create them.

If you use device discovery in NetBackup, NetBackup looks for `/dev/nstx` device files. NetBackup discovers the device files (and hence the devices) automatically. Alternatively, if you add a drive manually in NetBackup, you must enter the pathname to the device file for that drive.

The NetBackup `avrd` daemon establishes a default tape driver operating mode. If you change the default mode, NetBackup may not read and write tapes correctly, which results in data loss.

Verifying the device configuration

The `/proc/scsi/scsi` file shows all of the devices that the SCSI driver detects.
If the operating system detects the SCSI devices, NetBackup can discover them.

To verify that the operating system can see the devices

- Run the following command from a terminal window:

  ```
  cat /proc/scsi/scsi
  ```

 The output that is displayed should be similar to the following:

  ```
  Attached devices:
  Host: scsi0 Channel: 00 Id: 01 Lun: 00
  Vendor: HP     Model: C7200-8000      Rev: 1040
  Type: Medium Changer      ANSI SCSI revision: 03
  Host: scsi0 Channel: 00 Id: 02 Lun: 00
  Vendor: QUANTUM Model: DLT8000      Rev: 010F
  Type: Sequential-Access      ANSI SCSI revision: 02
  Host: scsi0 Channel: 00 Id: 03 Lun: 00
  Vendor: QUANTUM Model: DLT8000      Rev: 010F
  Type: Sequential-Access      ANSI SCSI revision: 02
  ```

About SAN clients on Linux

NetBackup SAN clients on Linux hosts require the SCSI Generic (sg) driver and pass-through tape drive device files for traffic to NetBackup FT media servers. The media server FT devices appear as `ARCHIVE Python` tape devices during SCSI inquiry from the SAN client. (However, they are not tape devices and do not appear as tape devices in NetBackup device discovery.)

You should verify that you have the correct driver and device files.

See “Verifying the Linux drivers” on page 74.

Also, by default Linux does not add generic SCSI device files greater than LUN 0. Therefore, you may have to modify the `/etc/rc.local` file to scan LUN 1 and higher.

The following is an example of code you can include in the `/etc/rc.local` file to add LUN 1, targets 0-7 on Controllers 0-2. Note that the last line is the `MAKEDEV` command, which makes the required device files. The code you include in your `/etc/rc.local` file depends on how your hardware environment.

```bash
# Add the troublesome device on LUN 1 for the FT server
echo "scsi add-single-device 0 0 0 1" > /proc/scsi/scsi
echo "scsi add-single-device 0 0 1 1" > /proc/scsi/scsi
echo "scsi add-single-device 0 0 2 1" > /proc/scsi/scsi
echo "scsi add-single-device 0 0 3 1" > /proc/scsi/scsi
```

Linux
About SCSI persistent bindings

Use persistent bindings to lock the mappings between the SCSI targets that are reported to Linux and the specific devices. World Wide Port Name (WWPN) binding is often used. If you cannot use binding with the HBA in your configuration, add an `ENABLE_AUTO_PATH_CORRECTION` entry in the `/usr/openv/volmgr/vm.conf` file on all Linux media servers.

About Emulex HBAs

If NetBackup cannot mount tapes when an Emulex Fibre Channel HBA is installed, you may have to modify the `lpfc.conf.c` file.

Set `lpfc_check_cond_err` to a value of zero. NetBackup is unable to mount tapes if this variable is set to one.

If you use a `/usr/openv/volmgr/AVRD_DEBUG` touch file on a system with an Emulex HBA driver, the system log may contain entries similar to the following:

Unknown drive error on DRIVENAME (device N, PATH) sense[0] = 0x70, sense[1] = 0x0, sensekey = 0x5
You can ignore these messages.

Utilities to test SCSI devices

You can manipulate tape devices with the operating system `mt` command. For more information, see the `mt(1)` man page.

You can use the NetBackup `robtest` utility to test robots. The `robtest` utility resides in `/usr/openv/volmgr/bin`.

A set of SCSI utilities are available from the Linux SCSI Generic (`sg`) driver home page.

Linux command summary

The following is a summary of commands that were used in this topic:

- `/sbin/lsmod`
 Lists the modules that are loaded.

- `/sbin/modprobe`
 Installs loadable kernel modules.

- `/usr/sbin/reboot`
 Stops and restarts the system.

- `/bin/mknod /dev/sgx c 21 N`
 Creates SCSI generic device files; `x` is a decimal number from 0 to 255.
Solaris

This chapter includes the following topics:

- Before you begin on Solaris
- About the NetBackup sg driver
- Determining if the NetBackup sg driver is installed
- Special configuration for the Sun StorEdge Network Foundation HBA driver
- About binding Fibre Channel HBA drivers
- Configuring Solaris 10 x86 for multiple drive paths
- Installing/reinstalling the sg and the st drivers
- Preventing Solaris driver unloading
- About Solaris robotic controls
- About Solaris tape drive device files
- Configuring SAN clients to recognize FT media servers
- Uninstalling the sg driver
- Solaris command summary

Before you begin on Solaris

Observe the following points when you configure the operating system:

- Verify that NetBackup supports your server platform and devices. The Symantec support Web site contains server platform compatibility information. For the compatibility information, see the Compatibility List for NetBackup Server or NetBackup Enterprise Server. The following is the URL:
For SCSI controlled libraries, NetBackup issues SCSI commands to the robotic devices.

For NetBackup to function correctly, the properly named device files must exist, as follows:

- NetBackup installs its own pass-through driver, the SCSI generic *sg* driver. You must configure this driver properly to create device files for any device NetBackup uses.
- The Solaris tape and disk driver interfaces also create a device file for each tape drive device. These device files must exist for all read or write I/O capability.
See “About Solaris robotic controls” on page 89.

- Verify that the Solaris *st* driver is installed.
- Verify that the devices are configured correctly. To do so, use the Solaris *mt* command and the NetBackup `/usr/openv/volmgr/bin/sgscan` utility. For the NetBackup shared storage options, ensure that the SAN and storage devices are configured correctly.
- When you configure devices, you should attach all peripherals and reboot the system with the reconfigure option (`boot -r` or `reboot -- -r`).
- If you remove or replace adapter cards, remove all device files that are associated with that adapter card.
- If you use the Automated Cartridge System (ACS) robotic software, you must ensure that the SunOS/BSID Source Compatibility Package is installed. The package is required so that the ACS software can use the shared libraries in `/usr/ucblib`.
- Sun systems with parallel SCSI host bus adapters do not support 16-byte SCSI commands on any devices that are attached to these HBAs. Therefore, those HBAs do not support WORM media. To override this limitation, create a touch file as follows:

  ```bash
  touch /usr/openv/volmgr/database/SIXTEEN_BYTE_CDB
  ```

After you configure the hardware, add the robots and the drives to NetBackup.

About the NetBackup sg driver

NetBackup provides its own SCSI pass-through driver to communicate with SCSI-controlled robotic peripherals. This driver is called the SCSA (generic SCSI pass-through driver), also referred to as the *sg* driver.
For full feature support, NetBackup requires the sg driver and SCSI pass-through device paths.

Install the NetBackup sg driver on each Solaris NetBackup media server that hosts tape devices. Each time you add or remove a device, you should reinstall the sg driver again.

If you do not use a pass-through driver, performance suffers.

NetBackup uses the pass-through driver for the following:
- By `avrd` and robotic processes to scan drives.
- By NetBackup to position tapes by using the locate-block method.
- By NetBackup for SAN error recovery.
- By NetBackup for Quantum SDLT performance optimization.
- By NetBackup for SCSI reservations.
- By NetBackup device configuration to collect robot and drive information.
- To collect Tape Alert information from tape devices allowing support of functions such as tape drive cleaning.
- For WORM tape support.
- Future NetBackup features and enhancements

Note: Because NetBackup uses its own pass-through driver, NetBackup does not support the Solaris `sgen` SCSI pass-through driver.

See “Installing/reinstalling the sg and the st drivers” on page 83.

Determining if the NetBackup sg driver is installed

Use the following procedure to determine if the sg driver is installed and loaded.

More information about the driver is available.

See “About the NetBackup sg driver” on page 80.

To determine if the sg driver is installed and loaded

- Invoke the following command:

  ```
  /usr/sbin/modinfo | grep sg
  ```

 If the driver is loaded, output includes a line similar to the following:

  ```
  141 fc580000 2d8c 116 1 sg (SCSA Generic Revision: 3.5e)
  ```
Special configuration for the Sun StorEdge Network Foundation HBA driver

When you configure the sg driver, it binds the StorEdge Network Foundation host bus adapter World Wide Port Names for use by the sg driver.

See “Installing/reinstalling the sg and the st drivers” on page 83.

The configuration process uses the Solaris luxadm command to probe for HBAs that are installed in the system. Ensure that the luxadm command is installed and in the shell path.

To determine if a host contains a StorEdge Network Foundation HBA, you can run the following command:

/usr/openv/volmgr/bin/sgscan

If the script detects a StorEdge Network Foundation HBA, it produces output similar to the following example:

#WARNING: detected StorEdge Network Foundation connected devices not in sg configuration file:
#
Device World Wide Port Name 21000090a50001c8
#
See /usr/openv/volmgr/NetBackup_DeviceConfig_Guide.txt topic
"Special configuration for Sun StorEdge Network Foundation HBA/Driver" for information on how to use sg.build and
sg.install to configure these devices

Each time you add or remove a device, you should configure the sg and the st drivers again.

About binding Fibre Channel HBA drivers

For Fibre Channel HBAs other than Sun StorEdge Network Foundation, you must bind the devices to specific target IDs on the NetBackup host. When you bind devices to targets, the target ID does not change after a system reboot or a Fibre Channel configuration change.

In some instances, Symantec products are configured to use a specific target ID. If you change the ID, the products fail until you configure the ID correctly.

How you bind devices to targets is vendor and product specific. For information about how to modify the HBA configuration files to bind devices to targets, see the documentation for the HBA.
The binding may be based on the following:

- Fibre Channel World Wide Port Name (WWPN)
- World Wide Node Name (WWNN)
- The destination target ID and LUN

After you bind the devices to target IDs, continue with the Solaris configuration in the same manner as for parallel SCSI installations.

See “Installing/reinstalling the sg and the st drivers” on page 83.

Each time you add or remove a device, you must update the bindings and then configure the sg and the st drivers again.

Configuring Solaris 10 x86 for multiple drive paths

To use multiple paths to the same tape drive, NetBackup requires that Solaris Multiplexed I/O (MPxIO) be disabled. MPxIO is enabled by default on Solaris 10 x86 systems.

Use the following procedure to disable MPxIO.

To disable MPxIO

1. Use a text editor to open the following file:
 `/kernel/drv/fp.conf`

2. Change the `mpxio-disable` value from **no** to **yes**. After the change, the line in the file should appear as follows:

   ```plaintext
   mpxio-disable="yes"
   ```

3. Save the changes and exit from the text editor.

Installing/reinstalling the sg and the st drivers

You must install the NetBackup sg driver and the Sun st driver on each Solaris NetBackup media server that hosts tape devices.

Each time you add or remove a device, you should install and configure the sg and the st drivers again.

Before you configure the sg and the st drivers, ensure that all devices are turned on and connected to the HBA.

See “About the NetBackup sg driver” on page 80.
To install and configure the sg and the st drivers

1. Invoke the following two commands to run the NetBackup sg.build script:

   ```
   cd /usr/openv/volmgr/bin/driver
   /usr/openv/volmgr/bin/sg.build all -mt target -ml lun
   ```

 The following describes the options:

 - The `all` option creates the following files and populates them with the appropriate entries:
 - `/usr/openv/volmgr/bin/driver/st.conf`
 See “st.conf file example” on page 85.
 - `/usr/openv/volmgr/bin/driver/sg.conf`
 See “sg.conf file example” on page 86.
 - `/usr/openv/volmgr/bin/driver/sg.links`
 See “sg.links file example” on page 87.

 - The `-mt target` option and argument specify the maximum target ID that is in use on the SCSI bus (or bound to an FCP HBA). The maximum value is 126. By default, the SCSI initiator target ID of the adapter is 7, so the script does not create entries for target ID 7.

 - The `-ml lun` option and argument specify the maximum number of LUNs that are in use on the SCSI bus (or by an FCP HBA). The maximum value is 255.

2. Replace the following seven entries in the `/kernel/drv/st.conf` file with all of the entries from the `/usr/openv/volmgr/bin/driver/st.conf` file:

   ```
   name="st" class="scsi" target=0 lun=0;
   name="st" class="scsi" target=1 lun=0;
   name="st" class="scsi" target=2 lun=0;
   name="st" class="scsi" target=3 lun=0;
   name="st" class="scsi" target=4 lun=0;
   name="st" class="scsi" target=5 lun=0;
   name="st" class="scsi" target=6 lun=0;
   ```

 You should make a backup copy of the `/kernel/drv/st.conf` file before you modify it.

3. Reboot the system with the reconfigure option (`boot -r` or `reboot -- -r`). During the boot process, the system probes all targets in the `st.conf` file for devices. It should create device files for all devices it discovers.
4 Verify that the system created the device nodes for all the tape devices by using the following command:

```
ls -l /dev/rmt/*cbn
```

5 Install the new sg driver configuration by invoking the following two commands:

```
/usr/bin/rm -f /kernel/drv/sg.conf
/usr/openv/volmgr/bin/driver/sg.install
```

The NetBackup sg.install script does the following:

- Installs and loads the sg driver.
- Copies the `/usr/openv/volmgr/bin/driver/sg.conf` file to `/kernel/drv/sg.conf`.
- Creates the `/dev/sg` directory and nodes.
- Appends the `/usr/openv/volmgr/bin/driver/sg.links` file to the `/etc/devlink.tab` file.

6 Verify that the sg driver finds all of the robots and tape drives.

st.conf file example

The following `/usr/openv/volmgr/bin/driver/st.conf` file example shows targets 0-15 and LUNs 0-7.

```
name="st" class="scsi" target=0 lun=0;
name="st" class="scsi" target=0 lun=1;
name="st" class="scsi" target=0 lun=2;
name="st" class="scsi" target=0 lun=3;
name="st" class="scsi" target=0 lun=4;
name="st" class="scsi" target=0 lun=5;
name="st" class="scsi" target=0 lun=6;
name="st" class="scsi" target=0 lun=7;
name="st" class="scsi" target=1 lun=0;
name="st" class="scsi" target=1 lun=1;
name="st" class="scsi" target=1 lun=2;

<entries omitted for brevity>

name="st" class="scsi" target=15 lun=5;
name="st" class="scsi" target=15 lun=6;
name="st" class="scsi" target=15 lun=7;
```
The following /usr/openv/volmgr/bin/driver/sg.conf file example shows targets 0-15 and LUNs 0-8. It also includes target entries for three StorEdge Network Foundation HBA ports.

The sg.build -mt option does not affect FCP targets, but the -ml option does. The Solaris luxadm command detected three ports (identified by their World Wide Names). Therefore, the sg.build script created entries for LUNs 0 through 7 for those three ports.

```bash
name="sg" class="scsi" target=0 lun=0;
name="sg" class="scsi" target=0 lun=1;
name="sg" class="scsi" target=0 lun=2;
name="sg" class="scsi" target=0 lun=3;
name="sg" class="scsi" target=0 lun=4;
name="sg" class="scsi" target=0 lun=5;
name="sg" class="scsi" target=0 lun=6;
name="sg" class="scsi" target=0 lun=7;
name="sg" class="scsi" target=0 lun=0 fc-port-wwn="500104f0008d53c3";
name="sg" class="scsi" target=0 lun=1 fc-port-wwn="500104f0008d53c3";
name="sg" class="scsi" target=0 lun=0 fc-port-wwn="500104f0008d53c6";
name="sg" class="scsi" target=0 lun=1 fc-port-wwn="500104f0008d53c6";
name="sg" class="scsi" target=0 lun=0 fc-port-wwn="500104f0008d53c9";
name="sg" class="scsi" target=0 lun=1 fc-port-wwn="500104f0008d53c9";
name="sg" class="scsi" target=0 lun=0 fc-port-wwn="500104f0008d53cc";
name="sg" class="scsi" target=0 lun=1 fc-port-wwn="500104f0008d53cc";
name="sg" class="scsi" target=0 lun=0 fc-port-wwn="500104f0008d53b9";
name="sg" class="scsi" target=0 lun=1 fc-port-wwn="500104f0008d53b9";
name="sg" class="scsi" target=0 lun=0 fc-port-wwn="500104f0008d53c3";
name="sg" class="scsi" target=0 lun=1 fc-port-wwn="500104f0008d53c3";
name="sg" class="scsi" target=0 lun=0 fc-port-wwn="500104f0008d53c6";
name="sg" class="scsi" target=0 lun=1 fc-port-wwn="500104f0008d53c6";
name="sg" class="scsi" target=0 lun=0 fc-port-wwn="500104f0008d53c9";
name="sg" class="scsi" target=0 lun=1 fc-port-wwn="500104f0008d53c9";
```

<entries omitted for brevity>

```bash
name="sg" class="scsi" target=15 lun=5;
name="sg" class="scsi" target=15 lun=6;
name="sg" class="scsi" target=15 lun=7;
name="sg" parent="fp" target=0 lun=0 fc-port-wwn="500104f0008d53c3";
name="sg" parent="fp" target=0 lun=1 fc-port-wwn="500104f0008d53c3";
name="sg" parent="fp" target=0 lun=0 fc-port-wwn="500104f0008d53c6";
name="sg" parent="fp" target=0 lun=1 fc-port-wwn="500104f0008d53c6";
name="sg" parent="fp" target=0 lun=0 fc-port-wwn="500104f0008d53c9";
name="sg" parent="fp" target=0 lun=1 fc-port-wwn="500104f0008d53c9";
name="sg" parent="fp" target=0 lun=0 fc-port-wwn="500104f0008d53cc";
name="sg" parent="fp" target=0 lun=1 fc-port-wwn="500104f0008d53cc";
name="sg" parent="fp" target=0 lun=0 fc-port-wwn="500104f0008d53b9";
name="sg" parent="fp" target=0 lun=1 fc-port-wwn="500104f0008d53b9";
name="sg" parent="fp" target=0 lun=0 fc-port-wwn="500104f0008d53c3";
name="sg" parent="fp" target=0 lun=1 fc-port-wwn="500104f0008d53c3";
name="sg" parent="fp" target=0 lun=0 fc-port-wwn="500104f0008d53c6";
name="sg" parent="fp" target=0 lun=1 fc-port-wwn="500104f0008d53c6";
name="sg" parent="fp" target=0 lun=0 fc-port-wwn="500104f0008d53c9";
name="sg" parent="fp" target=0 lun=1 fc-port-wwn="500104f0008d53c9";
```
The following /usr/openv/volmgr/bin/driver/sg.links file example shows targets 0-15 and LUNs 0-7. It also includes entries for three StorEdge Network Foundation HBA ports.

The sg.build -mt option does not affect FCP targets, but the -ml option does. The Solaris luxadm command detected three ports (identified by their World Wide Names). Therefore, the sg.build script created entries for LUNs 0 through 7 for those three ports.

The field separator between the addr=x,y; field and the sg/ field is a tab. The addr= field uses hexadecimal notation, and the sg/ field uses decimal values.

```plaintext
# begin SCSA Generic devlinks file - creates nodes in /dev/sg

type=ddi_pseudo;name=sg;addr=0,0; sg/c\N0t0l0

type=ddi_pseudo;name=sg;addr=0,1; sg/c\N0t0l1

type=ddi_pseudo;name=sg;addr=0,2; sg/c\N0t0l2

type=ddi_pseudo;name=sg;addr=0,3; sg/c\N0t0l3

type=ddi_pseudo;name=sg;addr=0,4; sg/c\N0t0l4

type=ddi_pseudo;name=sg;addr=0,5; sg/c\N0t0l5

type=ddi_pseudo;name=sg;addr=0,6; sg/c\N0t0l6

type=ddi_pseudo;name=sg;addr=0,7; sg/c\N0t0l7
...
<entries omitted for brevity>
...

type=ddi_pseudo;name=sg;addr=f,5; sg/c\N0t15l5

type=ddi_pseudo;name=sg;addr=f,6; sg/c\N0t15l6

type=ddi_pseudo;name=sg;addr=f,7; sg/c\N0t15l7

type=ddi_pseudo;name=sg;addr=w500104f0008d53c3,0; sg/c\N0t\A110

type=ddi_pseudo;name=sg;addr=w500104f0008d53c3,1; sg/c\N0t\A111

type=ddi_pseudo;name=sg;addr=w500104f0008d53c6,0; sg/c\N0t\A110

type=ddi_pseudo;name=sg;addr=w500104f0008d53c6,1; sg/c\N0t\A111

type=ddi_pseudo;name=sg;addr=w500104f0008d53c9,0; sg/c\N0t\A110

type=ddi_pseudo;name=sg;addr=w500104f0008d53c9,1; sg/c\N0t\A111

type=ddi_pseudo;name=sg;addr=w500104f0008d53cc,0; sg/c\N0t\A110

type=ddi_pseudo;name=sg;addr=w500104f0008d53cc,1; sg/c\N0t\A111

type=ddi_pseudo;name=sg;addr=w500104f0008d53b9,0; sg/c\N0t\A110

type=ddi_pseudo;name=sg;addr=w500104f0008d53b9,1; sg/c\N0t\A111
```

Solaris Installing/reinstalling the sg and the st drivers
Preventing Solaris driver unloading

When system memory is limited, Solaris unloads unused drivers from memory and reloads drivers as needed. Tape drivers are often unloaded because they are used less often than disk drivers.

The drivers NetBackup uses are the st driver (from Sun), the sg driver (from Symantec), and Fibre Channel drivers. Problems may occur depending on when the driver loads and unloads. These problems can range from a SCSI bus not able to detect a device to system panics.

Symantec recommends that you prevent Solaris from unloading the drivers from memory.

The following procedures describe how to prevent Solaris from unloading the drivers from memory.

To prevent Solaris from unloading the drivers from memory

◆ Add the following `forceload` statements to the `/etc/system` file:

```plaintext
forceload: drv/st
forceload: drv/sg
```

To prevent Solaris from unloading the Fibre Channel drivers from memory

◆ Add an appropriate `forceload` statement to the `/etc/system` file.

Which driver you force to load depends on your Fibre Channel adapter. The following is an example for a Sun Fibre Channel driver (SunFC FCP v20100509-1.143):

```plaintext
forceload: drv/fcp
```
About Solaris robotic controls

NetBackup supports SCSI control and API control of robotic devices. A robotic device in a library moves the media between the storage slots and the drives in the library.

Robotic control varies, as follows:

■ SCSI or Fibre Channel Protocol control.
 See “About SCSI and FCP robotic controls on Solaris” on page 89.

■ API control over a LAN.
 See the "ADIC Automated Media Library (AML)" topic in this guide.
 See the "IBM Automated Tape Library (ATL)" topic in this guide.
 See the "Sun StorageTek ACSLS robots" topic in this guide.

About SCSI and FCP robotic controls on Solaris

When you configure the NetBackup sg driver, a NetBackup script creates the device files for the attached robotic devices.

See “About the NetBackup sg driver” on page 80.

If you use device discovery in NetBackup, NetBackup discovers the robotic control device files in the /dev/sg directory (and hence the devices) automatically. If you add a robot manually in NetBackup, you must enter the pathname to the device file.

To display the device files that the sg driver can use, use the NetBackup sgscan command with the all parameter. The word "Changer" in the sgscan output identifies robotic control device files.

Examples are available.

See “Examples of SCSI and FCP robotic control device files” on page 89.

Examples of SCSI and FCP robotic control device files

The following is an example of sgscan all output from a host, to which the examples refer:

```bash
# /usr/openv/volmgr/bin/sgscan all
/dev/sg/c0t610: Cdrum: "TOSHIBA XM-5401TASUN4XCD"
/dev/sg/cltw500104f0008d53b910: Changer: "STK SL500"
/dev/sg/cltw500104f0008d53c310: Tape (/dev/rmt/0): "HP Ultrim 3-SCSI"
/dev/sg/cltw500104f0008d53c610: Tape (/dev/rmt/1): "HP Ultrim 3-SCSI"
/dev/sg/cltw500104f0008d53c910: Tape (/dev/rmt/2): "IBM ULTRIUM-TD3"
/dev/sg/cltw500104f0008d53cc10: Tape (/dev/rmt/3): "IBM ULTRIUM-TD3"
```
You can filter the `sgscan` output for device types by using other `sgscan` options. The following is the `sgscan` usage statement:

```
sgscan [all|basic|changer|disk|tape] [conf] [-v]
```

StorEdge Network Foundation HBA example

The robotic control for a Sun StorEdge Network Foundation HBA attached library is LUN 0 of World Wide Node Name (WWNN) 500104f0008d53b9. Therefore, the following is the device file pathname:

```
/dev/sg/c1tw500104f0008d53b910
```

STK SL500 example

For the SCSI robotic control for an STK SL500 is SCSI ID 1 of adapter 2, the following is the device file pathname:

```
/dev/sg/c2t110
```

About Solaris tape drive device files

NetBackup uses the tape drive device files that support compression, no rewind on close, and Berkeley style close.

When you configure the Solaris st driver, Solaris creates the device files for the attached tape devices.

See “Installing/reinstalling the sg and the st drivers” on page 83.

The device files are in the `/dev/rmt` directory, and they have the following format:

```
/dev/rmt/IDcbn
```

The following describe the device file names:

- `ID` is the logical drive number as shown by the NetBackup `sgscan` command.
- `c` indicates compression.
- `b` indicates Berkeley-style close.
If you use device discovery in NetBackup, NetBackup discovers the device files and hence the devices. If you add a tape drive to a NetBackup configuration manually, you must specify the pathname to the device file. NetBackup requires compression, no rewind on close, and Berkeley-style close device files.

To display the tape device files that are configured on your system, use the `sgscan` command with the `tape` parameter, as follows:

```bash
# /usr/openv/volmgr/bin/sgscan tape
/dev/sctw500104f0008d53c310: Tape (/dev/rmt/0): "HP Ultrim 3-SCSI"
/dev/sctw500104f0008d53c610: Tape (/dev/rmt/1): "HP Ultrim 3-SCSI"
/dev/sctw500104f0008d53c910: Tape (/dev/rmt/2): "IBM ULTRIUM-TD3"
/dev/sctw500104f0008d53cc10: Tape (/dev/rmt/3): "IBM ULTRIUM-TD3"
/dev/sctw2t210: Tape (/dev/rmt/22): "HP Ultrim 3-SCSI"
/dev/sctw2t310: Tape (/dev/rmt/22): "HP Ultrim 3-SCSI"
/dev/sctw2tal0: Tape (/dev/rmt/22): "IBM ULTRIUM-TD3"
/dev/sctw2tbl0: Tape (/dev/rmt/22): "IBM ULTRIUM-TD3"
```

The following are examples of no-rewind, compression, Berkeley-style close device files from the preceding `sgscan` example output:

- For the Ultrium3 SCSI drive at LUN 0 of World Wide Node Name (WWNN) 500104f0008d53c3, the device file pathname is:
  ```bash
  /dev/rmt/0cbn
  ```

- For the HP Ultrium3 SCSI drive at SCSI ID 2 of adapter 2, the device file pathname is:
  ```bash
  /dev/rmt/22cbn
  ```

You can show all device types by using the `all` option. The output can help you associate tape devices with other SCSI devices that may be configured on the same adapter. The following is the `sgscan` usage statement:

```bash
sgscan [all|basic|changer|disk|tape] [conf] [-v]
```

About Berkeley-style close

NetBackup requires Berkeley-style close for tape drive device files. The letter \(b \) in the file name indicates Berkeley-style close device files.

In Berkeley-style close, the tape position remains unchanged by a device close operation. (Conversely, in AT&T-style close, the drive advances the tape to just after the next end-of-file (EOF) marker.) To establish the correct position for the next tape operation, applications must assume the tape's position after a close. NetBackup assumes Berkeley-style close on Solaris systems.
About no rewind device files on Solaris

NetBackup requires no rewind on close device files for tape drives.

With no rewind on close, the tape is not rewound after a close operation. It remains in position for the next write operation.

The letter \text{n} in the device file names in the \text{/dev/rmt} directory specifies no rewind on close.

About fast-tape positioning (locate-block) on Solaris

Applies to AIT, DLT, Exabyte, DTF, and half-inch tape drives.

To position a tape to a specific block, NetBackup supports the SCSI \text{locate-block} command. It requires the NetBackup \text{sg} driver.

NetBackup uses the locate-block command by default.

Symantec recommends that you do not disable locate-block positioning. If you need to disable it, execute the following command:

\text{touch /usr/openv/volmgr/database/NO_LOCATEBLOCK}

If locate-block positioning is disabled, NetBackup uses the forward-space-file/record method.

About SPC-2 SCSI reserve on Solaris

By default, NetBackup uses SPC-2 SCSI reserve and release for tape drive reservations in shared drive environments. The NetBackup Shared Storage Option provides shared drive functionality in NetBackup.

Alternatively, you can use SCSI persistent reserve for shared tape drive reservations in NetBackup, as follows:

\begin{itemize}
 \item For the tape drives that support SPC-3 Compatible Reservation Handling (CRH), you can use SCSI persistent reserve by enabling it in NetBackup. No special configuration in Solaris is required.
 \item For the tape drives that do not support CRH, you must disable SPC-2 SCSI reserve in Solaris for those drives. After you disable SPC-2 SCSI reserve, you can use persistent reserve by enabling it in NetBackup. If the drive does not support CRH and you do not disable SPC-2 SCSI reserve, access attempts to the drive fail.
\end{itemize}

See “Disabling SPC-2 SCSI reserve on Solaris” on page 93.

For more information about NetBackup and SCSI reservations, see the following:
The description of the Enable SCSI Reserve Media host property in the following:

- The NetBackup Administrator’s Guide for UNIX and Linux, Volume I
- The NetBackup Administrator’s Guide for Windows, Volume I
- The "How NetBackup reserves drives" topic in the following:
 - The NetBackup Administrator’s Guide for UNIX and Linux, Volume II
 - The NetBackup Administrator’s Guide for Windows, Volume II

Disabling SPC-2 SCSI reserve on Solaris

Use the following procedure to disable SPC-2 SCSI reserve.

More information about reservations is available.

See “About SPC-2 SCSI reserve on Solaris” on page 92.

To disable SPC-2 SCSI reserve

- Modify the Solaris st.conf file on the NetBackup media server. In the tape-config-list section of the st.conf file, set the ST_NO_RESERVE_RELEASE configuration value (0x20000) in the appropriate data-property-name entry.

 For example, the following entry disables SCSI reserve and release for all tape drives that use the DLT7k-data configuration values:

 DLT7k-data = 1,0x38,0,0x20000,4,0x82,0x83,0x84,0x85,2;

 For more information about the st.conf file, see the Solaris st(7D) man page.

About nonstandard tape drives

Solaris includes the device drivers that support most standard devices.

To receive the most current support for devices, you should install the latest Solaris patch for the st driver.

However, if you have a device that Solaris does not support, the device manufacturer should provide the software to install and administer the device properly. In addition, the device vendor should contact Sun Microsystems to add support for the device to Solaris.

For more information about what you need for unsupported devices, contact the device vendor. Also see the Solaris devices and file systems documentation.
Configuring SAN clients to recognize FT media servers

NetBackup SAN clients use tape drivers and SCSI pass-through methods for Fibre Transport traffic to NetBackup FT media servers. The media server FT devices appear as `ARCHIVE Python` tape devices during SCSI inquiry on the SAN client. However, they are not tape devices and do not appear as tape devices in NetBackup device discovery.

Symantec owns the `ARCHIVE` brand name and `Python` product name. Therefore, `st.conf` file changes to `ARCHIVE Python` do not affect an existing tape drive product.

Table 5-1 is an overview of procedures to configure the Solaris operating system so that it recognizes the NetBackup FT devices on the NetBackup media servers.

Table 5-1 Configuring SAN clients to recognize FT media servers

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Add the Fibre Transport device entry to the <code>st.conf</code> file</td>
<td>See “Adding the FT device entry to the <code>st.conf</code> file” on page 94.</td>
</tr>
<tr>
<td>2</td>
<td>Modify the <code>st.conf</code> file so that Solaris discovers devices on two LUNS</td>
<td>See “Modifying the <code>st.conf</code> file so that Solaris discovers devices on two LUNS” on page 95.</td>
</tr>
</tbody>
</table>

Adding the FT device entry to the `st.conf` file

The following procedure describes how to add the FT device entry to the `st.conf` file.

To add the FT device entry to the `st.conf` file

1. In the `/kernel/drv/st.conf` file, find the `tape-config-list=` section or create it if it does not exist.
2. Examine the `tape-config-list=` section for a line that begins with `ARCHIVE Python` and contains `ARCH_04106`. If such a line exists, ensure that it begins with a comment character (#).
3. Add the following line to the `tape-config-list=` section:

 "ARCHIVE Python", "FT Pipe", "ARCH_04106";
4. Find the line that begins with `ARCH_04106`, copy it, and paste it after the `tape-config-list=` line. Delete the comment character (#) from the beginning of the line. The following is an example of the line:

 `ARCH_04106 = 1, 0x2C, 0, 0x09639, 4, 0x00, 0x8C, 0x8c, 0x8C, 3;`
Modifying the st.conf file so that Solaris discovers devices on two LUNS

The following procedure describes how to modify the st.conf file so that Solaris discovers devices on two LUNS.

To modify the st.conf file so that Solaris discovers devices on two LUNS

1. Find the following line in the st.conf file:

   ```
   name="st" class="scsi" target=0 lun=0;
   ```

2. Replace that line and the following lines through target 5 with the following. Doing so modifies the st.conf file to include searches on non-zero LUNs.

   ```
   name="st" class="scsi" target=0 lun=0;
   name="st" class="scsi" target=0 lun=1;
   name="st" class="scsi" target=1 lun=0;
   name="st" class="scsi" target=1 lun=1;
   name="st" class="scsi" target=2 lun=0;
   name="st" class="scsi" target=2 lun=1;
   name="st" class="scsi" target=3 lun=0;
   name="st" class="scsi" target=3 lun=1;
   name="st" class="scsi" target=4 lun=0;
   name="st" class="scsi" target=4 lun=1;
   name="st" class="scsi" target=5 lun=0;
   name="st" class="scsi" target=5 lun=1;
   name="st" parent="fp" target=0;
   name="st" parent="fp" target=1;
   name="st" parent="fp" target=2;
   name="st" parent="fp" target=3;
   name="st" parent="fp" target=4;
   name="st" parent="fp" target=5;
   name="st" parent="fp" target=6;
   ```

Uninstalling the sg driver

You can uninstall the sg driver. If you do, NetBackup performance suffers. The following procedure describes how to uninstall the sg driver.

To uninstall the sg driver

- Invoke the following command:

  ```
  /usr/sbin/rem_drv sg
  ```
Solaris command summary

The following is a summary of commands that may be useful when you configure and verify devices:

- `/usr/sbin/modinfo | grep sg`
 Displays whether or not the sg driver is installed.

- `/usr/openv/volmgr/bin/driver/sg.install`
 Installs the sg driver or updates the sg driver.

- `/usr/sbin/rem_drv sg`
 Uninstalls the sg driver. This command usually is not necessary because `sg.install` uninstalls the old driver before it upgrades a driver.

- `/usr/openv/volmgr/bin/sg.build all -mt max_target -ml max_lun`
 Updates st.conf, sg.conf, and sg.links, and generates SCSI Target IDs with multiple LUNs.

- `/usr/openv/volmgr/bin/sgscan all`
 Scans all connected devices with an SCSI inquiry and provides correlation between physical and the logical devices that use all device files in `/dev/sg`. Also checks for the devices that are connected to the Sun StorEdge Network Foundation HBA that are not configured for use by Symantec products.

- `boot -r` or `reboot -- -r`
 Reboot the system with the reconfigure option (-r). The kernel’s SCSI disk (sd) driver then recognizes the drive as a disk drive during system initialization.

See the procedures in this chapter for examples of their usage.
Windows

This chapter includes the following topics:

■ Before you begin on Windows
■ About tape device drivers on Windows
■ Attaching devices to a Windows system

Before you begin on Windows

Observe the following points when performing the configurations described in this chapter:

■ The Symantec support web site contains server platform compatibility information for a number of vendors and products (see the NetBackup Product > Compatibility area of the site). Verify that your server platform is supported before configuring devices. The following is the URL: http://entsupport.symantec.com

■ For NetBackup to recognize and communicate with connected devices and for device discovery to discover devices, NetBackup issues SCSI pass-through commands to the devices in a configuration. A tape driver must exist for each tape device. Attached devices appear in the registry.

■ Use the Microsoft Windows device applications to verify that the devices are configured correctly. The device applications available on your server may differ depending on your Windows operating system. Make sure that Windows detects the devices on the SAN before you configure the NetBackup Shared Storage Option.

■ If you have multiple devices connected to a fibre bridge, Windows may only see one LUN. This will normally be the device with the lowest-ordered LUN.
This limitation occurs because of the default install settings for the device driver for some fibre channel HBAs. See your vendor documentation to verify the settings.

Information about how to configure API robot control over a LAN is available See the "ADIC Automated Media Library (AML)" topic in this guide. See the "IBM Automated Tape Library (ATL)" topic in this guide. See the "Sun StorageTek ACSLS robots" topic in this guide.

After configuring the hardware, add the drives and robots to NetBackup.

About tape device drivers on Windows

Symantec does not provide device drivers for Windows hosts. If you require drivers, contact Microsoft or the tape drive vendor.

Attaching devices to a Windows system

The following procedure describes a general method for attaching devices to a Windows computer. The Microsoft Windows device applications available on the server that you use in these steps may differ depending on your Windows operating system.

To attach devices to a Windows system

1 Use the appropriate Windows application to obtain information on any currently attached SCSI devices.

2 If you attach a new robotic library or drive to a NetBackup media server, follow the vendor’s instructions for attaching the device.

 Shut down the server and physically attach the supported device. Ensure that SCSI targets and termination settings are consistent with adapter card and peripheral vendor recommendations.

3 Reboot the server and answer the prompts for adapter card peripheral configuration options. Watch the display to ensure that the adapter card recognizes the attached peripherals.

4 If you add drives, install the tape drivers and use the appropriate Windows application to verify that the drive was recognized.
Robotic storage devices

- Chapter 7. Robot overview
- Chapter 8. ADIC Automated Media Library (AML)
- Chapter 9. IBM Automated Tape Library (AML)
- Chapter 10. Sun StorageTek ACSLS robots
- Chapter 11. Device configuration examples
Robot overview

This chapter includes the following topics:

■ About NetBackup robot types
■ Robot attributes
■ Table-driven robotics
■ Robotic test utilities
■ Robotic processes

About NetBackup robot types

A robot is a peripheral device that mounts and unmounts media in tape drives. NetBackup uses robotic control software to communicate with the robot firmware.

NetBackup classifies robots according to one or more of the following characteristics:

■ The communication method the robotic control software uses; SCSI and API are the two main methods.
■ The physical characteristics of the robot. Library usually refers to a larger robot, in terms of slot capacity or number of drives. Stacker usually refers to a robot with one drive and low media capacity (6 - 12 media slots).
■ The media type commonly used by that class of robots. HCART (1/2-inch cartridge tape) and 8 mm are examples of media types.

The following table lists the NetBackup robot types, with drive and slot limits for each type.

To determine which robot type applies to the model of robot that you use, see the Symantec support Web site at the following URL:
Table 7-1 NetBackup robot types

<table>
<thead>
<tr>
<th>Robot type</th>
<th>Description</th>
<th>Drive limits</th>
<th>Slot limits</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS</td>
<td>Automated Cartridge System</td>
<td>1680</td>
<td>No limit</td>
<td>API control. Drive limit determined by ACS library software host.</td>
</tr>
<tr>
<td>TL4</td>
<td>Tape library 4mm</td>
<td>2</td>
<td>15</td>
<td>SCSI control.</td>
</tr>
<tr>
<td>TL8</td>
<td>Tape library 8mm</td>
<td>No limit</td>
<td>16000</td>
<td>SCSI control.</td>
</tr>
<tr>
<td>TLD</td>
<td>Tape library DLT</td>
<td>No limit</td>
<td>32000</td>
<td>SCSI control.</td>
</tr>
<tr>
<td>TLH</td>
<td>Tape library Half-inch</td>
<td>256</td>
<td>No limit</td>
<td>API control.</td>
</tr>
<tr>
<td>TLM</td>
<td>Tape library Multimedia</td>
<td>250</td>
<td>No limit</td>
<td>API control.</td>
</tr>
</tbody>
</table>

Robot attributes

NetBackup configures and controls robots differently depending on the robot type. The following tables list the attributes that dictate how these robot types differ.

For more detailed information about supported devices, firmware levels, and platforms, see the NetBackup release notes or visit the Symantec support web site.

ACS robots

ACS robots are supported on NetBackup Enterprise Server only.

Unlike other robot types, NetBackup does not track slot locations for the media in ACS robots. The ACS library software tracks slot locations and reports them to NetBackup.

The following table describes the ACS robot attributes.

Table 7-2 ACS robot attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>NetBackup Enterprise Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>API robot</td>
<td>Yes</td>
</tr>
<tr>
<td>SCSI control</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 7-2 ACS robot attributes (continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>NetBackup Enterprise Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAN control</td>
<td>Yes</td>
</tr>
<tr>
<td>Remote Robot control</td>
<td>No. Each host that has ACS drives that are attached to it has robotic control.</td>
</tr>
<tr>
<td>NDMP support</td>
<td>Yes</td>
</tr>
<tr>
<td>Shared drives support</td>
<td>Yes</td>
</tr>
<tr>
<td>Drive cleaning support</td>
<td>No. The ACS library software manages drive cleaning.</td>
</tr>
<tr>
<td>Media access port support</td>
<td>Yes, for eject only.</td>
</tr>
<tr>
<td>NetBackup tracks slots</td>
<td>No</td>
</tr>
<tr>
<td>Media type support</td>
<td>DLT, DLT2, DLT3, HCART, HCART2, and HCART3.</td>
</tr>
<tr>
<td>Hosts Supported</td>
<td>Windows, UNIX, and Linux.</td>
</tr>
<tr>
<td></td>
<td>Windows servers require STK LibAttach software. See the Symantec support web site for the latest compatibility information and obtain the appropriate LibAttach software from STK.</td>
</tr>
<tr>
<td>Barcode Support</td>
<td>Yes. Depends on ACS library software to obtain NetBackup media IDs. Barcodes must be the same as the media ID (1 to 6 characters).</td>
</tr>
<tr>
<td>Robot Examples</td>
<td>Oracle SL500, Oracle SL3000, and Oracle SL8500</td>
</tr>
</tbody>
</table>

TL4 robots

The following table describes the tape library 4mm attributes.

Table 7-3 TL4 robot attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>NetBackup Server</th>
<th>NetBackup Enterprise Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>API robot</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SCSI control</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LAN control</td>
<td>Not Applicable</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 7-3 TL4 robot attributes (continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>NetBackup Server</th>
<th>NetBackup Enterprise Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote robot control</td>
<td>Not Applicable</td>
<td>No</td>
</tr>
<tr>
<td>NDMP support</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Shared drives support</td>
<td>Not Applicable</td>
<td>No</td>
</tr>
<tr>
<td>Drive cleaning support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Media access port</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NetBackup tracks slots</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Media type support</td>
<td>4MM</td>
<td>4MM</td>
</tr>
<tr>
<td>Hosts supported</td>
<td>Windows, UNIX, and Linux</td>
<td>Windows, UNIX, and Linux</td>
</tr>
<tr>
<td>Barcode support</td>
<td>No, but the robot has inventory capability and can report whether a slot in the robot contains media.</td>
<td>No, but the robot has inventory capability and can report whether a slot in the robot contains media.</td>
</tr>
<tr>
<td>Robot examples</td>
<td>HP DAT Autochanger</td>
<td>HP DAT Autochanger</td>
</tr>
</tbody>
</table>

TL8 robots

The following table describes the tape library 8mm attributes.

Table 7-4 TL8 robot attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>NetBackup Server</th>
<th>NetBackup Enterprise Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>API robot</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SCSI control</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LAN control</td>
<td>Not Applicable</td>
<td>No</td>
</tr>
<tr>
<td>Remote robot control</td>
<td>Not Applicable</td>
<td>Yes</td>
</tr>
<tr>
<td>NDMP support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Shared drives support</td>
<td>Not Applicable</td>
<td>Yes</td>
</tr>
<tr>
<td>Drive cleaning support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 7-4 TL8 robot attributes (continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>NetBackup Server</th>
<th>NetBackup Enterprise Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media access port support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NetBackup tracks slots</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Media type support</td>
<td>8MM, 8MM2, 8MM3</td>
<td>8MM, 8MM2, 8MM3</td>
</tr>
<tr>
<td>Hosts supported</td>
<td>Windows, UNIX, and Linux</td>
<td>Windows, UNIX, and Linux</td>
</tr>
<tr>
<td>Barcode support</td>
<td>Yes. Barcodes can be from 1 to 16 characters. The Media Manager media ID is six or fewer characters.</td>
<td>Yes. Barcodes can be from 1 to 16 characters. The Media Manager media ID is six or fewer characters.</td>
</tr>
<tr>
<td>Robot examples</td>
<td>Spectra Logic 64K and Sony LIB-162</td>
<td>Spectra Logic 64K and Sony LIB-162</td>
</tr>
</tbody>
</table>

TLD robots

The following table describes the tape library DLT attributes.

Table 7-5 TLD robot attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>NetBackup Server</th>
<th>NetBackup Enterprise Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>API robot</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SCSI control</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LAN control</td>
<td>Not Applicable</td>
<td>No</td>
</tr>
<tr>
<td>Remote robot control</td>
<td>Not Applicable</td>
<td>Yes</td>
</tr>
<tr>
<td>NDMP support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Shared drives support</td>
<td>Not Applicable</td>
<td>Yes</td>
</tr>
<tr>
<td>Drive cleaning support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Media access port support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NetBackup tracks slots</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 7-5
TLD robot attributes (continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>NetBackup Server</th>
<th>NetBackup Enterprise Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hosts supported</td>
<td>Windows, UNIX, and Linux.</td>
<td>Windows, UNIX, and Linux.</td>
</tr>
<tr>
<td>Media type support</td>
<td>DLT, DLT2, DLT3, DTF, 8MM, 8MM2, 8MM3, QIC, HCART, HCART2, HCART3</td>
<td>DLT, DLT2, DLT3, DTF, 8MM, 8MM2, 8MM3, QIC, HCART, HCART2, HCART3</td>
</tr>
<tr>
<td>Barcode support</td>
<td>Yes. Barcodes can be from 1 to 16 characters in length. The Media Manager media ID is six or fewer characters.</td>
<td>Yes. Barcodes can be from 1 to 16 characters in length. The Media Manager media ID is six or fewer characters.</td>
</tr>
<tr>
<td>Robot examples</td>
<td>HP MSL, Fujitsu FibreCAT TX48, IBM TotalStorage3583, Spectra Logic T680, Sun/Oracle SL3000</td>
<td>HP MSL, Fujitsu FibreCAT TX48, IBM TotalStorage3583, Spectra Logic T680, Sun/Oracle SL3000</td>
</tr>
</tbody>
</table>

TLH robots

TLH robots are supported on NetBackup Enterprise Server only.

The following table describes the tape library half-inch attributes.

Table 7-6
TLH robot attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>NetBackup Enterprise Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>API robot</td>
<td>Yes</td>
</tr>
<tr>
<td>SCSI control</td>
<td>No</td>
</tr>
<tr>
<td>LAN control</td>
<td>Yes</td>
</tr>
<tr>
<td>Remote robot control</td>
<td>Yes</td>
</tr>
<tr>
<td>NDMP support</td>
<td>Yes</td>
</tr>
<tr>
<td>Shared drives support</td>
<td>Yes</td>
</tr>
<tr>
<td>Drive cleaning support</td>
<td>No. The robotic library manages drive cleaning.</td>
</tr>
<tr>
<td>Media access port support</td>
<td>Yes</td>
</tr>
<tr>
<td>NetBackup tracks slots</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 7-6 TLH robot attributes (continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>NetBackup Enterprise Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media type support</td>
<td>HCART, HCART2, HCART3</td>
</tr>
<tr>
<td>Hosts supported</td>
<td>Windows, UNIX, and Linux.</td>
</tr>
<tr>
<td>Barcode support</td>
<td>Yes. Depends on IBM ATL software to obtain the Media Manager media ID. Barcodes must be the same as the media ID (1 to 6 characters).</td>
</tr>
<tr>
<td>Robot examples</td>
<td>IBM 3494 and IBM VTS</td>
</tr>
</tbody>
</table>

TLM robots

TLM robots are supported on NetBackup Enterprise Server only.

The following table describes the tape library multimedia attributes:

Table 7-7 TLM robot attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>NetBackup Enterprise Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>API robot</td>
<td>Yes</td>
</tr>
<tr>
<td>SCSI control</td>
<td>No</td>
</tr>
<tr>
<td>LAN control</td>
<td>Yes</td>
</tr>
<tr>
<td>Remote robot control</td>
<td>No. Each server that has TLM drives that are attached to it has robotic control.</td>
</tr>
<tr>
<td>NDMP support</td>
<td>No</td>
</tr>
<tr>
<td>Shared drives support</td>
<td>Yes</td>
</tr>
<tr>
<td>Drive cleaning support</td>
<td>Yes</td>
</tr>
<tr>
<td>Media access port support</td>
<td>Yes</td>
</tr>
<tr>
<td>NetBackup tracks slots</td>
<td>No</td>
</tr>
<tr>
<td>Media type support</td>
<td>4MM, 8MM, 8MM2, 8MM3, DLT, DLT2, DLT3, DTF, HCART, HCART2, HCART3, REWR_OPT (HP9000-800 only), WORM_OPT (HP9000-800 only).</td>
</tr>
<tr>
<td>Hosts supported</td>
<td>Windows, UNIX, and Linux.</td>
</tr>
</tbody>
</table>
Table-driven robotics

Table-driven robotics provides support for new robotic library devices without the need to modify any library control binary files. This feature uses a device mapping file for supported robots and drives.

You may be able to add support for new or upgraded devices without waiting for a maintenance patch from Symantec. The device mapping file includes the information that relates to the operation and control of libraries. Therefore, you can download an updated mapping file to obtain support for newly NetBackup-certified devices.

Robotic test utilities

You can use robotic test utilities for testing robots already configured in NetBackup.

Invoke the test utilities as follows:

- `/usr/openv/volmgr/bin/robtest` (UNIX and Linux)
- `install_path\Veritas\Volmgr\bin\robtest.exe` (Windows)

From each test utility, you can obtain a list of available test commands by entering a question mark (?).

The following point applies only to NetBackup Enterprise Server.

Use the `drstat` command to determine the drive addressing parameters for ACS, TLH, and TLM robot types. This command is available in the robotic test utilities for these robot types.

NetBackup addresses drives as follows:

- For ACS robot types, by ACS, LSM, Panel, and Drive number
- For TLH robot types, by the IBM device number
- For TLM robot types, by the DAS/SDLC drive name

Table 7-7 TLM robot attributes (continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>NetBackup Enterprise Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barcode support</td>
<td>Yes. Depends on DAS/SDLC software to obtain the Media Manager media ID. Barcodes must be the same as the media ID (1 to 6 characters).</td>
</tr>
<tr>
<td>Robot examples</td>
<td>ADIC Scalar 10000.</td>
</tr>
</tbody>
</table>
For other robot types, by the robot drive number

Robotic processes

A NetBackup robotic process and possibly a robotic control process exist on a NetBackup media server for each robot that you install, as follows:

- Every media server that has a drive in a robotic library has a robotic process for that robotic library. The robotic process receives requests from the NetBackup Device Manager (ltid) and sends necessary information directly to the robotics or to a robotic control process.

- Robotic control processes exist only for the robot types that support library sharing (or robot sharing).

When the NetBackup Device Manager starts, it starts the robotic processes and the robotic control processes for all of the configured robots on that host. When the Device Manager stops, the robotic processes and the robotic control processes stop. (On UNIX, the name is Media Manager Device daemon.)

The Daemons (UNIX and Linux) tab or Services (Windows) tab of the NetBackup Activity Monitor has commands to start and stop this daemon or service. You can also start and stop this daemon or service by using the Device Monitor Actions menu or the Media and Device Management Actions menu. In addition, the NetBackup Commands Reference Guide describes commands to control the robotic processes that run on Windows media servers.

You can determine if a robotic process or robotic control process is active by using the NetBackup Activity Monitor Processes tab.

You can determine the control state of NetBackup by using the Device Monitor Drive paths pane or Drive status pane. If the value in the Control column for a drive shows the control mode, the robotic process is running and the drive is usable. For example, for a TLD robot the control mode is TLD.

Other values such as AVR or DOWN may indicate that the drive is unusable. For the possible values and their explanations, see the online help for the Device Monitor.

See “Processes by robot type” on page 109.

See “Robotic process example” on page 111.

Processes by robot type

The following table describes the robotic processes and robotic control processes for each robot type.
Table 7-8 Robotic processes and robotic control processes

<table>
<thead>
<tr>
<th>Robot type</th>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automated Cartridge System (ACS)</td>
<td>acsd</td>
<td>The NetBackup ACS daemon <code>acsd</code> provides robotic control to mount and dismount volumes. It also requests inventories of the volumes that are under the control of ACS library software.</td>
</tr>
<tr>
<td></td>
<td>acssel</td>
<td>The NetBackup ACS storage server interface (SSI) event logger <code>acssel</code> logs events. UNIX and Linux only.</td>
</tr>
<tr>
<td></td>
<td>acsssi</td>
<td>The NetBackup ACS storage server interface (SSI) <code>acsssi</code> communicates with the ACS library software host. <code>acsssi</code> processes all RPC communications from <code>acsd</code> or from the ACS robotic test utility that are intended for the ACS library software. UNIX and Linux only.</td>
</tr>
<tr>
<td>Tape library DLT (TLD)</td>
<td>tldd</td>
<td>The tape library DLT daemon <code>tldd</code> runs on a NetBackup server that has a drive in the tape library DLT. This process receives NetBackup Device Manager requests to mount and unmount volumes, and sends these requests to the robotic-control process, <code>tldcd</code>.</td>
</tr>
<tr>
<td></td>
<td>tldcd</td>
<td>The tape library DLT Control daemon <code>tldcd</code> communicates with the tape library DLT robotics through a SCSI interface. For library sharing, <code>tldcd</code> runs on the NetBackup server that has the robotic control.</td>
</tr>
<tr>
<td>Tape library 4MM (TL4)</td>
<td>tl4d</td>
<td>The tape library 4MM daemon <code>tl4d</code> runs on the host that has a tape library 4MM. This process receives NetBackup Device Manager requests to mount and unmount volumes and communicates these requests to the robotics through a SCSI interface.</td>
</tr>
<tr>
<td>Tape library 8MM (TL8)</td>
<td>tl8d</td>
<td>The tape library 8MM daemon <code>tl8d</code> runs on a NetBackup server that has a drive in the tape library 8MM. This process receives NetBackup Device Manager requests to mount and unmount volumes, and sends these requests to the robotic-control process, <code>tl8cd</code>.</td>
</tr>
<tr>
<td></td>
<td>tl8cd</td>
<td>The tape library 8MM Control daemon <code>tl8cd</code> communicates with the TL8 robotics through a SCSI interface. For library sharing, <code>tl8cd</code> runs on the NetBackup server that has the robotic control.</td>
</tr>
<tr>
<td>Tape library Half-inch (TLH)</td>
<td>tlhd</td>
<td>The tape library Half-inch daemon <code>tlhd</code> runs on each NetBackup server that has a drive in the tape library Half-inch. This process receives NetBackup Device Manager requests to mount and unmount volumes and sends these requests to the robotic-control process.</td>
</tr>
</tbody>
</table>
Table 7-8 Robotic processes and robotic control processes (continued)

<table>
<thead>
<tr>
<th>Robot type</th>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tlhcd</td>
<td>The tape library half-inch control daemon <code>tlhcd</code> runs on the NetBackup server that has the robotic control. It communicates with the TLH robotics through a SCSI interface</td>
</tr>
<tr>
<td>Tape library Multimedia (TLM)</td>
<td>tlmd</td>
<td><code>tlmd</code> runs on the NetBackup server and communicates mount and unmount requests to the host that controls the TLM robotics.</td>
</tr>
</tbody>
</table>

Robotic process example

Each drive in a tape library DLT (TLD) robot can be attached to a different host, and a `tldd` process runs on each host. However, only one host controls the robotics, and the `tldcd` robotic control process runs on that host only. To mount a tape, the `tldd` process on the host to which the drive is attached sends control information to the `tldcd` process on the robotic control host.

The following figure shows the processes and where they run for a TLD robot.

Figure 7-1 TLD robot control process example

The following describes this example:

- Each host connects to one drive, and a `tldd` robotic process runs on each host.
- The robotic control and therefore the robotic control process, `tldcd`, is on host A.
The NetBackup Device Manager services on host A and B start *tldd*. The *tldd* process on host A also starts *tldcd*. Requests to mount tapes from host B go to *tldd* on host B, which then sends the robotic command to *tldcd* on host A.
ADIC Automated Media Library (AML)

This chapter includes the following topics:

- About ADIC Automated Media Library
- Sample TLM configuration
- Media requests for a TLM robot
- Configuring TLM robotic control
- Configuring TLM drives on the host
- Configuring TLM drives in NetBackup
- Configuring shared TLM drives
- Providing common access to volumes
- Adding tapes to a TLM robot
- Removing tapes from a TLM robot
- Robot inventory operations on TLM robots

About ADIC Automated Media Library

Applies only to NetBackup Enterprise Server.

The ADIC Automated Media Libraries that are controlled by the following ADIC robotics are NetBackup robot type Tape Library Multimedia (TLM):

- Distributed AML Server (DAS)
Scalar Distributed Library Controller (DLC)

TLM robots are API robots (a NetBackup robot category in which the robot manages its own media).

Support for these devices is different than for other types of robots. This chapter provides an overview of those differences.

Sample TLM configuration

The sample TLM configuration includes the following:

- A configuration that uses Distributed AML Server software. See Figure 8-1 on page 114.
- An explanation of the major components in the sample configuration. See Table 8-1 on page 115.

The following table describes the ADIC configuration components.
Table 8-1: ADIC configuration component description

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetBackup media server</td>
<td>A host that has NetBackup media server software and is a client to the DAS or Scalar DLC server. The Media Manager device daemon (UNIX) or NetBackup Device Manager (Windows) ltid forwards mount and dismount requests to the TLM daemon (tlmd).</td>
</tr>
<tr>
<td>TLM daemon or service (tlmd)</td>
<td>This NetBackup daemon or service uses the ADIC client software to pass mount and dismount requests to the DAS or Scalar DLC server. It also processes return status. tlmd also receives and processes robot inventory requests.</td>
</tr>
<tr>
<td>Archive Management Unit (AMU)</td>
<td>A PC that runs an IBM OS/2 or Windows operating system, usually located in or near the AML cabinet. The DAS or Scalar DLC server runs on the AMU.</td>
</tr>
<tr>
<td>Distributed AML Server (DAS)</td>
<td>These are two ADIC client and server software products that reside in the Archive Management Unit. They provide shared access to the Automated Media Libraries (AML).</td>
</tr>
<tr>
<td>Automated Media Library (AML)</td>
<td>An ADIC multimedia robotic library.</td>
</tr>
</tbody>
</table>

Media requests for a TLM robot

The following is the sequence of events for a media request for a TLM robot:

- The Media Manager device daemon (UNIX) or NetBackup Device Manager service (Windows) ltid receives the request from bptm.

- **ltid sends a mount request to the TLM daemon tlmd.** tlmd uses the ADIC client software to pass the request to the DAS or Scalar DLC server software that resides in the Archive Management Unit.

- The DAS or Scalar DLC server locates the media and directs the robotics to mount the media in the drive.

- When the NetBackup media server receives a successful response from the server, it allows NetBackup to start sending data to the drive.
Configuring TLM robotic control

Before you add a robot to NetBackup, ensure that the ADIC Automated Media Library has been physically connected and configured.

For information about how to configure the ADIC components of the Automated Media Library, see the ADIC installation and administration guides.

For information on platform support for TLM robotic control, see the NetBackup Release Notes.

Configuring TLM drives on the host

Before you configure the drives in NetBackup, you must do the following:

- Install the appropriate ADIC library files on the NetBackup media server that functions as the device host. The libraries provide the client functionality in the ADIC client and server architecture.
- Configure environment variables on that NetBackup media server.
- Allocate the drives on the DAS or Scalar DLC server so they are available to that NetBackup media server. That media server is the DAS or Scalar DLC client.

For more information about how to configure the DAS or Scalar DLC server and client, see the ADIC documentation.

For information about how to install the ADIC client software, configure the DAS or Scalar DLC client name, and allocate TLM drives on a DAS or Scalar DLC server, see the following:

- Installing ADIC client software on UNIX
 See “Installing ADIC client software on UNIX” on page 117.
- Installing ADIC client software on Windows
 See “Installing ADIC client software on Windows” on page 117.
- Configuring the DAS or Scalar DLC client name
 See “Configuring the DAS or Scalar DLC client name” on page 118.
- Allocating TLM drives on a DAS server
 See “Allocating TLM drives on a DAS server” on page 119.
- Allocating TLM drives on a Scalar DLC server
 See “Allocating TLM drives on a Scalar DLC server” on page 120.
Installing ADIC client software on UNIX

For NetBackup compatibility information for the ADIC client software, see the Compatibility List for NetBackup Enterprise Server. You can download the Compatibility List from the following Web site:

http://entsupport.symantec.com

Ensure that your ADIC client software is compatible with your version of NetBackup.

Use the following procedure to install the ADIC client software on a UNIX NetBackup media server:

To install and configure ADIC client software on UNIX
1. Install the ADIC library (libaci.so) in the operating system folder /usr/lib.
 On HP-UX systems, the ADIC library is named libaci.sl.
2. Set the following system environment variables and values:
 - DAS_CLIENT name_of_NetBackup_media_server
 - DAS_SERVER name_of_DAS_server
3. Set any other environment variables that ADIC requires.

Installing ADIC client software on Windows

For NetBackup compatibility information for the ADIC client software, see the Compatibility List for NetBackup Enterprise Server. You can download the Compatibility List from the following Web site:

http://entsupport.symantec.com

Ensure that your ADIC client software is compatible with your version of NetBackup.

Use the following procedure to install ADIC software on a Windows NetBackup media server. Also refer to the ADIC users guide for Windows DAS clients.
To install and configure client ADIC software on Windows

1 Set the following system environment variables and values on the Windows media server host computer:

 DAS_CLIENT name_of_NetBackup_media_server
 DAS_SERVER name_of_DAS_server

2 Set any other environment variables that ADIC requires.

3 Copy the following DLLs from the software media that came with the ADIC library to the Windows\System32 directory or the install_path\Volmgr\bin directory:

 aci.dll
 ezrpcw32.dll
 winrpc32.dll
 aci64.dll (64-bit Windows only)

4 Run the portinst.exe command that is provided with the Windows DAS client.

 This command installs the NobleNet Portmapper for TCP service. NobleNet Portmapper is provided with the Windows DAS client.

5 Use Windows Computer Management to set the NobleNet Portmapper for TCP service to start automatically when the host is started.

Configuring the DAS or Scalar DLC client name

The DAS or Scalar DLC client name is required for the NetBackup media server. The client name is stored in the configuration file on the DAS or Scalar DLC server. This name must be the same name for the server that NetBackup uses, and it must be a valid client name.

By default, the NetBackup server uses as its DAS or Scalar DLC client name the host name that NetBackup obtains from the gethostname() system call. This name is usually the one that you use for the client name in the configuration file on the DAS or Scalar DLC server.

However, if this name is invalid for DAS or Scalar DLC clients, you must use another name. For example, DAS 1.30C1 does not allow hyphens in client names.

A similar problem exists if a NetBackup server's short host name is used as the client name but gethostname() returns the long host name.
To configure the DAS or Scalar DLC client name

1 In the configuration file on the DAS or Scalar DLC server, change the name of the client system that is the NetBackup media server.

 For instructions on how to change a client name, see the ADIC documentation.

2 On the NetBackup media server, change the client name. It must be the same as the client name in the configuration file on the DAS or Scalar DLC server. How to change the client name depends on the operating system type, as follows:

 ■ UNIX. Add the new client name by using a DAS_CLIENT entry in the /usr/openv/volmgr/vm.conf file.
 These entries are of the form:
 DAS_CLIENT = DASclientname
 Where DASclientname is the name that you want the NetBackup media server to use as its DAS or Scalar DLC client name.

 ■ Windows. Set the DAS_CLIENT environment variable to the new client name.

3 Stop and start the ltid daemon (UNIX) or service (Windows) to enable the TLM daemon to use the new client name.

4 When the client names are correct, restart the DAS or Scalar DLC server and then allocate the drives to the NetBackup media server.

Allocating TLM drives on a DAS server

After you install the ADIC client software and configure the client names, allocate the drives to the NetBackup media server. To do so, use the DASADMIN administrative command on the DAS server.
To allocate TLM drives on a DAS server

1 Use the `dasadmin listd` command to list the clients and drives available.

For example, the following shows two drives and the clients to which they are allocated. DN1 and DN2 are the drives, and grouse and mouse are the clients (grouse is a NetBackup media server).

```
./dasadmin listd
==>listd for client: successful
    drive: DN1 amu drive: 01 st: UP type: N sysid:
        client: grouse volser: cleaning 0 clean_count: 17
    drive: DN2 amu drive: 02 st: UP type: N sysid:
        client: mouse volser: cleaning 0 clean_count: 4
```

2 Use the `dasadmin allocd` command to allocate the drive.

For example, the following two commands deallocate drive DN2 from client mouse and allocate it to client grouse (the NetBackup media server):

```
./dasadmin allocd DN2 DOWN mouse
./dasadmin allocd DN2 UP grouse
```

Allocating TLM drives on a Scalar DLC server

Use the following procedure to allocate the drives for the NetBackup media server.

To allocate TLM drives on a Scalar DLC server

1 Start the Scalar DLC console and expand Configuration > Clients.

 Enter the client name for the value of Name.

 Enter the network host name for the value of Client Host Name.

2 Select the Drive Reservation tab on the client and choose UP for the drives that you want to allocate to this client.

Configuring TLM drives in NetBackup

A TLM robot can have several different types of drives (UNIX) or half-inch cartridge tape drives (Windows), usually with a SCSI interface.

Before you configure drives in NetBackup, configure the operating system tape drivers and device files for those drives. For information about how to do so, refer to the operating system documentation. For guidance about the NetBackup requirements, see the information about the host operating system in this guide.
Use the same methods to create device files or add tape drivers for these drives as for other drives. If the drives are SCSI and connect to the robot through a control unit, the drives share the same SCSI ID. Therefore, you must specify the logical unit number (LUN) for each drive.

Symantec recommends that you use the NetBackup **Device Configuration Wizard** to configure the robots and drives in NetBackup.

Determining drive designations

You may need to add drives to your configuration manually for the following:

- Older drives
- The DAS or Scalar DLC servers that do not support serialization

You must determine the drive designations so you know which drives to add to NetBackup.

To add the drives to NetBackup, see the *NetBackup Administrator’s Guide for UNIX and Linux, Volume I* or *NetBackup Administrator’s Guide for Windows, Volume I*.

Warning: When you add drives to NetBackup, ensure that you assign the correct DAS or Scalar DLC drive name to each drive. If the drive name is incorrect, tape mounts or backups may fail.

Use the NetBackup TLM test utility to determine the DAS or Scalar DLC drive designations. The following example uses `tlmtest`:

```
    tlmtest -r dasos2box
```

The following is the output from this utility (the user entered the `drstat` command on the third line).

```
Current client name is 'grouse'.
Enter tlm commands (? returns help information)
drstat
Drive 1: name = DN1, amu_name = 01, state = UP, type = N,
    client = grouse, volser = , cleaning = NO, clean_count = 17
Drive 2: name = DE3, amu_name = 03, state = UP, type = E,
    client = grouse, volser = , cleaning = NO, clean_count = 480
Drive 3: name = DE4, amu_name = 04, state = UP, type = E,
    client = grouse, volser = , cleaning = NO, clean_count = 378
DRIVE STATUS complete
```
This output shows that you should use DAS or Scalar DLC drive names DN1, DE3, and DE4 should be used. It also shows that you should use grouse as the client name of the NetBackup media server.

Configuring shared TLM drives

To share TLM drives, you must configure the ADIC DAS server to allow simultaneous drive allocation to all NetBackup media servers that share the drives. For the ADIC software, the NetBackup media servers are considered clients. The NetBackup Shared Storage Option allows shared drives.

Use one of the following procedures depending on which ADIC robotic control software you use:

- **Configuring the ADIC DAS server**
 See “Configuring the ADIC DAS server” on page 122.

- **Configuring the ADIC Scalar DLC server**
 See “Configuring the ADIC Scalar DLC server” on page 123.

- **Configuring the drives in NetBackup**
 See “Configuring the shared drives in NetBackup” on page 124.

Configuring the ADIC DAS server

To use the following procedure, DAS server software version 3.01.4 or later is required.

To configure the ADIC DAS server

1. Modify the DAS server’s \ETC\CONFIG file to create a shared client entry.
 For example, the following creates a client entry named NetBackupShared.

   ```
   client client_name = NetBackupShared
   # ip address = 000.000.000.000
   hostname = any
   ```

2. Place the IP addresses of all NetBackup media servers that use the shared client entry in the \MPTN\ETC\HOSTS file on the DAS server.
 For example, the following adds two servers:

   ```
   192.168.100.100 server_1
   192.168.100.102 server_2
   ```
In the DASADMIN interface, choose UP for the drives that you want to allocate to the shared client (NetBackupShared from the example in step 1).

On each of the NetBackup media servers that share the drives, create an entry in the vm.conf file with the shared DAS client name.

For example, the following adds NetBackupShared as a DAS client:

```
DAS_CLIENT = NetBackupShared
```

Test the DAS configuration by using the NetBackup robtest and tlmtest utilities:

- For example, set the client name (use client NetBackupShared in tlmtest) and run the drive status command drstat.
- On Windows media servers, the client name is obtained from the DAS_CLIENT environment variable so the client command is not needed in tlmtest.

Configuring the ADIC Scalar DLC server

To use the following procedure, Scalar DLC software version 2.3 or later is required.

To configure the Scalar DLC server

1. In the Scalar DLC console, create a new, shared client by using the following values:

 - Name: `name_of_client` (such as NetBackupShared)
 - Client Host Name: any

2. In the Scalar DLC console, select the **Drive Reservation** tab for the shared client (NetBackupShared).

3. Choose UP for the drives that you want to allocate to the shared client.

4. Configure the shared client name on the NetBackup media servers that share the drives, as follows:

 - UNIX. Create an entry in the vm.conf file with the shared client name, such as the following:
     ```
     DAS_CLIENT = NetBackupShared
     ```
 - Windows. Set the **DAS_CLIENT** Windows operating system environment variable to the shared client name, such as NetBackupShared.

5. Test the Scalar DLC configuration using robtest and tlmtest:
For example, set the client name (use client NetBackupshared in tlmtest) and run the drive status command drstatus.

On Windows media servers, the client name is obtained from the DAS_CLIENT environment variable so the client command is not needed in tlmtest.

Configuring the shared drives in NetBackup

To configure the shared drives in NetBackup, you can use the NetBackup Device Configuration Wizard. The wizard discovers the tape drives that are available. For the robot types that support serialization, the wizard also discovers the positions of the drives within the library.

If the DAS or Scalar DLC server does not support serialization, use the following procedure to configure shared drives. Usually, the NetBackup Shared Storage Option (SSO) for Tape requires shared drives. This procedure can significantly reduce the amount of manual configuration that is required in an SSO environment. For example, for 20 drives that 30 hosts share, these configuration steps require that you configure only 20 device paths rather than 600 device paths.

A SAN (including switches rather than direct connection) can increase the possibility of errors. If errors occur, you can define the tape drive configuration manually by using the NetBackup Administration Console or NetBackup commands.

Take care to avoid any errors. With shared drives, the device paths must be correct for each server. Also, ensure that the drives are defined correctly to avoid errors.

To configure shared drives in a nonserialized configuration

1. Run the NetBackup Device Configuration Wizard on one of the hosts to which drives in an TLM-controlled library are attached. Allow the drives to be added as stand-alone drives.

2. Add the TLM robot definition and update each drive to indicate its appropriate position in the robot. Make each drive robotic.

 To determine the correct drive addresses and verify the drive paths, see "Correlating device files to physical drives" in the NetBackup Administrator’s Guide, Volume I.

3. After you verify the drive paths on one host, run the NetBackup Device Configuration Wizard again. Scan all of the hosts that have TLM drives in the library.

 The wizard adds the TLM robot definition and the drives to the other hosts and uses the correct device paths.
For this process to work correctly, the following must be true:

- The wizard discovered the devices and their serial numbers successfully the first time.
- You configured the drive paths correctly on the first host.

Providing common access to volumes

All NetBackup media servers use the same database. Therefore, all media servers that share drives must have access to the same sets of volumes (volsers) in the DAS or Scalar DLC configuration. If they do not have access to the same volsers, NetBackup operational problems may occur. For example, if you update the NetBackup volume configuration from one of the servers, NetBackup moves to stand-alone the volumes that are not configured for that server. Although the volumes are configured correctly for a different server, NetBackup still moves them to stand-alone.

As a test, inventory the robot from each NetBackup media server and compare the results. If any of the reports differ, correct the DAS or Scalar DLC configuration. Then, perform a shutdown and restart of the DAS or Scalar DLC server.

Adding tapes to a TLM robot

The following is an overview of how to add tapes to a TLM robot and then add those tapes to NetBackup:

- Add barcode labels to the media and insert the media into the robot by using the media access port (insert area).
- Do one of the following to empty the media access port:
 - In the NetBackup Administration Console, select the robot inventory update inventory function and select Empty media access port prior to update.
 - Issue the DAS insert directive from a DAS administrative interface. You can obtain the insert area name from the DAS configuration file.
 - Issue the DAS insert directive from the NetBackup tlmtest utility. You can obtain the insert area name from the DAS configuration file.
 The AMU Archive Management Software then reads the bar codes, classifies the media by media type, and tracks storage cell locations for the media.
 - Define the media in NetBackup by using the DAS or Scalar DLC volser as media IDs. To define the media, do one of the following:
Update the volume configuration by using the robot inventory function. For procedures, see the *NetBackup Administrator’s Guide for UNIX and Linux, Volume I* or *NetBackup Administrator’s Guide for Windows, Volume I*.

Add new volumes.
For procedures, see the *NetBackup Administrator’s Guide for UNIX and Linux, Volume I* or *NetBackup Administrator’s Guide for Windows, Volume I*.

Because the DAS or Scalar DLC volser and bar codes are the same, NetBackup has a record of the bar codes for the media. Note that you do not enter slot locations; the ADIC software manages them.

To verify your configuration, use **Show Contents** and **Compare Contents with Volume Configuration** from the **Robot Inventory** dialog box in NetBackup. Also, use these options to update the NetBackup volume configuration when media has moved. The configuration update maintains consistency between the DAS or Scalar DLC database and the NetBackup EMM database.

Removing tapes from a TLM robot

You can remove tapes by using a DAS or Scalar DLC administrative interface or by using NetBackup.

To remove tapes from a TLM robot

1. Physically remove the media from the library by using one of the following:
 - **Actions > Eject Volumes From Robot** in the NetBackup Administration Console.
 - The NetBackup `vmchange` command. For usage, see the *NetBackup Commands Reference Guide* guide.
 - The `eject` command in the NetBackup `tlmtest` utility.
 - A DAS or Scalar DLC administrative interface.

2. If you use a DAS or Scalar DLC administrative interface or the NetBackup `tlmtest` utility, update the volume location to stand alone in NetBackup. To do so, do one of the following:
 - Update the volume configuration by using the robot inventory function. See the *NetBackup Administrator’s Guide for UNIX and Linux, Volume I* or *NetBackup Administrator’s Guide for Windows, Volume I*.
 - Move the volumes.
See the *NetBackup Administrator’s Guide for UNIX and Linux, Volume I* or *NetBackup Administrator’s Guide for Windows, Volume I*.

If you do not update the EMM database, NetBackup does not know the new location of the media and may issue mount requests for it. The result is an error such as Misplaced Tape.

Robot inventory operations on TLM robots

In NetBackup, a TLM robot type supports barcodes.

The following occurs when you inventory a TLM robot in NetBackup:

- NetBackup requests volume information from the DAS server or SDLC server through a DAS or Scalar DLC application library call.

- The server responds by providing a list of volume IDs and associated information from its database. NetBackup filters out the volumes that are not occupied in their home cell locations or in drives. NetBackup then displays a list of the volumes and their media types according to the DAS or Scalar DLC server.

The following are examples of the type of information received.

<table>
<thead>
<tr>
<th>TLM volume ID</th>
<th>TLM media type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A00250</td>
<td>3480</td>
</tr>
<tr>
<td>J03123</td>
<td>3590</td>
</tr>
<tr>
<td>DLT001</td>
<td>DECDLT</td>
</tr>
<tr>
<td>MM1200</td>
<td>8MM</td>
</tr>
<tr>
<td>NN0402</td>
<td>4MM</td>
</tr>
<tr>
<td>002455</td>
<td>UNKNOWN</td>
</tr>
</tbody>
</table>

- NetBackup translates the volser ID into media IDs and barcodes. In the previous table, volser A00250 becomes media ID A00250, and the barcode for that media ID is also A00250.

- If the operation does not require updating the volume configuration, NetBackup uses the media type defaults for TLM robots when it creates an inventory report.

- If the operation requires a volume configuration update, NetBackup maps the TLM media types to the default NetBackup media types.
Information about the default media type mappings and how to change them is available. See the *NetBackup Administrator’s Guide for UNIX and Linux, Volume I* or the *NetBackup Administrator’s Guide for Windows, Volume I*.
About IBM Automated Tape Library

Applies only to NetBackup Enterprise Server.

The IBM Automated Tape Library (ATL) is NetBackup robot type Tape Library Half-inch (TLH). ATL robots include the IBM Magstar 3494 Tape Library.

TLH robots are API robots (a NetBackup robot category in which the robot manages its own media).

Support for these devices is different than for other types of robots. This topic provides an overview of those differences.
Sample TLH configurations

The following topics show example ATL configurations and explain their major components.

UNIX system example configurations

The UNIX TLH examples include the following:

- Two possible ATL configurations, as follows:
 - The robotic control host communicates directly to robot
 See Figure 9-1 on page 131.
 - Robotic control and robot connection on separate hosts.
 See Figure 9-2 on page 132.

- An explanation of the major components in those configurations.
 See Table 9-1 on page 133.
Figure 9-1 Robotic control host communicates directly to robot

This server can be an AIX, HP-UX, Windows, Linux, or Solaris SPARC server.

This server can be a NetBackup master or media server (or SAN media server).

Inventory requests

Robotic requests

NetBackup media server

tlhd tlhcd

IBM library device driver (AIX)
Or
Tape library interface (non-AIX)

lmcpd

Device files for physical drives

SCSI

Library Manager

IBM Automated Tape Library (ATL)

003590B1A01 003590B1A00

003590B1A01 003590B1A00
Figure 9-2 Robotic control and robot connection on separate hosts

NetBackup media server A
Server A can be any supported server platform and can be a NetBackup master or media server (or SAN media server).

NetBackup media server B (robot control host)
Server B can be AIX, HP-UX, Windows, Linux, or Solaris SPARC. Server B also can be a NetBackup master or media server (or SAN media server).

The following table describes the UNIX TLH configuration components.
Table 9-1 UNIX TLH configuration component description

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetBackup media server</td>
<td>A host that has NetBackup media server software and is a client to the ATL through the Library Manager Control Point daemon (lmcpd). The NetBackup Media Manager device daemon, ltid, forwards mount and dismount requests to the Tape Library Half-inch daemon (tlhd).</td>
</tr>
<tr>
<td>Tape Library Half-inch daemon (tlhd)</td>
<td>This daemon resides on a NetBackup media server. It passes mount and dismount requests to the tape library half-inch control daemon (tlhcd) on the robotic control host.</td>
</tr>
<tr>
<td>TapE Library Half-inch control daemon (tlhcd)</td>
<td>This daemon receives mount or dismount requests from tlhd or robot inventory requests through an external socket interface. tlhcd must reside on the same system that communicates with lmcpd. Communication occurs by using the IBM Library Device Driver interface (on AIX) or IBM Tape Library system calls (other UNIX systems).</td>
</tr>
<tr>
<td>Library Manager Control Point daemon (lmcpd)</td>
<td>A component of IBM ATL support. This software handles all communications with the Library Manager and must run on any system from which the Automatic Tape Library is directly controlled.</td>
</tr>
<tr>
<td>Library manager</td>
<td>A component of IBM ATL support that provides control of the robotics and the robotic library. The Library Manager is a PC that usually is located within the robot cabinet.</td>
</tr>
<tr>
<td>IBM Automated Tape Library (ATL)</td>
<td>An IBM physical library under automated robotic control.</td>
</tr>
</tbody>
</table>

Windows system example configurations

The Windows TLH examples include the following:

- Two possible ATL configurations, as follows:
 - Robotic control on host with ATL drives.
 See Figure 9-3 on page 134.
 - Robotic control and robot connection on separate hosts.
 See Figure 9-4 on page 135.
- An explanation of the major components in those configurations.
 See Table 9-2 on page 136.
Figure 9-3 Robotic control on host with ATL drives

NetBackup media server

Inventory requests

IBM Automated Tape Library API

IBM Automated Tape Library Service

Tape device driver

SCSI

Library Manager (PC)

IBM Automated Tape Library (ATL)

003590B1A00 003590B1A01

Sample TLH configurations
The following table describes the Windows TLH configuration components.
Media requests for a TLH robot

The following is the sequence of events for a media request for a TLH robot:

- The Media Manager device daemon (UNIX) or NetBackup Device Manager service (Windows) `ltid` receives the request from the NetBackup `bptm` process.
- `ltid` sends a mount request to the NetBackup TLH daemon `tlhd`.
- `tlhd` passes the request to the NetBackup TLH control daemon `tlhcd`. `tlhcd` resides on the host to which the Automatic Tape Library is connected. This host can be the same host on which `tlhd` is running or another host.
- `tlhcd` communicates with the robotic library as follows:
 - AIX. The control daemon communicates with the Library Manager Control Point daemon `lmcpd` by using the Library Device Driver interface.

Table 9-2 Windows TLH configuration component description

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetBackup media server</td>
<td>A host that has NetBackup media server software and is a client to the Automated Tape Library through the IBM ATL service. The NetBackup Device Manager service (<code>ltid</code>) forwards mount and dismount requests to the Tape Library Half-inch service (<code>tlhd</code>).</td>
</tr>
<tr>
<td>Tape Library Half-inch process (<code>tlhd</code>)</td>
<td>This process resides on a NetBackup media server. It passes mount and dismount requests to the Tape Library Half-inch control process (<code>tlhcd</code>) on the robotic control host.</td>
</tr>
<tr>
<td>Tape Library Half-inch control process (<code>tlhcd</code>)</td>
<td>This process receives mount or dismount requests from <code>tlhd</code> or robot inventory requests through an external socket interface. <code>tlhcd</code> must reside on the same system that communicates with the IBM ATL service.</td>
</tr>
<tr>
<td>IBM Automated Tape Library service</td>
<td>A component of IBM ATL support. This software handles all communications with the Library Manager and must be running on any system from which the Automatic Tape Library is directly controlled.</td>
</tr>
<tr>
<td>Library Manager</td>
<td>A component of IBM ATL support that provides control of the robotics and the robotic library. The Library Manager is a PC that is usually located within the robot cabinet.</td>
</tr>
<tr>
<td>IBM Automated Tape Library (ATL)</td>
<td>An IBM physical library under automated robotic control.</td>
</tr>
</tbody>
</table>
UNIX. The control daemon communicates with the Library Manager Control Point daemon lmcpd through Tape Library system calls from an application library interface.

Windows. The control process communicates with the IBM ATL service through Tape Library system calls from an application library interface.

lmcpd (UNIX) or the IBM ATL service (Windows) passes the information to the Library Manager. The Library Manager then locates the media and directs the TLH robotics to mount the media in the drive.

When the NetBackup media server receives a successful response from the Library Manager, it allows NetBackup to start sending data to the drive.

About configuring robotic control

When you add a TLH robot to NetBackup, ensure the following:

- The IBM Automated Tape Library is physically connected and configured correctly.

 For information about how to configure the IBM components of the Automated Tape Library, see the IBM documentation. The documentation includes *SCSI Tape Drive, Medium Changer, and Library Device Drivers Installation and User's Guide* (or any related publications).

 For information on platform support for TLH robotic control, see the NetBackup release notes and the Symantec support Web site: http://entsupport.Symantec.com

- You use a recommended version of the Automated Tape Library. To locate the recommended levels, see the Symantec support Web site.

Robotic control on an AIX system

The following topics explain how to configure robotic control when the NetBackup media server is installed on an AIX system.

Determine the path to the LMCP device file

Use the Library Manager Control Point (LMCP) device file as the robotic device file in NetBackup. This file is set up when the Automated Tape Library is first configured.

Use the `lsdev` command (or `smit`) to determine the LMCP device file.

The following example uses the `lsdev` command:

```
el /etc/lsdev -C | grep "Library Management"
```
The following is the output from this command:

```
lmcp0 Available LAN/TTY Library Management Control Point
```

Verify library communications on an AIX computer

After you determine the path to the LMCP device file, verify library communications through the IBM-provided `mtlib` interface. Resolve all errors before attempting to configure IBM 3494 support in Media Manager.

To verify communications with a specific library, specify the Library Manager Control Point device file with the `mtlib` command. For example, if the LMCP device path is `/dev/lmcp0, the following command verifies communication with the library:

```
/usr/bin/mtlib -l /dev/lmcp0 -qL
```

The following is the output from this command:

```
Library Data:
  state..................... Automated Operational State
                     Dual Write Disabled
  input stations...........1
  output stations..........1
  input/output status......ALL input stations empty
                     ALL output stations empty
  machine type.............3494
  sequence number..........11398
  number of cells..........141
  available cells..........129
  subsystems...............2
  convenience capacity.....30
  accessor config..........01
  accessor status..........Accessor available
                     Gripper 1 available
                     Gripper 2 available
                     Vision system operational
  comp avail status........Primary library manager installed.
                     Primary library manager available.
                     Primary hard drive installed.
                     Primary hard drive available.
                     Convenience input station installed.
                     Convenience input station available.
                     Convenience output station installed.
                     Convenience output station available.
```
Configure the robotic device file on AIX

Configure the robotic path.

See the *NetBackup Administrator’s Guide for UNIX and Linux, Volume I* or *NetBackup Administrator’s Guide for Windows, Volume I*.

When the configuration is complete, you can view the robotic device information. The following example uses `tpconfig -d` to view the robotic device information. In this example, the first two drives are stand-alone drives. The drive with drive index 31 is under TLH robotic control and the drive with drive index 78 is under TL4 control.

```
# /usr/openv/volmgr/bin/tpconfig -d

<table>
<thead>
<tr>
<th>Id</th>
<th>DriveName</th>
<th>Type</th>
<th>Residence</th>
<th>Drive Path</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Drive0</td>
<td>hcart</td>
<td>TLH(8)</td>
<td>/dev/rmt4.1</td>
<td>DOWN</td>
</tr>
<tr>
<td>13</td>
<td>Drive2</td>
<td>hcart</td>
<td>TLH(8)</td>
<td>/dev/rmt8.1</td>
<td>DOWN</td>
</tr>
<tr>
<td>31</td>
<td>Drive1</td>
<td>hcart</td>
<td>TLH(8)</td>
<td>/dev/rmt12.1</td>
<td>DOWN</td>
</tr>
<tr>
<td>78</td>
<td>Drive1</td>
<td>4mm</td>
<td>TL4(77)</td>
<td>/dev/rmt11.1</td>
<td>UP</td>
</tr>
</tbody>
</table>
```

Currently defined robotics are:
- TL4(77) robotic path = /dev/ovpass0
- TLH(8) LMCP device path = /dev/lmcp0

EMM Server = maui

In this example, note the following lines:

- TLH(8) LMCP device path = /dev/lmcp0
- EMM Server = maui

Where `/dev/lmcp0` is the path to the robotic device file and maui is the EMM server for this robot.

Robotic control on a UNIX system

The following topics explain the steps for configuring robotic control when the NetBackup media server is a UNIX system other than AIX.

Determine the ATL library name on UNIX

Use the library name instead of the robotic device file when you configure the storage device in NetBackup. This name is set up when the Automated Tape Library
is first configured (see your IBM system documentation). The library name is configured in the `/etc/ibmatl.conf` file; determine the library name by viewing the contents of the file.

The following is an example entry in that file:

```
3494AH    176.123.154.141    ibmpc1
```

The following describes the example entry:

- 3494AH is the library name.
- 176.123.154.141 is the IP address of the PC workstation that is running the Library Manager software.
- ibmpc1 is the host name of the PC workstation that is running the Library Manager software.

Verify library communications on a UNIX computer

After you determine the library name, verify library communications through the IBM-provided `mtlib` interface. Resolve all errors before attempting to configure IBM 3494 (TLH) support in NetBackup.

To verify communications with a specific library, specify the library name with the `mtlib` command. For example, if the library name is 3494AH, the following command verifies communications with the library:

```
/usr/bin/mtlib -l 3494AH -qL
```

The following is the output from this command:

```
Library Data:
state........................Automated Operational State
                        Dual Write Disabled
input stations............1
output stations............1
input/output status.......ALL input stations empty
                        ALL output stations empty
machine type...............3494
sequence number...........11398
number of cells...........141
available cells...........129
subsystems................2
convenience capacity.......30
accessor config...........01
accessor status..........Accessor available
                        Gripper 1 available
```
Gripper 2 available
Vision system operational
comp avail status........ Primary library manager installed.
Primary library manager available.
Primary hard drive installed.
Primary hard drive available.
Convenience input station installed.
Convenience input station available.
Convenience output station installed.
Convenience output station available.

avail 3490 cleaner cycles..0
avail 3590 cleaner cycles..92

Configure the robotic device file on other UNIX systems

Configure the robotic path. For procedures, see the *NetBackup Administrator’s Guide for UNIX and Linux, Volume I* or *NetBackup Administrator’s Guide for Windows, Volume I*.

When the configuration is complete, you can view the robotic device information.

The following example uses `tpconfig -d` to view the robotic device information. This example has one TLH drive and one TLD drive.

```
/usr/openv/volmgr/bin/tpconfig -d
```

```
Id  DriveName  Type  Residence  Status  Drive Path
       Drive Path
6   Drive2      hcart TLH(0)  003590B1A00
    /dev/rmt/17cbn UP
55  Drive1      dlt  TLD(5)  DRIVE=1
    /dev/rmt/15cbn UP
```

Currently defined robotics are:

TLH(0) library name = 3494AH
TLD(5) robotic path = /dev/sg/c2t010
EMM Server = glozer

In this example, note the following lines:

TLH(0) library name = 3494AH
EMM Server = glozer

Where 3494AH is the library name and glozer is the EMM server for this robot.
Robotic control on a Windows system

The following topics explain how to configure robotic control when the NetBackup media server is on a Windows system.

Determine the ATL name on Windows

Use the library name when you configure the robot in NetBackup. This name is set up when the Automated Tape Library is first configured (see the IBM system documentation). The library name is configured in the `C:\winnt\ibmatl.conf` file; determine the library name by viewing the contents of the file.

The following is an example entry in that file:

```
3494AH 176.123.154.141 ibmpc1
```

The following describes the example entry:

- 3494AH is the library name.
- 176.123.154.141 is the IP address of the PC workstation that is running the Library Manager software.
- ibmpc1 is the host name of the PC workstation that is running the Library Manager software.

Verify library communications on a Windows computer

After you determine the library name, verify library communications through the IBM-provided mtlib interface. Resolve all errors before attempting to configure IBM 3494 (TLH) support in NetBackup.

To verify communications with a specific library, specify the library name with the mtlib command. For example, if the library name is 3494AH, the following command verifies communications with the library:

```
mtlib -l 3494AH -qL
```

The following is the output from this command:

```
Library Data:
operational state........Automated Operational State
                        Dual Write Disabled
functional state.........000
input stations............1
output stations...........1
input/output status.......ALL input stations empty
                        ALL output stations empty
```
Configure the robotic library name

Configure the robotic path. For procedures, see the *NetBackup Administrator’s Guide for UNIX and Linux, Volume I* or *NetBackup Administrator’s Guide for Windows, Volume I*.

When the configuration is complete, you can view the robotic device information.

The following example uses `tpconfig -d` to view the robotic device information.

This example has one TLH drive and one TLD drive.

```
tpconfig -d
Id  DriveName  Type  Residence  Status
     SCSI coordinates/Path
0   DRIVE2   hcart  TLH(0) IBM Device Number=156700  UP
     <1,0,1,0>
1   DRIVE1   dlt   TLD(5)  DRIVE=1  UP
```
Currently defined robotics are:

TLH(0) library name = 3494AH
TLD(5) SCSI port=3, bus=1, target=6, lun=0
EMM Server = glozer

In this example, note the following lines:

TLH(0) library name = 3494AH
EMM Server = glozer

3494AH is the library name, and glozer is the EMM server for this robot.

About configuring TLH drives

TLH robots have half-inch cartridge tape drives.

How you configure the drives depends on the operating system, as follow:

- On UNIX systems, create or identify device files for these drives. Use the same methods to create or identify device files for these drives as for other drives.
- On Windows systems, you must install a system tape driver according to the appropriate system and vendor documentation.

Before you configure drives in NetBackup, configure the operating system tape drivers and device files for those drives. For information about how to do so, refer to the operating system documentation. For guidance about the NetBackup requirements, see the information about the host operating system in this guide.

Warning: When you add drives to NetBackup, ensure that you assign the correct IBM device number to each drive. If the IBM device number is incorrect, tape mounts or backups may fail.

Use the NetBackup TLH test utility (tlhtest) to determine the TLH drive designations. The following example uses tlhtest and shows the drives in the robot that NetBackup controls:

- UNIX: /usr/openv/volmgr/bin/tlhtest -r /dev/lmcp0
- Windows: tlhtest -r 3494AH

If the robotic control is configured on a UNIX server other than AIX, use the library name as configured in /etc/ibmatl.conf. Do not use the LMCP device path on the call to tlhtest.
The following is the output from `tlh test` (the user entered the `drstat` command on the third line). You would use 156700 and 156600 when you add these drives to NetBackup.

```
Opening /dev/lmcp0 (UNIX)
Opening 3494AH (Windows)
Enter tlh commands (? returns help information)
drstat
Drive information:
  device name: 003590B1A00
  device number: 0x156700
  device class: 0x10 - 3590
  device category: 0x0000
  mounted volser: <none>
  mounted category: 0x0000
  device states: Device installed in ATL. Dev is available to ATL. ACL is installed.

Drive information:
  device name: 003590B1A01
  device number: 0x156600
  device class: 0x10 - 3590
  device category: 0x0000
  mounted volser: <none>
  mounted category: 0x0000
  device states: Device installed in ATL. Dev is available to ATL. ACL is installed.
```

About cleaning drives

The IBM ATL interface does not allow applications to request or configure drive cleaning. Therefore, you cannot assign cleaning tapes to a TLH robot in the NetBackup. You must configure drive cleaning by using an IBM administrative interface.

Adding tapes to TLH robots

The following table is an overview of how to add tapes to a TLH robot and then add those tapes to NetBackup.
Table 9-3 Adding tapes process

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add barcode labels to the media and insert the media into the robot by using the media access port.</td>
<td>The Library Manager reads the bar codes and classifies the media by media type. A category is assigned to each volume. Some volume categories restrict application access to certain volumes. The Library Manager tracks volume locations.</td>
</tr>
</tbody>
</table>
| Define the media in NetBackup by using the ATL volume IDs as media IDs | To define the media, do one of the following:
 ■ Add new volumes by using the Configure Volumes Wizard.
 See the *NetBackup Administrator’s Guide for UNIX and Linux, Volume I* or *NetBackup Administrator’s Guide for Windows Volume I*.
 ■ Update the volume configuration by using the NetBackup robot inventory function.
 See the *NetBackup Administrator’s Guide for UNIX and Linux, Volume I* or *NetBackup Administrator’s Guide for Windows Volume I*.

Because the ATL volume IDs and barcodes are the same, NetBackup has a record of the barcodes for the media. Note that you do not enter slot locations because the ACS library software manages them. |
| Verify the volume configuration | Use **Show Contents** and **Compare Contents with Volume Configuration** from the **Robot Inventory** dialog. |

Removing tapes from TLH robots

Use the following procedure to remove tapes. You can move media from one location to another within the robot. The Automated Tape Library finds the media when NetBackup requests it.

To remove volumes

1. Physically remove the media from the library by using one of the following:
 ■ **Actions > Eject Volumes From Robot** in the **NetBackup Administration Console**.
 ■ The **NetBackup vmchange** command.
 For usage, see the *NetBackup Commands Reference Guide* guide.
 ■ The **eject** command in the NetBackup **tlhtest** utility.
An IBM Library Manager interface.

2 If you use the IBM Library Manager interface or the NetBackup `tlhtest` utility, update the volume location to stand alone in NetBackup. To do so, do one of the following:

- Update the volume configuration by using the robot inventory function. For procedures, see the *NetBackup Administrator’s Guide for UNIX and Linux, Volume I* or *NetBackup Administrator’s Guide for Windows Volume I*.

- Move the volumes. For procedures, see the *NetBackup Administrator’s Guide for UNIX and Linux, Volume I* or *NetBackup Administrator’s Guide for Windows Volume I*.

If you do not update the volume location, NetBackup does not know the new location of the media and may issue mount requests for it. The result is an error such as Misplaced Tape.

Robot inventory operations on TLH robots

In NetBackup, the TLH robot type supports barcodes. The following sequence of events occurs when you inventory a TLH robot in NetBackup:

- NetBackup requests volume information from the Library Manager through the Library Manager Control Point daemon.

- The Library Manager responds by providing a list of volume IDs and volume attributes from its database. NetBackup filters out the volume categories that cannot be used. NetBackup displays a list of the volumes and a translated version of the volume’s media type. The media type is based on the attributes that were returned.

The following table shows an example of the types of information that NetBackup receives:

<table>
<thead>
<tr>
<th>TLH volume ID</th>
<th>TLH media type</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFE011</td>
<td>3480</td>
</tr>
<tr>
<td>303123</td>
<td>3490E</td>
</tr>
<tr>
<td>CB5062</td>
<td>3590J</td>
</tr>
<tr>
<td>DP2000</td>
<td>3590K</td>
</tr>
</tbody>
</table>
NetBackup translates the volume IDs into media IDs and barcodes. In the previous table, volume ID PFE011 becomes media ID PFE011, and the barcode for that media ID is also PFE011.

- If the operation does not require updating the volume configuration, NetBackup uses the media type defaults for TLH robots when it creates the inventory report.
- If the operation requires a volume configuration update, NetBackup maps the TLH media types to the default NetBackup media types.

Information about the default media type mappings and how to change them is available.

See the *NetBackup Administrator’s Guide for UNIX and Linux, Volume I* or *NetBackup Administrator’s Guide for Windows Volume I*.

Robot inventory filtering on TLH robots

If you want NetBackup to use only a subset of the volumes under library control, you can filter the volume information from the library. The IBM Library Manager maintains the concept of a volume category, which can be used to classify volumes into pools, including pools by application.

On the NetBackup media server from which you invoke the inventory operation, add an INVENTORY_FILTER entry in the vm.conf file. The following is the usage statement:

```
INVENTORY_FILTER = TLH robot_number BYCATEGORY value1 [value2 ...]
```

The following describes the filter:

- **robot_number** is the number of the robot in NetBackup.
- **value1** is a filter value of type IBM category (if `filter_type` = `BYCATEGORY`).
- **value2** is a second filter value (up to 10 filter values are allowed).

The following is an example:

```
INVENTORY_FILTER = TLH 0 BYCATEGORY 0xcdb0
```
Sun StorageTek ACSLS robots

This chapter includes the following topics:

- About StorageTek ACSLS robots
- Sample ACSLS configurations
- Media requests for an ACS robot
- About configuring ACS drives
- Configuring shared ACS drives
- Adding tapes to ACS robots
- About removing tapes from ACS robots
- Robot inventory operations on ACS robots
- NetBackup robotic control, communication, and logging
- ACS robotic test utility
- Changing your ACS robotic configuration
- ACS configurations supported
- Sun StorageTek ACSLS firewall configuration

About StorageTek ACSLS robots

Applies only to NetBackup Enterprise Server.
Note: If you use the access control feature of Sun StorageTek ACSLS controlled robots and the NetBackup media sharing feature, do the following: ensure that all servers in the NetBackup media server share group have the same ACSLS permissions to all the same ACSLS media and ACSLS drives. Any mismatches can cause failed jobs and stranded tapes in drives.

Sun StorageTek Automated Cartridge System Library Software controlled robots are NetBackup robot type ACS.

ACS robots are API robots (a NetBackup robot category in which the robot manages its own media).

Unlike other robot types, NetBackup does not track slot locations for the media in ACS robots. The Automated Cartridge System Library Software tracks slot locations and reports them to NetBackup.

The term automated cartridge system (ACS) can refer to any of the following:

- A type of NetBackup robotic control.
- The Sun StorageTek system for robotic control.
- The highest-level component of the Sun StorageTek ACSLS. It refers to one robotic library or to multiple libraries that are connected with a media pass-through mechanism.

The ACS library software component can be either of the following Sun StorageTek products:

- Sun StorageTek Automated Cartridge System Library Software (ACSLS)
- Sun StorageTek Library Station

Sample ACSLS configurations

The sample ACSLS configurations show the following:

- A typical UNIX ACSLS configuration.
 See Figure 10-1 on page 151.

- A typical Windows ACSLS configuration.
 See Figure 10-2 on page 152.

- The major components in typical configurations.
 See Table 10-1 on page 153.

The following figure shows a typical UNIX ACSLS configuration.
Figure 10-1 Typical ACSLS configuration on UNIX

The following figure shows a typical Windows ACSLS configuration.
The following table describes the components of the ACSLS configuration.
<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetBackup media server</td>
<td>Specifies a host that has NetBackup media server software and is a client to the ACS library software host.</td>
</tr>
<tr>
<td></td>
<td>The NetBackup ACS robotic daemon (acsd) formulates requests for mounts, unmounts, and inventories. An API then uses IPC communication to routes these requests to:</td>
</tr>
<tr>
<td></td>
<td>■ (UNIX) The NetBackup ACS storage server interface (acsssi). The requests are converted into RPC-based communications and sent to the ACS library software.</td>
</tr>
<tr>
<td></td>
<td>■ (Windows) the Sun StorageTek LibAttach service. This service sends the requests to the ACS library software.</td>
</tr>
<tr>
<td>Sun StorageTek LibAttach Service</td>
<td>Specifies that Library Attach for Windows, an ACS library software client application, enables Windows servers to use the StorageTek Nearline enterprise storage libraries. LibAttach provides the connection between Windows and ACS library software through a TCP/IP network. Obtain the appropriate LibAttach software from Sun. See the Symantec support Web site for the latest compatibility information.</td>
</tr>
<tr>
<td>Windows computers only</td>
<td>Receives the robotic requests from NetBackup and uses the Library Management Unit to find and mount or unmount the correct cartridge on media management requests. On compatible host platforms, you may be able to configure ACS library software and NetBackup media server software on the same host.</td>
</tr>
<tr>
<td>The following ACS library software:</td>
<td>Provides the interface between the ACS library software and the robot. A single LMU can control multiple ACSLS robots.</td>
</tr>
<tr>
<td>Automated Cartridge System Library Software (ACSLS)</td>
<td>Contains the robot, drives, or media.</td>
</tr>
<tr>
<td>Sun StorageTek Library Station</td>
<td>Specifies that the NetBackup media server connects to the drives through device drivers and a control unit (tape controller). The control unit may have an interface to multiple drives. Some control units also allow multiple hosts to share these drives. Most drives do not require a separate control unit. In these cases, the media server connects directly to the drives.</td>
</tr>
<tr>
<td>Library Management Unit (LMU)</td>
<td>Provides the interface between the ACS library software and the robot. A single LMU can control multiple ACSLS robots.</td>
</tr>
<tr>
<td>Library Storage Module (LSM)</td>
<td>Contains the robot, drives, or media.</td>
</tr>
<tr>
<td>Control Unit (CU)</td>
<td>Specifies the Cartridge Access Port.</td>
</tr>
</tbody>
</table>
Media requests for an ACS robot

The following is the sequence of events for a media request for an ACS robot:

- The Media Manager device daemon (UNIX) or NetBackup Device Manager service (Windows) \texttt{ltid} receives the request from \texttt{bptm}.
- \texttt{ltid} sends a mount request to the NetBackup ACS process \texttt{acsd}.
- \texttt{acsd} formulates the request.

An API then uses Internal Process Communications (IPC) to send the request on the following systems:

- UNIX. The NetBackup ACS storage server interface \texttt{acsssi}. The request is then converted into RPC-based communications and sent to the ACS library software.
- Windows. The Sun StorageTek LibAttach service. This service sends the request to the ACS library software.

- If the Library Storage Module (LSM) in which the media resides is offline, the ACS library software reports this offline status to NetBackup. NetBackup assigns the request a pending status. NetBackup retries the request hourly until the LSM is online and the ACS library software can satisfy the media request.
- The ACS library software locates the media and sends the necessary information to the Library Management Unit (LMU).
- The LMU directs the robotics to mount the media in the drive. When the LibAttach service (Windows) or \texttt{acsssi} (UNIX) receives a successful response from the ACS library software, it returns the status to \texttt{acsd}.
- The \texttt{acsd} child process (that is associated with the mount request) scans the drive. When the drive is ready, \texttt{acsd} sends a message to \texttt{ltid} that completes the mount request. NetBackup then begins to send data to or read data from the drive.

About configuring ACS drives

An ACS robot supports DLT or 1/2-inch cartridge tape drives. If an ACS robot contains more than one type of DLT or 1/2-inch cartridge tape drive, you can configure an alternate drive type. Therefore, there can be up to three different DLT and three different 1/2-inch cartridge drive types in the same robot. If you use alternate drive types, configure the volumes by using the same alternate media type. Six drive types are possible: DLT, DLT2, DLT3, HCART, HCART2, and HCART3.
Before you configure drives in NetBackup, configure the operating system tape drivers and device files for those drives. For information about how to do so, refer to the operating system documentation. For guidance about the NetBackup requirements, see the information about the host operating system in this guide.

Use the same methods to create or identify device files for these drives as for other drives. If the drives are SCSI and connect to the robot through a shared control unit, the drives share the same SCSI ID. Therefore, you must specify the same logical unit number (LUN) for each drive.

When you configure ACS drives as robotic in NetBackup, you must include the ACS drive coordinate information.

The following table shows the ACS drive coordinates.

Table 10-2 ACS drive coordinates

<table>
<thead>
<tr>
<th>ACS drive coordinate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS number</td>
<td>Specifies the index, in ACS library software terms, that identifies the robot that has this drive.</td>
</tr>
<tr>
<td>LSM number</td>
<td>Specifies the Library Storage Module that has this drive.</td>
</tr>
<tr>
<td>Panel number</td>
<td>Specifies the panel where the drive is located.</td>
</tr>
<tr>
<td>Drive number</td>
<td>Specifies the physical number of the drive in ACS library software terms.</td>
</tr>
</tbody>
</table>

The following figure shows the location of this information in a typical ACS robot.
Configuring shared ACS drives

If the ACSLS server does not support serialization, use the following procedure to configure shared drives. Shared drives require the NetBackup Shared Storage Option license. (Sun StorageTek ACSLS versions before 6.1 do not support serialization.) If the server supports serialization, use the NetBackup **Device Configuration Wizard** to configure shared drives.

This procedure can significantly reduce the amount of manual configuration that is required in an SSO environment. For example, for 20 drives that 30 hosts share,
these configuration steps require that you configure only 20 device paths rather than 600 device paths.

During the setup phase, the NetBackup Device Configuration Wizard tries to discover the tape drives available. The wizard also tries to discover the positions of the drives within the library (if the robot supports serialization).

A SAN (including switches rather than direct connection) can increase the possibility of errors. If errors occur, you can define the tape drive configuration manually by using the NetBackup Administration Console or NetBackup commands.

Take care to avoid any errors. With shared drives, the device paths must be correct for each server. Also, ensure that the drives are defined correctly to avoid errors. (A common error is to define a drive as ACS index number 9 rather than ACS index 0.)

Use the following procedure to configure shared drives in a nonserialized configuration.

To configure shared drives in a nonserialized configuration

1. Run the NetBackup Device Configuration Wizard on one of the hosts to which drives in an ACS-controlled library are attached. Allow the drives to be added as stand-alone drives.

2. Add the ACS robot definition and update each drive to indicate its position in the robot. Make each drive robotic and add the ACS, LSM, Panel, and Drive information.

 Information about how to determine the correct drive addresses and how to verify the drive paths is available. See "Correlating device files to physical drives" in the NetBackup Administrator's Guide for UNIX and Linux, Volume I or NetBackup Administrator's Guide for Windows, Volume I.

3. After you verify the drive paths on one host, run the Device Configuration Wizard again. Scan all hosts that have ACS drives in the library.

 The wizard adds the ACS robot definition and the drives to the other hosts and uses the correct device paths.

 For this process to work correctly, the following must be true:

 - The wizard discovered the devices and their serial numbers successfully the first time.
 - You configured the drive paths correctly on the first host.
Adding tapes to ACS robots

ACS robotic control software supports the following characters in a volume ID that are not valid NetBackup media ID characters. (Volume ID is the ACS term for media ID).

Therefore, do not use any of the following characters when you configure ACS volumes:

- Dollar sign ($)
- Pound sign (#)
- The yen symbol
- Leading and trailing spaces

The following tables is an overview of how to add tapes to an ACS robot and then add those tapes to NetBackup.

Table 10-3 Adding tapes to ACS robots process

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add barcode labels to the media and insert the media into the robot by using the media access port.</td>
<td>The Library Manager reads the bar codes and classifies the media by media type. A category is assigned to each volume. Some volume categories restrict application access to certain volumes. The Library Manager tracks volume locations.</td>
</tr>
</tbody>
</table>
| Define the media in NetBackup by using the ACS volume IDs as media IDs. | To define the media, do one of the following:
- Update the volume configuration by using the robot inventory function. For procedures, see the *NetBackup Administrator's Guide for UNIX and Linux, Volume I* or *NetBackup Administrator's Guide for Windows, Volume I.*
- Add new volumes by using the Volume Configuration Wizard. For procedures, see the *NetBackup Administrator's Guide for UNIX and Linux, Volume I* or *NetBackup Administrator's Guide for Windows, Volume I.*
Because the ACS volume IDs and bar codes are the same, NetBackup has a record of the bar codes for the media. Note that you do not enter slot locations because the ACS library software manages slot locations. |
| Verify the volume configuration | Use **Show Contents** and **Compare Contents with Volume Configuration** from the **Robot Inventory** dialog. |

About removing tapes from ACS robots

You can remove tapes by using the Sun StorageTek utility or by using NetBackup. See “Removing tapes using the ACSLS utility” on page 159.
Removing tapes using the ACSLS utility

If you remove media from an ACS robot, you must move the media logically to stand alone in NetBackup.

If you do not move media logically, NetBackup does not know that the media were moved. NetBackup may issue mount requests for it, which causes a misplaced tape error.

However, you can move media from one location to another within the robot. The ACS library software finds the requested media if its database is current.

To remove tapes using the SCSLS utility

- Do one of the following:
 - Update the volume configuration by using the NetBackup robot inventory function.
 See the *NetBackup Administrator’s Guide for UNIX and Linux, Volume I* or *NetBackup Administrator’s Guide for Windows Volume I*.
 - Move the volumes.
 See the *NetBackup Administrator’s Guide for UNIX and Linux, Volume I* or *NetBackup Administrator’s Guide for Windows Volume I*.

Removing tapes using NetBackup

To remove tapes using NetBackup

- Use one of the following methods:
 - Select Actions > Eject Volumes From Robot in the NetBackup Administration Console.
 - Use the NetBackup vmchange command.
 See the *NetBackup Commands Reference Guide* guide.

Both of these methods perform the logical move and the physical move.

Robot inventory operations on ACS robots

If the ACS library software host is a Sun StorageTek Library Station, an Inventory Robot Filter (INVENTORY_FILTER) entry may be required in the *vm.conf* file. Old versions of Library Station do not support queries of all volumes in an ACS robot.

In NetBackup, the ACS robot type supports bar codes.
The following sequence of events occurs when you inventory an ACS robot in NetBackup:

- NetBackup requests volume information from the ACS library software.
- The ACS library software provides a listing of the volume IDs, media types, ACS location, and LSM location from its database. See Table 10-4 on page 160.
- NetBackup maps the volume IDs into media IDs and bar codes. For example, in the previous table, volume ID 100011 becomes media ID 100011 and the barcode for that media ID is also 100011.
- If the operation does not require a volume configuration update, NetBackup uses the media type defaults for ACS robots when it creates its report.
- If the operation requires a volume configuration update, NetBackup does the following:
 - Maps the ACS media types to the default NetBackup media types.
 - Adds the ACS and the LSM locations for new volumes to the EMM database. This location information is used for media and drive selection.

Information about the default media type mappings and how to configure media type mappings is available.

See the NetBackup Administrator's Guide for UNIX and Linux, Volume I or the NetBackup Administrator's Guide for Windows, Volume I.

The following table shows an example of the ACS drive coordinates that NetBackup receives.

Table 10-4 ACS drive coordinates

<table>
<thead>
<tr>
<th>ACS volume ID</th>
<th>ACS media type</th>
<th>ACS</th>
<th>LSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>100011</td>
<td>DLTIV</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200201</td>
<td>DD3A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>412840</td>
<td>STK1R</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>412999</td>
<td>STK1U</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>521212</td>
<td>JLABEL</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>521433</td>
<td>STK2P</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>521455</td>
<td>STK2W</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>770000</td>
<td>LTO_100G</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Configuring a robot inventory filtering on ACS robots

If you want NetBackup to use only a subset of the volumes under ACS library control, you can filter the volume information from the library. To do so, you use the ACSLS administrative interface to assign the volumes you want to use to a scratch pool or pools. Then you configure NetBackup to use only the volumes in those scratch pools.

A NetBackup robot inventory includes the volumes that exist in the ACS scratch pool. The ACS library software moves each volume from the scratch pool after it is mounted.

A partial inventory also includes those volumes that NetBackup can validate exist in the robotic library, including volumes not in the ACS scratch pool. To prevent losing track of previously mounted volumes, the library reports the complete list of volumes that exist in the robotic library.

The following procedure is an example of how to configure an inventory filter.

To configure an inventory filter (example)

1. Use the ACSLS administrative interface (ACSSA) command to create a scratch pool. Assign ID 4 and 0 to 500 as the range for the number of volumes, as follows:

   ```
   ACSSA> define pool 0 500 4
   ```

2. Use the ACSLS administrative interface (ACSSA) command to define the volumes in scratch pool 4:

   ```
   ACSSA> set scratch 4 600000-999999
   ```

3. On the NetBackup media server from which you invoke the inventory operation, add an INVENTORY_FILTER entry to the `vm.conf` file. The following is the usage statement:

   ```
   INVENTORY_FILTER = ACS robot_number BY_ACS_POOL acs_scratch_pool1
   [acs_scratch_pool2 ...]
   ```

Table 10-4 ACS drive coordinates (continued)

<table>
<thead>
<tr>
<th>ACS volume ID</th>
<th>ACS media type</th>
<th>ACS</th>
<th>LSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>775500</td>
<td>SDLT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>900100</td>
<td>EECART</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>900200</td>
<td>UNKNOWN</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The following define the options and arguments:

- **robot_number** is the number of the robot in NetBackup.
- **acs_scratch_pool1** is the scratch pool ID as configured in the ACS library software.
- **acs_scratch_pool2** is a second scratch pool ID (up to 10 scratch pools are allowed).

For example, the following entry forces ACS robot number 0 to query scratch volumes from Sun StorageTek pool IDs 4 and 5.

```
INVENTORY_FILTER = ACS 0 BY_ACS_POOL 4 5
```

NetBackup robotic control, communication, and logging

NetBackup Enterprise Server only.

How NetBackup uses robotic control, communication, and logging during tape operations depends on the operating system type as follows:

- **Windows systems**

 See “NetBackup robotic control, communication, and logging for Windows systems” on page 162.

- **UNIX systems**

 See “NetBackup robotic control, communication, and logging for UNIX systems” on page 163.

NetBackup robotic control, communication, and logging for Windows systems

The NetBackup **acsd** process provides robotic control to mount and dismount volumes. It also requests inventories of the volumes that are under the control of ACS library software. The NetBackup Device Manager service **ltid** starts the **acsd** process and communicates with it.

The **acsd** process requests SCSI tape unloads through the device host’s tape driver before it uses the ACS API to request that tape dismounts. This request process accommodates the configurations that have SCSI multiplexors. Loaded tapes are not ejected forcibly when a dismount operation occurs.
NetBackup robotic control, communication, and logging for UNIX systems

On UNIX systems, several NetBackup daemons and processes provide robotic control, communication, and logging.

NetBackup ACS daemon (acsd)

The NetBackup ACS daemon `acsd` provides robotic control to mount and dismount volumes. It also requests inventories of the volumes that are under the control of ACS library software. The Media Manager device daemon `ltid` starts the `acsd` daemon and communicates with it. If `ltid` is active already, you can start `acsd` manually.

The `acsd` daemon requests SCSI tape unloads through the device host's tape driver before it uses the ACS API to request that tape dismounts. This control process accommodates the configurations that have SCSI multiplexors. Loaded tapes are not ejected forcibly when a dismount operation occurs.

When `acsd` starts, it first starts the NetBackup `acssel` process and then starts the `acsssi` process. When it starts `acsssi`, `acsd` passes the ACS library software host name to `acsssi`. One copy of `acsssi` starts for each ACS library software host that appears in the NetBackup device configuration for the media server. If multiple media servers share drives in an ACS robot, `acsssi` must be active on each media server.

NetBackup ACS SSI event logger (acssel)

The NetBackup ACS storage server interface (SSI) event logger `acssel` is modeled after the Sun StorageTek `mini_el` event logger. Therefore, its functional model differs from other NetBackup robotic controls.

The NetBackup `acsd` daemon starts `acssel` automatically. You also can start it manually. Event messages are logged to the following file:

```
/usr/openv/volmgr/debug/acsssi/event.log
```

Note: Symantec recommends that `acssel` run continuously because it tries to connect on the event logger's socket for its message logging. If `acsssi` cannot connect to `acssel`, NetBackup cannot process requests immediately. Therefore, retry and error recovery situations can occur.
On UNIX systems, only the `kill` command stops `acssel`. The NetBackup `bp.kill_all` utility (UNIX) stops the `acssel` process. On Windows systems, the `bpdown.exe` program stops the `acssel` process.

The full path to the event logger is `/usr/openv/volmgr/bin/acssel`. The usage format is as follows:

```
acssel [-d] -s socket_name
```

The following describes the options:

- `-d` displays debug messages (by default, debug messages are disabled).
- `socket_name` is the socket name (or IP port) to listen on for messages.

Using acssel with a different socket name

If the `vm.conf` file does not contain an `ACS_SEL_SOCKET` entry, `acssel` listens on socket name 13740 by default.

You can change this default by using one of the following methods:

- Modify the `vm.conf` configuration file.
 See [To change the default by modifying the vm.conf configuration file](#).
- Add environment variables. This method assumes that one ACS robot is configured and that the SSI default socket name has not been changed. (The `vm.conf` ACS_SEL_SOCKET entry can change the default).
 See [To change the default by adding environment variables](#).

`acssel` also has a command line option to specify the socket name. However, because `acsssi` needs to know the event logger socket name, setting an environment variable is preferred.

To change the default by modifying the vm.conf configuration file

1. Edit the `vm.conf` file and add an `ACS_SEL_SOCKET` entry. The following is an example:

   ```
   ACS_SEL_SOCKET = 13799
   ```

2. Stop the `acsd`, `acsssi`, and `acssel` processes by invoking the following script. (This script stops all NetBackup processes.)

   ```
   /usr/openv/NetBackup/bin/bp.kill_all
   ```

3. Restart the NetBackup daemons and processes by invoking the following script:

   ```
   /usr/openv/NetBackup/bin/bp.start_all
   ```
To change the default by adding environment variables

1. Stop the `acsd`, `acsssi`, and `acssel` processes by invoking the following script. (This script stops all NetBackup processes.)

   ```
   /usr/openv/NetBackup/bin/bp.kill_all
   ```

2. Set the wanted socket name in an environment variable and export it. The following is an example:

   ```
   ACS_SEL_SOCKET = 13799
   export ACS_SEL_SOCKET
   ```

3. Start the event logger in the background.

   ```
   /usr/openv/volmgr/bin/acssel 
   ```

4. Set the ACS library software host name for `acsssi` in an environment variable.

   ```
   CSI_HOSTNAME = einstein
   export CSI_HOSTNAME
   ```

5. Start `acsssi` as follows:

   ```
   /usr/openv/volmgr/bin/acsssi 13741 &
   ```

6. Optionally, start `acstest` by using the `robtest` utility or by using the following command:

   ```
   /usr/openv/volmgr/bin/acstest -r einstein -s 13741
   ```

 If you request SCSI unloads, you also must specify drive paths on the `acstest` command line.

 See “ACS robotic test utility” on page 167.

 The `robtest` utility specifies drive paths automatically if ACS drives have been configured.

7. Start `ltid` as follows, which starts `acsd`. You can use the `-v` option for verbose message output.

   ```
   /usr/openv/volmgr/bin/ltid
   ```

 During initialization, `acsd` obtains the SSI Event Logger socket name from `vm.conf` and sets `ACS_SEL_SOCKET` in the environment before it starts `acssel`. If `acsssi` is started manually, it has to use (listen on) the same SSI socket that `acsd` uses to send data.
NetBackup ACS storage server interface (acsssi)

The NetBackup ACS storage server interface (SSI) acsssi communicates with the ACS library software host. acsssi processes all RPC communications from acsd or from the ACS robotic test utility that are intended for the ACS library software. One copy of acsssi must run for each unique ACS library software host that is configured on a NetBackup media server. acsd tries to start copies of acsssi for each host. However, if an acsssi process for a specific ACS library software host exists already, the new acsssi processes for that host fails during initialization.

In normal operations, acsssi runs in the background and sends log messages to acssel.

You can specify the socket name (IP port) used by acsssi in any of the following ways:

- On the command line when you start acsssi.
- By using an environment variable (ACS_SSI_SOCKET).
- Through the default value.

If you configure acsssi to use a nondefault socket name, you also must configure the ACS daemon and ACS test utility to use the same socket name.

The ACS library software host name is passed to acsssi by using the CSI_HOSTNAME environment variable.

acsssi is based on the Sun StorageTek storage server interface. Therefore, it supports environment variables to control most aspects of operational behavior.

See “Optional environment variables" on page 167.

About the ACS_SSI_SOCKET configuration option

By default, acsssi listens on unique, consecutive socket names; the socket names begin at 13741. To specify socket names on an ACS library software host basis, you can add a configuration entry in the NetBackup vm.conf file.

Use the following format:

ACS_SSI_SOCKET = ACS_library_software_hostname socket_name

The following is an example entry (do not use the IP address of the ACS library host for this parameter):

ACS_SSI_SOCKET = einstein 13750
Starting acsssi manually

This method is not the recommended method to start acsssi. Normally, acsd starts acsssi.

Before you can start acsssi manually, you must configure the CSI_HOSTNAME environment variable. The following is a Bourne shell example:

```bash
CSI_HOSTNAME=einstein
export CSI_HOSTNAME
/usr/openv/volmgr/bin/acsssi 13741 &
```

Use the following procedure to start acsssi.

To start acsssi

1. Start the event logger, acssel.
2. Start acsssi. The format is acsssi socket_name.

Optional environment variables

If you want individual acsssi processes to operate differently, you can set environment variables before the acsssi processes are started.

The following table describes the optional environment variables.

<table>
<thead>
<tr>
<th>Environment variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSI_HOSTNAME</td>
<td>Specifies the name of the host where ACS library software RPC return packets are routed for ACS network communications. By default, the local host name is used.</td>
</tr>
<tr>
<td>CSI_RETRY_TIMEOUT</td>
<td>Set this variable to a small positive integer. The default is 2 seconds.</td>
</tr>
<tr>
<td>CSI_RETRY_TRIES</td>
<td>Set this variable to a small positive integer. The default is five retries.</td>
</tr>
<tr>
<td>CSI_CONNECT_AGETIME</td>
<td>Set this variable to a value between 600 seconds and 31536000 seconds. The default is 172800 seconds.</td>
</tr>
</tbody>
</table>

ACS robotic test utility

NetBackup Enterprise Server only.
The `acstest` utility lets you verify ACS communications and provides a remote system administrative interface to an ACS robot. It can also be used to query, enter, eject, mount, unload, and dismount volumes. In addition, `acstest` lets you define, delete, and populate ACS library software scratch pools.

While `acsd` services requests, do not use `acstest`. Communication problems may occur if `acsd` and `acstest` process ACS requests at the same time.

acstest on Windows systems

`acstest` depends on the Sun StorageTek LibAttach service being started successfully. You can verify that this service is started by using the Services tool available in administrative tools in the Windows control panel. `acstest` attempts to communicate with ACS library software by using the LibAttach service.

The usage format follows:

```
acstest -r ACS_library_software_hostname [-d device_name ACS, LSM, panel, drive] ... [-C sub_cmd]
```

The following example assumes that the LibAttach service started:

```
install_path\Volmgr\bin\acstest -r einstein -d Tape0 0,0,2,1
```

acstest on UNIX systems

`acstest` depends on `acsssi` being started successfully. You can use the UNIX `netstat -a` command to verify that a process listens on the SSI socket. `acstest` attempts to communicate with ACS library software using `acsssi` and connects on an existing socket.

The usage format follows. You can pass the socket name on the command line. Otherwise, the default socket name (13741) is used.

```
acstest -r ACS_library_software_hostname [-s socket_name] [-d drive_path ACS, LSM, panel, drive] ... [-C sub_cmd]
```

The following example assumes that the `acsssi` process has been started by using socket 13741:

```
/usr/openv/volmgr/bin/acstest -r einstein -s 13741
```

Changing your ACS robotic configuration

UNIX and Linux systems only.

NetBackup Enterprise Server only.
If you change your ACS robot configuration, you should update NetBackup so that acsssi can successfully communicate with acsd, acstest, and ACS library software.

Any acsssi processes must be canceled after your changes are made and before the Media Manager device daemon ltid is restarted. Also, for the acstest utility to function, acsssi for the selected robot must be running.

Use the following procedure to update NetBackup after you change your configuration.

To update NetBackup after you change your configuration

1. Make your configuration changes.
2. Use /usr/openv/NetBackup/bin/bp.kill_all to stop all running processes.
3. Restart the NetBackup daemons and processes by invoking the following script:

 /usr/openv/NetBackup/bin/bp.start_all

ACS configurations supported

UNIX and Linux systems only.

NetBackup Enterprise Server only.

NetBackup supports the following ACS configurations:

- Multiple robots that are controlled from a single ACS host
 See “Multiple ACS robots with one ACS library software host” on page 169.

- Multiple robots that are controlled from multiple ACS hosts
 See “Multiple ACS robots and ACS library software hosts” on page 170.

Multiple ACS robots with one ACS library software host

NetBackup supports the following configuration:

- A NetBackup server is connected to drives in multiple ACS robots.
- The robots are controlled from a single ACS library software host.

The following figure shows multiple ACS robots that are controlled from a single ACS library software host.
Inventory requests include: the volumes that are configured on the ACS library software host that resides on the ACS robot that is designated in the drive address.

In this example, assume the following about drive 1:

- Has an ACS drive address (ACS, LSM, panel, drive) of 0,0,1,1 in the NetBackup device configuration
- Is under control of robot number 10 (ACS(10)).

If any other robot ACS(10) drives have a different ACS drive address (for example, 1,0,1,0), the configuration is invalid.

NetBackup supports configurations of multiple LSMs in a single ACS robot if a pass-through port exists.

Multiple ACS robots and ACS library software hosts

NetBackup supports the following configuration:

- A NetBackup server is connected to drives in multiple ACS robots.
- The robots are controlled from separate ACS library software hosts.

The following figure shows multiple ACS robots that are controlled from multiple ACS library software hosts.
Inventory requests include the volumes that are configured on the ACS library software hosts (Host A for Robot 1 and Host B for Robot 2). The software hosts reside on the robot (ACS 0 for each) that is designated in the Sun StorageTek drive address.

In this example, assume the following about drive 1:

- Has an ACS drive address (ACS, LSM, panel, drive) of 0,0,1,1 in the NetBackup device configuration
- Is under control of robot number 10 (ACS(10))

If any other robot ACS(10) drives have a different ACS drive address (for example, 1,0,1,0), the configuration is invalid.

NetBackup supports configurations of multiple LSMs in a single ACS robot if a pass-through port exists.

Sun StorageTek ACSLS firewall configuration

NetBackup Enterprise Server only.

To configure an ACS robot in an Sun StorageTek ACSLS firewall environment, use the following NetBackup `vm.conf` file configuration entries to designate TCP port connections:

- `ACS_CSI_HOSTPORT`
- `ACS_SSI_INET_PORT`
- `ACS_TCP_RPCSERVICE`

More information about `vm.conf` entries is available.
See the *NetBackup Administrator’s Guide for UNIX and Linux, Volume II* or the *NetBackup Administrator’s Guide for Windows, Volume II.*

The Sun StorageTek ACSLS server configuration options must match the entries in the `vm.conf` file. For example, in a typical ACSLS firewall configuration, you would change the following settings as shown:

- **Changes to alter use of TCP protocol...**
 - Set to TRUE - Firewall-secure ACSLS runs across TCP.

- **Changes to alter use of UDP protocol...**
 - Set to FALSE - Firewall-secure ACSLS runs across TCP.

- **Changes to alter use of the portmapper...**
 - Set to NEVER - Ensures that the ACSLS server does not query the portmapper on the client platform.

- **Enable CSI to be used behind a firewall...**
 - Set to TRUE - Allows specification of a single port for the ACSLS server.

- **Port number used by the CSI...**
 - The port that the user chooses. The 30031 default value is used most often. This port number must match the port number that you specify in the NetBackup `vm.conf` file.

For complete information about setting up a firewall-secure ACSLS server, refer to your vendor documentation.
Device configuration examples

This chapter includes the following topics:

- A robot on a server example
- Stand-alone drives on a server example
- A robot and multiple servers example
- An ACS robot on a Windows server example
- An ACS robot on a UNIX server example
- A TLH robot on a UNIX server example
- A TLM robot on a UNIX server example

A robot on a server example

The following figure shows a simple configuration.
This configuration has a tape library that contains two 8mm tape drives. The robot and drives are connected to a server that runs Microsoft Windows.

The following table shows the attributes for the robot.

Table 11-1 Add Robot dialog box entries (Windows local host)

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>eel</td>
</tr>
<tr>
<td>Robot Type</td>
<td>TL8 (Tape Library 8MM)</td>
</tr>
<tr>
<td>Robot Number</td>
<td>0</td>
</tr>
<tr>
<td>Robot is controlled locally by this device host</td>
<td>Set (cannot be changed for this robot type)</td>
</tr>
<tr>
<td>Robot Device</td>
<td>When you select a robot, the SCSI Port, Bus, Target, and LUN numbers are propagated to the Add Robot dialog for Windows servers.</td>
</tr>
</tbody>
</table>

The following table shows the attributes for drive 1.

Table 11-2 Add Drive dialog entries (drive1) for Windows host

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>eel</td>
</tr>
<tr>
<td>Drive Name</td>
<td>eel_dr_1</td>
</tr>
<tr>
<td>Drive Type</td>
<td>8mm Cartridge (8mm)</td>
</tr>
<tr>
<td>Path Information</td>
<td>[4,0,0,0]</td>
</tr>
</tbody>
</table>
Table 11-2 Add Drive dialog entries (drive1) for Windows host (continued)

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning Frequency</td>
<td>0 (hours)</td>
</tr>
<tr>
<td>Drive is in a Robotic Library</td>
<td>Yes</td>
</tr>
<tr>
<td>Robotic Library</td>
<td>TL8(0) - eel</td>
</tr>
<tr>
<td>Robot Drive Number</td>
<td>1</td>
</tr>
</tbody>
</table>

The following table shows the attributes for drive 2.

Table 11-3 Add Drive dialog entries (drive2) for Windows host

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>eel</td>
</tr>
<tr>
<td>Drive Name</td>
<td>eel_dr_2</td>
</tr>
<tr>
<td>Drive Type</td>
<td>8mm Cartridge (8mm)</td>
</tr>
<tr>
<td>Path Information</td>
<td>[4,0,1,0]</td>
</tr>
<tr>
<td>Cleaning Frequency</td>
<td>0 (hours)</td>
</tr>
<tr>
<td>Drive is in a Robotic Library</td>
<td>Yes</td>
</tr>
<tr>
<td>Robotic Library</td>
<td>TL8(0) - eel</td>
</tr>
<tr>
<td>Robot Drive Number</td>
<td>2</td>
</tr>
</tbody>
</table>

The following table shows the attributes for the robot if host eel is a UNIX server.

Table 11-4 Add Robot dialog entries (UNIX local host)

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>eel</td>
</tr>
<tr>
<td>Robot Type</td>
<td>TL8 (Tape Library 8MM)</td>
</tr>
<tr>
<td>Robot Number</td>
<td>0</td>
</tr>
<tr>
<td>Robot is controlled locally by this device host</td>
<td>Set (cannot be changed for this robot type)</td>
</tr>
<tr>
<td>Robotic Device File</td>
<td>/dev/sg/c0t4l0</td>
</tr>
</tbody>
</table>

The following table shows the attributes for drive 1 if host eel is a UNIX server.
Table 11-5 Add Drive dialog entries (drive1) for UNIX host

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>eel</td>
</tr>
<tr>
<td>Drive Name</td>
<td>eel_dr_1</td>
</tr>
<tr>
<td>Drive Type</td>
<td>8mm Cartridge (8mm)</td>
</tr>
<tr>
<td>No Rewind Device</td>
<td>/dev/rmt/5cbn</td>
</tr>
<tr>
<td>Cleaning Frequency</td>
<td>25 (hours)</td>
</tr>
<tr>
<td>Drive Status</td>
<td>UP</td>
</tr>
<tr>
<td>Drive is in a Robotic Library</td>
<td>Yes</td>
</tr>
<tr>
<td>Robotic Library</td>
<td>TL8(0) - eel</td>
</tr>
<tr>
<td>Robot Drive Number</td>
<td>1</td>
</tr>
</tbody>
</table>

The following table shows the attributes for drive 1 if eel is a UNIX host

Table 11-6 Add Drive dialog entries (drive2) for UNIX host

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>eel</td>
</tr>
<tr>
<td>Drive Name</td>
<td>eel_dr_2</td>
</tr>
<tr>
<td>Drive Type</td>
<td>8mm Cartridge (8mm)</td>
</tr>
<tr>
<td>No Rewind Device</td>
<td>/dev/rmt/6cbn</td>
</tr>
<tr>
<td>Cleaning Frequency</td>
<td>25 (hours)</td>
</tr>
<tr>
<td>Drive Status</td>
<td>UP</td>
</tr>
<tr>
<td>Drive is in a Robotic Library</td>
<td>Yes</td>
</tr>
<tr>
<td>Robotic Library</td>
<td>TL8(0) - eel</td>
</tr>
<tr>
<td>Robot Drive Number</td>
<td>2</td>
</tr>
</tbody>
</table>

Stand-alone drives on a server example

The following figure shows two standalone drives that were added to the example in the robot and server example.
See “A robot on a server example” on page 173.

Figure 11-2 Server with standalone drives and robot configuration example

The following table shows the attributes for stand-alone drive 1.

Table 11-7 Add Drive dialog entries (drive1) for Windows host

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>eel</td>
</tr>
<tr>
<td>Drive Name</td>
<td>eel_qdrv_2</td>
</tr>
<tr>
<td>Drive Type</td>
<td>1/4” Cartridge (qscsi)</td>
</tr>
<tr>
<td>Path Information</td>
<td>[5,0,0,0]</td>
</tr>
<tr>
<td>Drive is in a Robotic Library</td>
<td>No</td>
</tr>
</tbody>
</table>

The following table shows the attributes for stand-alone drive 2.
Table 11-8 Add Drive dialog entries (drive2) for Windows host

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>eel</td>
</tr>
<tr>
<td>Drive Name</td>
<td>eel_qdrv_3</td>
</tr>
<tr>
<td>Drive Type</td>
<td>1/4” Cartridge (qscsi)</td>
</tr>
<tr>
<td>Path Information</td>
<td>[5,0,2,0]</td>
</tr>
<tr>
<td>Drive is in a Robotic Library</td>
<td>No</td>
</tr>
</tbody>
</table>

The following table shows the attributes for stand-alone drive 3.

Table 11-9 Add Drive dialog entries (drive3) for Windows host

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>eel</td>
</tr>
<tr>
<td>Drive Name</td>
<td>eel_4mm_drv_4</td>
</tr>
<tr>
<td>Drive Type</td>
<td>4mm Cartridge (4mm)</td>
</tr>
<tr>
<td>Path Information</td>
<td>[5,0,1,0]</td>
</tr>
<tr>
<td>Cleaning Frequency</td>
<td>0 (hours)</td>
</tr>
<tr>
<td>Drive is in a Robotic Library</td>
<td>No</td>
</tr>
</tbody>
</table>

The following table shows the attributes for stand-alone drive 1 if host eel is a UNIX server.

Table 11-10 Add Drive dialog entries (drive1) for UNIX host

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>eel</td>
</tr>
<tr>
<td>Drive Name</td>
<td>eel_qdrv_2</td>
</tr>
<tr>
<td>Drive Type</td>
<td>1/4” Cartridge (qscsi)</td>
</tr>
<tr>
<td>No Rewind Device</td>
<td>/dev/rmt/2cbn</td>
</tr>
<tr>
<td>Drive Status</td>
<td>UP</td>
</tr>
<tr>
<td>Drive is in a Robotic Library</td>
<td>No</td>
</tr>
</tbody>
</table>
The following table shows the attributes for stand-alone drive 2 if host eel is a UNIX server.

Table 11-11 Add Drive dialog entries (drive2) for UNIX host

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>eel</td>
</tr>
<tr>
<td>Drive Name</td>
<td>eel_qdrv_3</td>
</tr>
<tr>
<td>Drive Type</td>
<td>1/4" Cartridge (qscsi)</td>
</tr>
<tr>
<td>No Rewind Device</td>
<td>/dev/rmt/3cbn</td>
</tr>
<tr>
<td>Drive Status</td>
<td>UP</td>
</tr>
<tr>
<td>Drive is in a Robotic Library</td>
<td>No</td>
</tr>
</tbody>
</table>

The following table shows the attributes for stand-alone drive 3 if host eel is a UNIX server.

Table 11-12 Add Drive dialog entries (drive3) for UNIX host

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>eel</td>
</tr>
<tr>
<td>Drive Name</td>
<td>eel_4mm_drv_4</td>
</tr>
<tr>
<td>Drive Type</td>
<td>4mm Cartridge (4mm)</td>
</tr>
<tr>
<td>No Rewind Device</td>
<td>/dev/rmt/4cbn</td>
</tr>
<tr>
<td>Cleaning Frequency</td>
<td>25 (hours)</td>
</tr>
<tr>
<td>Drive Status</td>
<td>UP</td>
</tr>
<tr>
<td>Drive is in a Robotic Library</td>
<td>No</td>
</tr>
</tbody>
</table>

A robot and multiple servers example

The following example applies only to NetBackup Enterprise Server.

The following figure shows one robot and multiple servers.
This example is a more complex configuration than the previous examples because of the following:

- The robotic control is on one NetBackup media server, server eel.
- Two other media servers use the drives.

Following are some things to note when you review this example:

- Media for all devices is configured in an EMM server, which is located on server eel.
- The Robot number is 0 in all three cases because the three servers refer to the same physical robot. In this case, robotic control is on host eel.
- Robot drive numbers correlate to the physical drive assignment within the robot.
- When you add volumes, add them to host eel because the EMM server is on that server.

The configuration attributes for each host are in separate topics.

See “Configuration on the Windows server eel” on page 181.

See “Configuration on the Windows server shark” on page 181.

See “Configuration on the UNIX server whale” on page 182.
Configuration on the Windows server eel

The following table shows the robot attributes for the local Windows server eel.

Table 11-13 Add Robot dialog entries (local host)

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>eel</td>
</tr>
<tr>
<td>Robot Type</td>
<td>TL8 (Tape Library 8MM)</td>
</tr>
<tr>
<td>Robot Number</td>
<td>0</td>
</tr>
<tr>
<td>Robot is controlled locally by this device host</td>
<td>Set</td>
</tr>
<tr>
<td>Robot Device</td>
<td>When you select a robot, the SCSI Port, Bus, Target, and LUN numbers are propagated to the Add Robot dialog for Windows servers.</td>
</tr>
</tbody>
</table>

The following table shows the drive 1 attributes for the local Windows server eel.

Table 11-14 Add Drive dialog entries (drive 1)

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>eel</td>
</tr>
<tr>
<td>Drive Name</td>
<td>eel_drive_1</td>
</tr>
<tr>
<td>Drive Type</td>
<td>8mm Cartridge (8mm)</td>
</tr>
<tr>
<td>Path Information</td>
<td>[4,0,0,0]</td>
</tr>
<tr>
<td>Cleaning Frequency</td>
<td>0 (hours)</td>
</tr>
<tr>
<td>Drive is in a Robotic Library</td>
<td>Yes</td>
</tr>
<tr>
<td>Robotic Library</td>
<td>TL8(0) - eel</td>
</tr>
<tr>
<td>Robot Drive Number</td>
<td>1</td>
</tr>
</tbody>
</table>

See “*A robot and multiple servers example*” on page 179.

Configuration on the Windows server shark

The following table shows the robot attributes for the remote Windows server shark.
The following table shows the drive 2 attributes for the remote Windows server shark.

Table 11-16
Add Drive Dialog Entries (Drive 2)

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>shark</td>
</tr>
<tr>
<td>Drive Name</td>
<td>shark_drive_2</td>
</tr>
<tr>
<td>Drive Type</td>
<td>8mm Cartridge (8mm)</td>
</tr>
<tr>
<td>Path Information</td>
<td>[5,0,1,0]</td>
</tr>
<tr>
<td>Cleaning Frequency</td>
<td>0 (hours)</td>
</tr>
<tr>
<td>Drive is in a Robotic Library</td>
<td>Yes</td>
</tr>
<tr>
<td>Robotic Library</td>
<td>TL8(0) - eel</td>
</tr>
<tr>
<td>Robot Drive Number</td>
<td>2</td>
</tr>
</tbody>
</table>

See “*A robot and multiple servers example*” on page 179.

Configuration on the UNIX server whale

The following table shows the robot attributes for the remote UNIX server whale.

Table 11-17
Add Robot Dialog Entries (remote host)

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>whale</td>
</tr>
<tr>
<td>Robot Type</td>
<td>TL8 (Tape Library 8MM)</td>
</tr>
<tr>
<td>Dialog box field</td>
<td>Value</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Robot Number</td>
<td>0</td>
</tr>
<tr>
<td>Robot control is handled by a remote host</td>
<td>Set</td>
</tr>
<tr>
<td>Robot Control Host</td>
<td>eel</td>
</tr>
</tbody>
</table>

The following table shows the drive 3 attributes for the remote UNIX server whale.

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>whale</td>
</tr>
<tr>
<td>Drive Name</td>
<td>whale_drive_3</td>
</tr>
<tr>
<td>Drive Type</td>
<td>8mm Cartridge (8mm)</td>
</tr>
<tr>
<td>No Rewind Device</td>
<td>/dev/nrst15</td>
</tr>
<tr>
<td>Cleaning Frequency</td>
<td>20 (hours)</td>
</tr>
<tr>
<td>Drive Status</td>
<td>UP</td>
</tr>
<tr>
<td>Drive is in a Robotic Library</td>
<td>Yes</td>
</tr>
<tr>
<td>Robotic Library</td>
<td>TL8(0) - eel</td>
</tr>
<tr>
<td>Robot Drive Number</td>
<td>3</td>
</tr>
</tbody>
</table>

See “A robot and multiple servers example” on page 179.

An ACS robot on a Windows server example

The following example applies only to NetBackup Enterprise Server.

The following figure shows a Windows server and ACS robot configuration.
This configuration uses an Automated Cartridge System (ACS) robot for storage. Server shark can be a Windows NetBackup master server or media server.

The following are items to note when you review this example:

- The Sun StorageTek ACSLS host (in the Add Robot dialog) is host whale, where the ACS library software resides. In this example, Automated Cartridge System Library Software (ACSLS) is installed as the ACS library software. On some server platforms, you can run NetBackup media server software and ACS library software on the same server. Therefore, you need only one server.

- The ACS, LSM, PANEL, and DRIVE numbers are part of the ACS library software configuration and must be obtained from the administrator of that host.

- Robot number and ACS number are different terms. Robot number is the robot identifier used in NetBackup. ACS number is the robot identifier in ACS library software. These numbers can be different, although they both default to zero.
If you connect the drives through an independent control unit, you must use the correct Logical Unit Numbers (LUNs) so that the correct tape name is used.

The Add Robot dialog entries include an ACSLS Host entry so that the ACS library software host communicates by using STK LibAttach software. This software must be installed on each Windows server that has the ACS drives attached to it.

The following table shows the robot attributes for the remote host shark.

Table 11-19 Add Robot dialog entries (remote host)

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>shark</td>
</tr>
<tr>
<td>Robot Type</td>
<td>ACS (Automated Cartridge System)</td>
</tr>
<tr>
<td>Robot Number</td>
<td>0</td>
</tr>
<tr>
<td>Robot control is handled by a remote host</td>
<td>Set (cannot be changed for this robot type)</td>
</tr>
<tr>
<td>ACSLS Host</td>
<td>whale</td>
</tr>
</tbody>
</table>

The following table shows the drive 0 attributes.

Table 11-20 Add Drive dialog entries (drive 0)

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>shark</td>
</tr>
<tr>
<td>Drive Type</td>
<td>1/2" Cartridge (hcart)</td>
</tr>
<tr>
<td>Drive Name</td>
<td>shark_drive_0</td>
</tr>
<tr>
<td>Path Information</td>
<td>[5,0,1,0]</td>
</tr>
<tr>
<td>Drive is in a Robotic Library</td>
<td>Yes</td>
</tr>
<tr>
<td>Robotic Library</td>
<td>ACS(0) - whale</td>
</tr>
<tr>
<td>ACS</td>
<td>ACS: 0</td>
</tr>
<tr>
<td></td>
<td>LSM: 0</td>
</tr>
<tr>
<td></td>
<td>PANEL: 2</td>
</tr>
<tr>
<td></td>
<td>DRIVE: 0</td>
</tr>
</tbody>
</table>

The following table shows the drive attributes for drive 1.
Table 11-21 Add Drive dialog entries (drive 1)

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>shark</td>
</tr>
<tr>
<td>Drive Type</td>
<td>1/2” Cartridge (hcart)</td>
</tr>
<tr>
<td>Drive Name</td>
<td>shark_drive_1</td>
</tr>
<tr>
<td>Path Information</td>
<td>[4,0,1,1]</td>
</tr>
<tr>
<td>Drive is in a Robotic Library</td>
<td>Yes</td>
</tr>
<tr>
<td>Robotic Library</td>
<td>ACS(0) - whale</td>
</tr>
<tr>
<td>ACS</td>
<td>ACS: 0</td>
</tr>
<tr>
<td></td>
<td>LSM: 0</td>
</tr>
<tr>
<td></td>
<td>PANEL: 2</td>
</tr>
<tr>
<td></td>
<td>DRIVE: 1</td>
</tr>
</tbody>
</table>

An ACS robot on a UNIX server example

The following example applies only to NetBackup Enterprise Server.

The following figure shows a UNIX server and ACS robot configuration.
This configuration uses an Automated Cartridge System (ACS) robot for storage. Host shark can be a UNIX NetBackup master server or media server.

The following are some items to note when you review this example:

- The ACSLS Host (in the Add Robot dialog) is server whale, where the ACS library software resides. In this example, Automated Cartridge System Library Software (ACSLS) is installed as the ACS library software.
 On some server platforms, you can run NetBackup media server software and ACS library software on the same server. Therefore, you need only one server.

- The ACS, PANEL, LSM, and DRIVE numbers are part of the ACS library software configuration and must be obtained from that system.

- Robot number and ACS number are different terms. Robot number is the robot identifier used in NetBackup. ACS number is the robot identifier in ACS library software. These numbers can be different, although they both default to zero.
If you connect the drives through an independent control unit, you must use the correct Logical Unit Numbers (LUNs) so that the correct tape name is used.

- The Add Robot dialog entries include an ACSLS Host entry. That entry configures NetBackup to use the ACS Storage Server Interface (acsssi) to communicate with the ACS library software host.

The following table shows the robot attributes.

Table 11-22 Add Robot dialog entries (remote host)

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>shark</td>
</tr>
<tr>
<td>Robot Type</td>
<td>ACS (Automated Cartridge System)</td>
</tr>
<tr>
<td>Robot Number</td>
<td>0</td>
</tr>
<tr>
<td>Robot control is handled by a remote host</td>
<td>Set (cannot be changed for this robot type)</td>
</tr>
<tr>
<td>ACSLS Host</td>
<td>whale</td>
</tr>
</tbody>
</table>

The following table shows the drive 0 attributes.

Table 11-23 Add Drive dialog entries (drive 0)

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>shark</td>
</tr>
<tr>
<td>Drive Name</td>
<td>shark_drive_0</td>
</tr>
<tr>
<td>Drive Type</td>
<td>1/2" Cartridge (hcart)</td>
</tr>
<tr>
<td>No Rewind Device</td>
<td>/dev/rmt1.1</td>
</tr>
<tr>
<td>Drive is in a Robotic Library</td>
<td>Yes</td>
</tr>
<tr>
<td>Robotic Library</td>
<td>ACS(0) - whale</td>
</tr>
<tr>
<td>ACS</td>
<td>ACS Number: 0</td>
</tr>
<tr>
<td></td>
<td>LSM Number: 2</td>
</tr>
<tr>
<td></td>
<td>PANEL Number: 0</td>
</tr>
<tr>
<td></td>
<td>DRIVE Number: 0</td>
</tr>
</tbody>
</table>

The following table shows the drive 1 attributes.
Table 11-24 Add Drive dialog entries (drive 1)

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>shark</td>
</tr>
<tr>
<td>Drive Name</td>
<td>shark_drive_1</td>
</tr>
<tr>
<td>Drive Type</td>
<td>1/2" Cartridge (hcart)</td>
</tr>
<tr>
<td>No Rewind Device</td>
<td>/dev/rmt1.1</td>
</tr>
<tr>
<td>Drive is in a Robotic Library</td>
<td>Yes</td>
</tr>
<tr>
<td>Robotic Library</td>
<td>ACS(0) - whale</td>
</tr>
<tr>
<td>ACS</td>
<td>ACS Number: 0</td>
</tr>
<tr>
<td></td>
<td>LSM Number: 2</td>
</tr>
<tr>
<td></td>
<td>PANEL Number: 0</td>
</tr>
<tr>
<td></td>
<td>DRIVE Number: 1</td>
</tr>
</tbody>
</table>

A TLH robot on a UNIX server example

The following example applies only to NetBackup Enterprise Server. The following figure shows a UNIX server and TLH robot.

Figure 11-6 UNIX server and TLH robot configuration example
This configuration adds a TLH robot to the configuration. The server shark can be a UNIX (AIX, Solaris SPARC, HP-UX), Linux, or Windows server, and can be a NetBackup master server or media server.

The following are some things to note when you review this example:

- The robot control host is the server shark. The robotic control (tlhcd) also can exist on a different server.

- The main difference between TLH robot configuration and other robot types is the robotic device file. The robotic device file is the Library Manager Control Point (LMCP) file on AIX systems and is the library name on non-AIX systems. In this example, shark is a AIX server, so the LMCP file is specified for the robotic device file.

 If shark was a UNIX server that was not AIX or a Windows server, you would specify the library name (for example 3494AH).

- The drive configuration uses the IBM device number. You cannot assign a cleaning frequency in NetBackup.

The following table shows the robot attributes.

Table 11-25 Add Robot dialog entries (local host)

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>shark</td>
</tr>
<tr>
<td>Robot Type</td>
<td>TLH (Tape Library Half-inch)</td>
</tr>
<tr>
<td>Robot Number</td>
<td>0</td>
</tr>
<tr>
<td>Robot is controlled locally by this device host</td>
<td>Set</td>
</tr>
<tr>
<td>LMCP Device File</td>
<td>/dev/lmcp0</td>
</tr>
</tbody>
</table>

The following table shows the drive 1 attributes.

Table 11-26 Add Drive dialog entries (drive 1)

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>shark</td>
</tr>
<tr>
<td>Drive Name</td>
<td>TLH_rob_drv1</td>
</tr>
<tr>
<td>Drive Type</td>
<td>1/2” Cartridge (hcart)</td>
</tr>
<tr>
<td>No Rewind Device</td>
<td>/dev/rmt4.1</td>
</tr>
<tr>
<td>Drive Status</td>
<td>UP</td>
</tr>
</tbody>
</table>
Table 11-26 Add Drive dialog entries (drive 1) (continued)

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive is in a Robotic Library</td>
<td>Yes</td>
</tr>
<tr>
<td>Robotic Library</td>
<td>TLH(0) - shark</td>
</tr>
<tr>
<td>Vendor Drive Identifier</td>
<td>003590B1A00</td>
</tr>
</tbody>
</table>

The following table shows the drive 2 attributes.

Table 11-27 Add Drive dialog entries (drive 2)

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>shark</td>
</tr>
<tr>
<td>Drive Name</td>
<td>TLH_rob_drv2</td>
</tr>
<tr>
<td>Drive Type</td>
<td>1/2” Cartridge (hcart)</td>
</tr>
<tr>
<td>No Rewind Device</td>
<td>/dev/rmt1.1</td>
</tr>
<tr>
<td>Drive Status</td>
<td>UP</td>
</tr>
<tr>
<td>Drive is in a Robotic Library</td>
<td>Yes</td>
</tr>
<tr>
<td>Robotic Library</td>
<td>TLH(0) - shark</td>
</tr>
<tr>
<td>Vendor Drive Identifier</td>
<td>003590B1A01</td>
</tr>
</tbody>
</table>

A TLM robot on a UNIX server example

The following example applies only to NetBackup Enterprise Server.
The following figure shows a UNIX server and TLM robot.
This configuration adds a TLM robot. The device configuration for this robot is similar to the TL8 robot example.

See “A robot on a server example” on page 173.

However with a TLM robot, you specify the DAS/SDLC server instead of a robot control host. This server may reside on an IBM OS/2 system, usually in or near the robot cabinet, or on a Windows server.

In this example, the DAS Server entry is dasos2_pc. You must configure the DAS/SDLC server to recognize server shark as a client and allocate the AML drives to shark.

The following table shows the robot attributes.

Table 11-28 Add Robot dialog entries (remote host)

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>shark</td>
</tr>
<tr>
<td>Robot Type</td>
<td>TLM (Tape Library Multimedia)</td>
</tr>
<tr>
<td>Robot Number</td>
<td>0</td>
</tr>
<tr>
<td>Robot control is handled by a remote host</td>
<td>Set (cannot be changed for this robot type)</td>
</tr>
<tr>
<td>DAS Server</td>
<td>dasos2_pc</td>
</tr>
</tbody>
</table>
The following table shows the drive 1 attributes.

Table 11-29 Add Drive dialog entries (drive 1)

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>shark</td>
</tr>
<tr>
<td>Drive Name</td>
<td>TLM_rob_drv1</td>
</tr>
<tr>
<td>Drive Type</td>
<td>1/2" Cartridge (hcart)</td>
</tr>
<tr>
<td>No Rewind Device</td>
<td>/dev/rmt/rmt0h</td>
</tr>
<tr>
<td>Cleaning Frequency</td>
<td>25 (hours)</td>
</tr>
<tr>
<td>Drive Status</td>
<td>UP</td>
</tr>
<tr>
<td>Drive is in a Robotic Library</td>
<td>Yes</td>
</tr>
<tr>
<td>Robotic Library</td>
<td>TLM(0) - shark</td>
</tr>
<tr>
<td>Vendor Drive Identifier</td>
<td>CN0</td>
</tr>
</tbody>
</table>

The following table shows the drive 2 attributes.

Table 11-30 Add Drive dialog entries (drive 2)

<table>
<thead>
<tr>
<th>Dialog box field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Host</td>
<td>shark</td>
</tr>
<tr>
<td>Drive Name</td>
<td>TLM_rob_drv2</td>
</tr>
<tr>
<td>Drive Type</td>
<td>1/2" Cartridge (hcart)</td>
</tr>
<tr>
<td>No Rewind Device</td>
<td>/dev/rmt/rmt1h</td>
</tr>
<tr>
<td>Cleaning Frequency</td>
<td>25 (hours)</td>
</tr>
<tr>
<td>Drive Status</td>
<td>UP</td>
</tr>
<tr>
<td>Drive is in a Robotic Library</td>
<td>Yes</td>
</tr>
<tr>
<td>Robotic Library</td>
<td>TLM(0) - shark</td>
</tr>
<tr>
<td>Vendor Drive Identifier</td>
<td>CN1</td>
</tr>
</tbody>
</table>
Device configuration examples

A TLM robot on a UNIX server example
Symbols
/etc/ibmatl.conf file 140

A
ACS. See Automated Cartridge System
ACS daemon (acsd)
NetBackup 163
ACS drives
configuring 154
ACS robot
ACSLS firewall configuration 171
changing configuration 169
ACS robot on a UNIX server
configuration example 187
ACS robot on a Windows server
configuration example 184
ACS robot type 102
ACS robotic test utility 168
ACS robots 102
adding tapes 158
removing tapes 158
robot inventory filtering 161
robot inventory operations 159
with multiple ACS hosts 170
with single ACS host 169
ACS SSI event logger (acssel)
NetBackup 163
using with a different socket name 164
ACS storage server interface (acsssi)
NetBackup 166
starting manually 167
ACS_SSI_SOCKET
configuration option 166
acsd daemon 163
acsd process
NetBackup 162
ACSLS
configurations 150
ACSLS utility
removing tapes 159
acssel 163
using with a different socket name 164
acsssi 166
environment variables 167
starting manually 167
acstest 165, 168
on UNIX systems 168
on Windows systems 168
adding
tapes to a TLM robot 125
adding tapes
to ACS robots 158
to TLH robots 145
ADIC client software
installing on UNIX 117
installing on Windows 117
ADIC DAS server
configuring 122
ADIC Scalar DLC server
configuring 123
agile addressing 48
AIX
adapter number conventions 20
adapter numbers 20
command summary 44
configure robotic device file 139
configuring robotic control device files for IBM robots 23
configuring robotic control ovpass device files 23
configuring tape drive device files 36
disabling SPC-2 SCSI reserve 43
install_ovpass script 21
introduction 19
locate-block 38
ovpass driver 21
installing 21
uninstalling 23
upgrading 22
passthru driver 21
remove_ovpass command 23
robotic controls 24
AIX
(continued)
SCSI robotic controls 24
make device files 29, 34
smit tool 20–21
tape drive configuration
extended file marks 37
multiple densities 42
variable mode devices 37

AIX computer
verify library communications 138

AIX system
robotic control 137

AL-PA destination ID
Solaris 83

allocating TLM drives
on a DAS server 119
on a Scalar DLC server 120

alternate media types
ACS robots 154
AML. See Distributed AML Server
AMU. See Archive Management Unit
API robots 114, 129, 150
Archive Management Unit (AMU) 115

atdd driver
HP-UX 66

ATL. See Automated Tape Library

ATL library name
on UNIX 140

ATL name
on Windows 142

attaching devices
to a Windows system 98

attributes
robot 102

Automated Cartridge System
adding volumes 158
barcode operations 159
configuration example 184, 187
configurations supported 169
Library Server (ACSLS) 150, 153
media requests 154
multiple ACS robots with multiple ACS
hosts 170
multiple ACS robots with single ACS host 169
removing tapes 126
robot inventory filtering 161
Solaris 80
special characters 158
STK Library Station 150, 153

Automated Cartridge System (ACS)
removing tapes 158

Automated Tape Library (ATL) 133, 136

B
Berkeley-style close
HP-UX 49
Solaris 91
boot -r
Solaris 96

C
cfgmgr command 46
chdev command 37, 45
choosing
tape driver 37
cleaning drives
for TLH robots 145
command summary
for AIX 44
HP-UX 69
Linux 78
Solaris 96

common access
to volumes 125

classification
changing ACS robot 169
for Sun StorEdge Network Foundation HBA
driver 82

configuration example
ACS robot on a UNIX server 187
ACS robot on a Windows server 184
for a robot on a server 173
for local Windows server 181
for remote UNIX server 182
for remote Windows server 181
robot and multiple servers 179
stand-alone drives on a server 176
TLH robot on a UNIX server 190
TLM robot on a UNIX server 192

configuration guidelines
HP-UX 47

configuration option
ACS_SSI_SOCKET 166

configurations
UNIX system examples 130
configurations supported
Automated Cartridge System 169
configure
 robot control at LUN 0 example 31
 robot control at LUN 1 example 32
 robot control at LUN 6 example 33
 robotic control for a Fibre Channel device example 33
 robotic device file on AIX 139
 robotic device file on other UNIX systems 141
 robotic library name 143
 TLH drives 144
configuring
 ACS drives 154
 ADIC DAS server 122
 ADIC Scalar DLC server 123
 DAS or Scalar DLC client name 118
 legacy device files 57
 NetBackup drives 124
 persistent DSFs 52
 robotic control 137
 robotic control device files for IBM robots in AIX 23
 robotic control ovpass device files in AIX 23
 SAN clients to recognize FT media servers 94
 SCSI or FCP robotic controls 24
 shared ACS drives 156
 shared TLM drives 122
 tape drive device files in AIX 36
 TLM drives 116
 TLM drives in NetBackup 120
 TLM robotic control 116
control unit
 ACS 153
controller name
determining 25
conventions
 RS/6000 AIX adapter number 20
creating
 HP-UX persistent DSFs 52
 legacy SCSI and FCP robotic controls on HP-UX 57
 legacy tape drive device files 64
 no rewind device files for tape drives 38
 persistent DSF pass-through paths 53
 sct1 device file for FCP (Itanium) 62
 sct1 device file for FCP (PA-RISC) 60
 sct1 device file for SCSI (PA-RISC) 59
 tape drive pass-through device files 64
 the device file 29
creating device files
 for SAN clients on HP-UX 56

D
D_ID 30
DAS. See Distributed AML Server
DAS or Scalar DLC client name
 configuring 118
DAS server
 allocating TLM drives 119
DAS_CLIENT
 environment variable 119
 vm.conf entry 119
DASADMIN command 119, 123
debug mode
 for st tape driver 74
determine path
to LMCP device file 137
determining
caller name 25
 existence of device file 24
 SCSI address 26
device
 configuration wizard 156
device addressing schemes
 HP-UX 48
device configuration sequence 14
device discovery 14
device drivers
 for legacy device files 54
 for persistent DSFs 50
 ovpass 21
 sg
 Linux 72
 Solaris 80
 st
 Linux 73
device drivers and files
 for persistent DSFs 50
device file
creating 29
determining if it exists 24
device files
 creating for SAN clients on HP-UX 56
 creating no rewind 38
 for legacy tape drives 55
 Linux (2.6 kernel) robotic control 75
 Linux (2.6 kernel) tape drive 75
device files (continued)
 ovpass driver
 accessibility 22
device special files
 persistent 50
disable
 HP-UX EMS Tape Device Monitor for a SAN 68
 SPC-2 SCSI reserve in HP-UX 68
disabling
 Solaris Multiplexed I/O (MPxIO) 83
 SPC-2 SCSI reserve in AIX 43
 SPC-2 SCSI reserve on Solaris 93
Distributed AML Server 113
 See also Tape Library Multimedia
 /ETC/CONFIG file 122
 /MPTN/ETC/HOSTS file 122
 about 113
drive cleaning
 for TLH robots 145
drive designations
 determining 121
driver unloading
 Solaris 88
drives
 Sony S-AIT 44
drstat command 108
DSFs. See device special files 50
examples (continued)
 SCSI and FCP robotic control device files 89
 TLH configurations 130
extended file marks
 for drives 37
F
 fabric assigned destination ID
 Solaris 83
 fast-tape positioning. See locate-block
Fibre Channel
 drivers 88
 HP-UX configuration example 60, 62
 fibre channel
 binding process
 Solaris 82
 Fibre Channel HBA drivers
 binding 82
 firewall configuration
 Sun StorageTek ACSLS 171
fixed length block 37
forward-space-file/record
 HP-UX 50
H
 HBAs
 Emulex 77
HP-UX
 command summary 69
 configuration guidelines 47
 creating legacy SCSI and FCP robotic controls 57
 creating persistent DSFs 52
 device addressing schemes 48
 disable EMS Tape Device Monitor for a SAN 68
 disable SPC-2 SCSI reserve 68
 legacy device drivers and files 54
 robotic control 48
 SAM utility 68
 SCSI robotic controls 54
 SPC-2 SCSI reserve 68
 Tape drive configuration
 Berkeley-style close 49
 make device files 50
 upgrading NetBackup to use persistent DSFs 53
I
 IBM Automated Tape Library 129
 See also Tape Library Half-inch
IBM Automated Tape Library service 136
IBM device number 108, 144
IBM library
 SCSI address 29
install_ovpass script 21, 45
installing
 ADIC client software on UNIX 117
 ADIC client software on Windows 117
introduction
 Linux 71
 Solaris 79
ioscan command
 HP-UX 69

L
legacy device drivers and files
 HP-UX 54
legacy device files
 configuring 57
 device drivers supported 54
legacy pass-through paths
 for tape drives 56
legacy tape drive device files
 creating 64
legacy tape drives
 device file names 55
Library Management Unit 153
Library Management Unit (LMU) 154
Library Manager Control Point daemon (LMCPD) 133
Library Storage Module 153
Library Storage Module (LSM) 154
Linux
 command summary 78
 introduction 71
 loading drivers 73
 robotic controls 75
 SAN clients 76
 SCSI robotic controls 75
 sg driver 72
 st tape driver 73
 st tape driver buffer size 74
 utilities to test SCSI devices 78
 verifying the device configuration 75
Linux (2.6 kernel)
 robotic controls 75
 tape drive device files 75
LMCP device file
 determine path 137
LMCPD 133

LMU. See Library Management Unit
locate-block
 on AIX 38
 on Solaris 92
lsattr command 46
lsdev command
 HP-UX 70
 on AIX 45
LSM. See Library Storage Module
lsmod command
 Linux 74

M
media requests
 for an ACS robot 154
 for TLH robot 136
mkdev command 45
mknod command
 HP-UX 69
modinfo command
 Solaris 96
modprobe command
 Linux 73
mt command
 Linux 78
mtdlib command
 IBM 138
multiple tape densities
 using 42

N
N_P ort address 30
NetBackup
 ACS daemon (acsd) 163
 ACS SSI event logger (acssel) 163
 ACS storage server interface (acsssi) 166
 acsd process 162
 removing tapes 159
 robotic control, communication, and logging 162
 using acssel with different socket name 164
NetBackup Device Configuration wizard 124
NetBackup drives
 configuring 124
NetBackup Enterprise Server 68
NetBackup sg driver
 verify installation 81
 no rewind device file example 40
no rewind device files
- creating 38
- Solaris 92
nonstandard tape drives 93

O
- odmget command 46
- ovpass driver 21
- upgrading 22
- ovpass driver device files
 - ensuring accessibility 22

P
- pass-through paths
 - for persistent DSFs 51
- persistent DSF pass-through paths
 - creating 53
- persistent DSFs
 - configuring 52
 - device drivers 50
 - device drivers and files 50
 - for robotic control 51
 - for tape drive access 51
 - pass-through paths 51
- processes
 - by robotic type 109
 - robotic 109
 - robotic control 109

R
- rem_drv command
 - Solaris 96
- remove_ovpass command 23, 45
- removing
 - tapes from a TLM robot 126
 - tapes from ACS robots 158
 - tapes using NetBackup 159
 - tapes using the ACSLS utility 159
- removing tapes
 - from TLH robots 146
- requirements
 - tape drive device files 49
- robot
 - attributes 102
 - process 109
- robot and multiple servers
 - configuration example 179
- robot inventory operations
 - on ACS robots 159
 - on TLH robots 147
- robot types 101
 - robotic processes 109
- robotic
 - control process 109
 - test utilities 108
 - test utilities, ACS 168
- robotic control
 - for persistent DSFs 51
 - on a UNIX system 139
 - on a Windows system 142
 - on an AIX system 137
 - on HP-UX 48
 - on UNIX systems 163
 - on Windows systems 162
- robotic control device files
 - for IBM robots in AIX 23
- robotic control, communication, and logging
during tape operations 162
- robotic controls
 - SCSI
 - HP-UX 54
 - Linux (2.6 kernel) 75
 - on AIX 24, 75, 89
 - Solaris 89
- robotic device file
 - configure on other UNIX systems 141
- robotic inventory
 - filtering 148, 161
- robotic library name
 - configure 143
- robotic process
 - example 111
- robotics
 - table-driven 108
- robots
 - ACS 102
 - Sun StorageTek ACSLS 150
 - TL4 103
 - TL8 104
 - TLD 105
 - TLH 106
 - TLM 107
- robtest 108, 123, 165
- robtest utility
 - Linux 78
S

SAM utility
 HP-UX 68
SAN clients
 about drivers for Linux 76
 configuring drivers on HP-UX 56
 configuring drivers on Solaris 94
Scalar DLC server
 allocating TLM drives 120
schgr device driver
 HP-UX 58
Scripts
 sg.install
 Solaris 83
scripts
 install_ovpass 21
 remove_ovpass 23
 sgscan 89, 96
SCSI
 pass through driver
 Solaris 80
 passthru driver
 on AIX 21
 robotic control
 HP-UX 54
 Linux (2.6 kernel) 75
 on AIX 24
 on Linux 75
 on Solaris 89
SCSI address
 determination 26
 IBM library 29
SCSI or FCP robotic controls
 configuration 24
SCSI persistent bindings 77
SCSI reservations
 data integrity 15
 disabling 15
 disabling SPC-2 reserve in AIX 42
 disabling SPC-2 reserve in HP-UX 68
 disabling SPC-2 reserve on Solaris 93
sct1 device file
 creating for FCP (Itanium) 62
 creating for FCP (PA-RISC) 60
 creating for SCSI (PA-RISC) 59
server and robot
 configuration example 173
sg driver
 Linux 72

sg driver (continued)
 Solaris 80
 uninstalling 95
sg.build command
 Solaris 96
sg.conf file
 example 86
sg.install script
 Solaris 83, 96
sg.links file
 example 87
shared ACS drives
 configuring 156
shared TLM drives
 configuring 122
smit command 37
Solaris
 adapter card removal 80
 binding Fibre Channel HBA drivers 82
 command summary 96
 configuring SAN clients 94
 disabling MPxIO 83
 disabling SPC-2 reserve on Solaris 93
 examples of SCSI and FCP robotic control device files 89
 introduction 79
 locate-block 92
 no rewind device files 92
 preventing driver unloading 88
 robotic controls 89
 SCSI pass through driver 80
 SCSI robotic controls 89
 sg driver install or reconfigure 83
 sg.install script 83
 SPC-2 SCSI reserve 92
 tape drive configuration 90
 Berkeley-style close 91
 using ACS 80
Solaris Multiplexed I/O (MPxIO)
 disable 83
Sony S-AIT drives 44
SPC-2 SCSI reserve
 disable in HP-UX 68
 disabling in AIX 43
 Solaris 92
SSO
 configuring non-serialized shared TLM drives 124
 configuring shared ACS drives 157
SSO (continued) configuring TLM robot types 122
st driver
 Linux 73
st tape driver
 buffer size and performance 74
debug mode 74
 Linux 73
st.conf file
 example 85
stand-alone drives on a server
 configuration example 176
STK SL500
 example 90
StorEdge Network Foundation HBA
 example 90
Sun
 acstest utility on UNIX 168
 acstest utility on Windows 168
 Automated Cartridge System
 multiple ACS robots with multiple ACS hosts 170
 multiple ACS robots with single ACS host 169
 Automated Cartridge System (ACS)
 configurations supported 169
 configuring shared ACS drives 156
 StorageTek ACSLS robots 150
Sun StorageTek ACSLS
 firewall configuration 171
Sun StorEdge Network Foundation HBA driver
 configuration 82
switch settings
 Sony S-AIT
 on AIX 44
Symantec support web site 15

T
 table-driven robotics 108
tape device drivers
 Windows 98
tape drive access
 persistent DSFs 51
Tape drive configuration
 HP-UX
 no rewind 50
tape drive configuration
 Solaris 90
tape drive device files
 Linux (2.6 kernel) 75
 requirements 49
tape drive device files in AIX
 configuring 36
tape drive pass-through device files
 creating 64
tape driver
 choosing 37
tape drives
 creating no rewind device files 38
 legacy pass-through paths 56
 nonstandard 93
Tape Library Half-inch (TLH)
 about 113
 adding volumes 145
 cleaning drives 145
 configuration example 190
 configuring robotic control 137
 control daemon 133, 136
daemon 133
 drive mapping 144
 media requests 136
 removing tapes 146
 robot inventory 147
 service 136
Tape Library Multimedia (TLM)
 about 113
 adding volumes 125
 allocating drives 116
 configuration example 192
 configuring drives 120
 configuring robotic control 116
 daemon 115
 Drive mapping 121
 inventory operations 127
 media requests 115
 removing tapes 126
tapes
 adding to a TLM robot 125
 removing from a TLM robot 126
 removing from ACS robots 158
 removing using NetBackup 159
 removing using the ACSLS utility 159
text version of this guide 14
TL4 robots 103
TL8 robots 104
TLD robots 105
TLH configurations
 examples 130
TLH drives
configure 144
TLH example configurations
Windows 133
TLH robot
configuring 137
TLH robot on a UNIX server
configuration example 190
TLH robots 106
adding tapes 145
removing tapes 146
robot inventory filtering 148
TLM configuration
example 114
TLM drives
configuring 116
TLM drives in NetBackup
configuring 120
TLM robot
adding tapes 125
media requests 115
removing tapes 126
TLM robot on a UNIX server
configuration example 192
TLM robotic control
configuring 116
TLM robots 107
robot inventory operations 127
tlmtest 121, 123–126

U
uninstalling
the sg driver 95
UNIX
acstest utility 168
determine ATL library name 140
installing ADIC client software 117
verify library communications 140
UNIX server (remote)
configuration example 182
UNIX system
element configurations 130
robotic control 139
upgrading
NetBackup to use HP-UX persistent DSFs 53
ovpass driver 22
using
guide 13

using the passthru driver
capabilities 81

V
variable length block 37
variable-mode devices
on AIX 37
verify library communications
on an AIX computer 138
on UNIX 140
on Windows 142
verifying
device configuration on Linux 75
vm.conf file
DAS_CLIENT entries 119
volumes
providing common access 125

W
Windows
acstest utility 168
attaching devices 98
determine the ATL name 142
installing ADIC client software 117
tape device drivers 98
TLH example configurations 133
verify library communications 142
Windows server (local)
configuration example 181
Windows server (remote)
configuration example 181
Windows system
robotic control 142
world wide node names (WWNN) 83
world wide port names (WWPN) 82–83