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Abstract
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istence theorem for derivatives. Our methods rely heavily on realisation
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1 Introduction

Recently, there has been much interest in the study of rates of polynomial

approximation in weighted L

p

(0 < p � 1) spaces, associated with fast decaying

weights on the real line and [�1; 1]. We refer the reader to [1-5], [8-11] and the

references cited therein, for a detailed and comprehensive account of the above

topic.

In this paper, we obtain a new characterisation of smoothness in L

p

(1 �

p � 1) for weighted polynomials associated with Freud weights on the real line

complementing earlier work of [3], [4], [9] and prove an existence theorem for

derivatives in L

p

(0 < p � 1). In order to state our results, we need to de�ne

our class of weight functions and various quantities. First we say that a real

valued function f : (a; b) �! (0;1) is quasi increasing if there exists a positive

constant C such that

a < x < y < b =) f(x) � Cf(y):
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Our weight class will assumed to be admissible in the sense of the following

de�nition.

De�nition 1.1

Let

W = exp(�Q)

where Q : R �! R is even and continuous. Then W is an admissible Freud

weight and we shall write W 2 E if the following conditions below hold.

(a) Q

0

exists and is positive in (0;1).

(b) xQ

0

(x) is strictly increasing in (0;1) with

lim

jxj!0

+

xQ

0

(x) = 0:

(c) For some � > 1, A > 1, B > 1 and C > 0,

A �

Q

0

(�x)

Q

0

(x)

� B; x � C: (1.1)

Remark 1.2

(a) The archetypal example of our class of weights is

W

�

(x) := exp(�(jxj

�

)); x 2 R: (1.2)

Here, in particular, A = B = �

�

.

(b) (1.1) �rst appeared in [8]. It implies the more frequently used condition,

see [12,13],

A

1

�

xQ

0

(x)

Q(x)

� B

1

; x � C

1

:

for positive constants A

1

, B

1

and C

1

.

Armed with the above class of admissible Freud weights above, we now de�ne

a suitable measure of weighted distance.

Let I � R be an interval and

L

p;W

(I) := ff : I �! R : fW 2 L

p

(I); 0 < p �1g
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where if p =1, f is further continuous and satis�es

lim

jxj!1

fW (x) = 0:

We equip L

p;W

(I) with the quasi norm

kfWk

L

p

(I)

:=

(

�R

I

jfW j

p

(x)dx

�

1=p

; 0 < p <1

sup

x2I

jfW j(x) ; p =1

and interpret (L

p;W

(I); k; k) as a metric space in the usual way. In particu-

lar, taking I = R, we may de�ne the L

p

(0 < p � 1) error in best weighted

polynomial approximation by:

E

n

[f ]

W;p

:= inf

P2P

n

k(f � P )Wk

L

p

(R)

; f 2 L

p;W

(R) (1.3)

where P

n

denotes the class of polynomials of degree at most n � 1.

In [8], Jackson and Bernstein estimates for E

n

[f ] for �xed f 2 L

p;W

(0 <

p � 1) were investigated. In order to describe these results, we need the notion

of the Mhaskar-Rakhmanov-Sa� number and a suitable weighted modulus of

smoothness which we de�ne below.

Mhaskar-Rakhmanov-Sa� number

Let W 2 E and de�ne the Mhaskar-Rakhmanov-Sa� number, a

u

; u � 0 by

the equation:

u =

2

�

Z

1

0

a

u

tQ

0

(a

u

t)

p

1� t

2

dt; u > 0:

For those who are not familiar, we quickly recall that its signi�cance lies partly

in the identity, see [12,13],

kPWk

L

1

[�a

n

;a

n

]

= kPWk

L

1

(R)

; P 2 P

n

; n � 1:

Under our assumptions on Q, it was shown in [8] that a

u

is uniquely de�ned,

is a strictly increasing function of u and is continuous for u 2 (0;1). For

example for W

�

, a

u

= Cu

1=�

for some C > 0 independent of u.

The Weighted Jackson Modulus of Continuity

The following weighted Jackson modulus of continuity for Freud weights was

introduced and studied in [8].
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De�nition 1.3

Let W 2 E, 0 < p �1, f 2 L

p;W

(R), r � 1 and set:

!

r;p

(f;W; t) := sup

0<h�t

k�

r

h

(f; x;R)k

L

p

(jxj��(h))

(1.4)

+ inf

R2P

r�1

k(f �R)Wk

L

p

(jxj��(t))

:

Here

�(t) := inf

n

a

u

:

a

u

u

� t

o

; t > 0 (1.5)

and for a real interval J ,

�

r

h

(f; x; J) :=

�

P

r

i=0

�

r

i

�

(�1)

i

f(x+

rh

2

� ih) ; x�

rh

2

2 J

0 ; otherwise

is the rth symmetric di�erence of f .

Remark 1.4

(a) The essential feature of the function � in (1.5) is that it satis�es the

following important condition. Uniformly for n � 1, there exist constants

C

j

> 0, j = 1; 2 such that

C

1

�

�

�

a

n

n

�

a

n

� C

2

:

Thus, in a sense, �(

a

n

n

) serves as the inverse of the function

a

n

:�!

a

n

n

; n � 1:

Typically, t is small and will be taken as

a

n

n

for n � n

0

for some �xed but

large enough n

0

. This latter quantity always tends to zero for large n for

our class of admissible weights, see (3.3).

(b) The tail of the modulus !

r;p

(f;W; ; ) re
ects the inability of weighted

polynomials (PW ), P 2 P

n

to approximate well beyond [�a

n

; a

n

]. Its

presence ensures that for f 2 P

r�1

, r � 1,

!

r;p

(f;W; ; ) � 0:

(c) Traditionally for Erd}os weights on R and non Szeg}o weights on [�1; 1], see

[1,11], the increment h in the main part of the modulus in (1.4) depends

on x to allow for endpoint e�ects in [�a

n

; a

n

] much as in the classical

Ditzian-Totik modulus on [�1; 1] which admits a factor of

p

1� x

2

. This

is not the case for Freud weights on the real line.
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We �nish this section with two important theorems which were established

in [8,9]. In order to state them, we adopt the following convention that will be

used in the sequel.

Throughout, for real sequences fA

n

g and fB

n

g 6= 0

A

n

= O(B

n

) and A

n

� B

n

will mean respectively that there exist positive

constants C

1

, C

2

and C

3

independent of n such that

A

n

B

n

� C

1

and C

2

�

A

n

=B

n

� C

3

.

Similar notation will be used for functions and sequences of functions.

Theorem 1.5

Let W 2 E, 0 < p � 1, f 2 L

p;W

(R), r � 1 and n � n

0

. Assume that there

is a Markov-Bernstein inequality of the form

kR

0

Wk

L

p

(R)

� C

1

n

a

n

kRWk

L

p

(R)

; R 2 P

n

: (1.6)

Then there exists C

1

> 0 independent of f and n such that

E

n

[f ]

W;p

� C

1

w

r;p

(f;W;

a

n

n

): (1.7)

Moreover, if p � 1, we may dispense with the assumption (1:6).

In order to establish (1:7), the following realisation functional was used which

we de�ne below.

Set:

K

r;p

(f;W; t

r

) := inf

P2P

n

n

k(f � P )Wk

L

p

(R)

+ t

r

kP

(r)

Wk

L

p

(R)

o

: (1.8)

Here t is chosen in advance and n depends on t by the relation:

n = n(t) := inffk :

a

k

k

� tg: (1.9)

The concept of realization should be attributed to Hristov and Ivanov [7].

It enabled the authors in [8] to use a general technique of Ditzian, Hristov and

Ivanov [7] to show:

Theorem 1.6

Let W 2 E, 0 < p � 1, f 2 L

p;W

(R), r � 1, � > 0 and assume (1:6). Let

t 2 (0; D) where D is a small enough �xed positive number and determine n by

(1:9). Then uniformly for f and t the following hold:

(a)

!

r;p

(f;W; t) � K

r;p

(f;W; t

r

): (1.10)
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(b)

!

r;p

(f;W; t) � !

r;p

(f;W; �t) � !

r;p

�

f;W;

a

n

n

�

: (1.11)

(c)

K

r;p

(f;W; t

r

)

� k(f � P

�

n

)Wk

L

p

(R)

+ t

r

kP

�(r)

n

Wk

L

p

(R)

: (1.12)

Here, P

�

n;p

(f)=P

�

n

(f) is the best approximant to f from P

n

satisfying

k(f � P

�

n

)Wk

L

p

(R)

= E

n

[f ]

W;p

: (1.13)

(d) If 1 � p �1 and f satis�es the extra smoothness requirement

f

r

W 2 L

p

(R)

then there exists C

1

> 0 independent of t and f such that

!

r;p

(f;W; t) � C

1

t

r

kf

(r)

Wk

L

p

(R)

: (1.14)

(e) Moreover if in parts a� c above we only assume p � 1, then the results

hold without the assumption (1:6).

This paper is organized as follows: In Section 2, we present our main results

and in Section 3, we establish Theorem 2.2, Theorem 2.3, Theorem 2.5 and

Theorem 2.6.

2 Statements of Results

Throughout this paper, C, C

1

,... will denote positive constants independent of

t, n, x and P 2 P

n

while the symbol D will always denote a small enough but

�xed positive constant. The same symbol does not necessarily denote the same

constant in di�erent occurrences. We shall write C 6= C(L) to mean that the

constant in question is independent of the parameter L.
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2.1 A Characterisation Theorem

In order to formulate our main result, we need the following important theorem

which was stated in [8] without proof:

Theorem 2.1

Let W 2 E, 0 < � < r, 0 < p � 1, f 2 L

p;W

(R) and assume (1:6).

Then the following are equivalent:

(a)

E

n

[f ]

W;p

= O

�

a

n

n

�

�

; n �!1: (2.1)

(b)

!

r;p

(f;W; t) = O(t

�

); t �! 0

+

: (2.2)

Under more restrictive conditions on W , this was established in [9, pp.185-

186] and may be proved using the methods of [1, Corollary 1.6]. For our pur-

poses, it is more important to observe that Theorem 2.1 is not suitable for

characterizing optimal orders of smoothness, i.e., it does not include the impor-

tant case � = r. To this end, we replace (2.1) by a di�erent characterisation

and prove:

Theorem 2.2

Let W 2 E, 1 � p �1 and f 2 L

p;W

(R). Suppose further that

kP

�(r)

n

Wk

L

p

(R)

� C

1

�

n

a

n

�

r

 

�

a

n

n

�

; n �!1 (2.3)

for some quasi-increasing

 : [0;1] �! [0;1]

satisfying

 (x) �! 0; x �! 0

+

:

Then the following hold:

(i)

E

n

[f ]

W;p

� C

2

 

Z

C

3

a

n

n

0

 (�)

�

d�

!

; n �!1: (2.4)

(ii)

!

r;p

(f;W; t) � C

4

 

Z

C

5

t

0

 (�)

�

d�

!

; t �! 0

+

: (2.5)

Here the C

j

; j = 1; 2; 3; 4; 5 are positive and independent of t and n.
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In particular, if  satis�es for some positive constant C

6

Z

C

6

t

0

 (�)

�

d� = O( (t)); t �! 0

+

then there exist C

j

> 0; j = 7; 8 independent of t and n such that

E

n

[f ]

W;p

= O

�

 

�

C

7

a

n

n

��

; n �!1 (2.6)

and

!

r;p

(f;W; t) = O( (C

8

t)); t �! 0

+

: (2.7)

We deduce the following analogue of Theorem 2.1.

Theorem 2.3-Characterisation Theorem

Let W 2 E, 0 < � � r, 1 � p � 1 and f 2 L

p;W

(R).

(a) Then the following are equivalent:

!

r;p

(f;W; t) = O(t

�

); t �! 0

+

: (2.8)

kP

�(r)

n

Wk

L

p

(R)

= O

�

n

a

n

�

r��

; n �!1: (2.9)

(b) In particular, the following are equivalent:

!

r;p

(f;W; t) = O(t

r

); t �! 0

+

: (2.10)

kP

�(r)

n

Wk

L

p

(R)

= O(1); n �!1: (2.11)

Remark 2.4

(a) We believe that is unlikely that (2.1) and (2.2) should hold with � = r:

Indeed it seems that the characterisation (2.9) is the better replacement.

We deduce that in the range for which !

r;p

(f;W; ; ) and !

r+1;p

(f;W; ; )

have di�erent behaviour, E

n

[f ]

W;p

yields information on !

r+1;p

(f;W; ; )

and kP

�(j)

n

Wk

L

p

(R)

yields information on !

j;p

(f;W; ; ) for j = r and j =

r + 1:

(b) Concerning the relationship between !

r;p

(f;W; ; ) and !

r+1;p

(f;W; ; ) a

Marchaud inequality was proved in [8].
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We now establish:

Theorem 2.5-Quasi r-Monotonicity of the modulus

Let W 2 E, 0 < p � 1, f 2 L

p;W

(R), t 2 (0; D), r � 1 and assume (1:6).

Then there exists C

1

> 0 independent of f and t such that

!

r+1;p

(f;W; t) � C

1

!

r;p

(f;W; t): (2.12)

Finally we are able to prove:

Theorem 2.6-Existence Theorem for Derivatives

Let W 2 E, 0 < p � 1, f 2 L

p;W

(R), n � n

0

and q = min(1; p). Moreover

assume (1:6). Then if for some positive integer k

1

X

j=1

�

2

j�1

n

a

2

j�1

n

�

kq

E

2

j�1

n

[f ]

q

W;p

<1

the following hold:

(a)

f

(k)

W 2 L

p

(R):

(b) For some C

1

6= C

1

(n)

k(f � P

�

n

)

(k)

Wk

L

p

(R)

� C

1

0

@

1

X

j=1

�

2

j�1

n

a

2

j�1

n

�

kq

E

2

j�1

n

[f ]

q

W;p

1

A

1

q

: (2.13)

Remark 2.7

We remark that it is possible under our hypotheses to reformulate all our

results for n � r � 1.

3 Our Proofs

In this section, we present the proofs of Theorems 2.2, 2.3, 2.5 and 2.6.
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3.1 Characterisation Theorem

We begin with:

The Proof of Theorem 2.2

We choose a large natural number M and �x it. For the moment we do not

specify the size of M as this will be done later in the proof for clarity.

Let P

�

Mn

(f) = P

�

Mn

be the best approximant to f from P

Mn

satisfying

k(f � P

�

Mn

)Wk

L

p

(R)

= E

Mn

[f ]

W;p

: (3.1)

Moreover let P

�

n

(P

�

Mn

) be the best approximant to P

�

Mn

from P

n

satisfying,

k(P

�

Mn

� P

�

n

(P

�

Mn

))Wk

L

p

(R)

= E

n

[P

�

Mn

]

W;p

: (3.2)

First observe that using (1.3) and the fact that P

�

n

(P

�

Mn

) is a polynomial of

degree at most n gives

E

n

[f ]

W;p

= inf

P2P

n

k(f � P )Wk

L

p

(R)

� k(f � P

�

n

(P

�

Mn

))Wk

L

p

(R)

: (3.3)

Then (3.1) and (3.3) yield

I

n

: = k(P

�

Mn

� P

�

n

(P

�

Mn

))Wk

L

p

(R)

� k(f � P

�

n

(P

�

Mn

))Wk

L

p

(R)

� k(f � P

�

Mn

)Wk

L

p

(R)

� E

n

[f ]

W;p

�E

Mn

[f ]

W;p

: (3.4)

Next we need the following estimate of a

u

which follows from [8, (2.7)]:

Given u � 1 and v � v

0

, there exist positive constants �, �, 
 and �

depending only on A, B and � (recall (1.1)) such that

�u

1=1+�

�

a

uv

a

v

� 
u

1=1+�

: (3.5)

Then using (1.7), (3.2), (1.14), (2.3) and (3.5) we have

I

n

� C

1

!

r;p

�

P

�

Mn

;W;

a

n

n

�

� C

2

 (

a

Mn

Mn

): (3.6)
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Here, C

2

6= C

2

(n):

The estimates (3.4) and (3.6) then readily give

E

n

[f ]

W;p

� C

3

1

X

k=0

I

M

k

n

� C

4

1

X

k=1

 

�

a

M

k

n

M

k

n

�

= C

4

S

n

(3.7)

where

S

n

:=

1

X

k=1

 

�

a

M

k

n

M

k

n

�

; n � 1 (3.8)

and C

4

6= C

4

(n).

We now estimate (3.8) in terms of an integral.

Using (3.5) and recalling that 
 and � were independent of u and v, we

choose M at the start of the proof so large that

M > exp

�

1 + �

�

�




1+�

�

:

(3.5) then shows that there exists n

0

such that uniformly for k � 1 and n � n

0

,

Z

a

M

k�1

n

M

k�1

n

a

M

k

n

M

k

n

1

�

d� � 1:

The quasi-monotonicity of  then yields,

S

n

� C

5

1

X

k=1

Z

a

M

k�1

n

M

k�1

n

a

M

k

n

M

k

n

 (�)d�

�

� C

6

Z

a

n

n

0

 (�)

�

d� (3.9)

where C

6

6= C

6

(n).

Substituting (3.9) into (3.7) gives (2.4).

Now let 0 < t < D and de�ne n := n(t) by (1.9).

11



Then using (1.10), (1.11), (1.8), (1.13), (2.3) and (3.7), we proceed much as

in the proof of (2.4) and obtain

!

r;p

(f;W; t) � C

1

!

r;p

�

f;W;

a

Mn

Mn

�

� C

2

K

r;p

�

f;W;

�

a

Mn

Mn

�

r

�

� C

3

�

k(f � P

�

Mn

)Wk

L

p

(R)

+

�

a

Mn

Mn

�

r

kP

�(r)

Mn

Wk

L

p

(R)

�

� C

4

�

E

Mn

[f ]

W;p

+  

�

a

Mn

Mn

��

� C

5

 

1

X

k=0

 

�

a

M

k+1

n

M

k+1

n

�

!

� C

6

Z

C

7

t

0

 (�)

�

d�: (3.10)

.

Here C

6

and C

7

are independent of t. Thus we have (2.5). (2.6) and (2.7)

then follow easily. 2

We may proceed with

The Proof of Theorem 2.3

We apply Theorem 2.2 with  (�) := �

�

: This then shows that (2.9) implies

(2.8). The other way follows from (1.10), (1.11) and (1.12). The equivalence of

(2.10) and (2.11) follow from part (a) of Theorem 2.2 by setting � = r: 2

We now present:

The Proof of Theorem 2.5

Let q = min(1; p) and let P

�

n

be the best approximant to f satisfying (1.13).

Then (1.10), (1.13), (1.6), (1.7) and (1.12) give for n � n

0

;

!

r+1;p

�

f;W;

a

n

n

�

q

� C

1

�

k(f � P

�

n

)Wk

q

L

p

(R)

+

�

a

n

n

�

(r+1)q

kP

�(r+1)

n

Wk

q

L

p

(R)

�

� C

2

�

E

n

[f ]

q

W;p

+

�

a

n

n

�

rq

kP

�(r)

n

Wk

q

L

p

(R)

�

� C

3

!

r;p

�

f;W;

a

n

n

�

q

: (3.11)

Here C

3

6= C

3

(f; n).

Now let 0 < t < D and determine n := n(t) by (1.9) Then (3.11) and (1.11)

together imply (2.12). 2
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We �nish this section with

The Proof of Theorem 2.6

Let P

�

n

be the best approximant to f satisfying (1.13). Then much as in [3,

Theorem 2.3] we write for a.e x 2 R,

f(x) = P

�

n

(x) +

1

X

j=1

(P

�

2

j

n

(x)� P

�

2

j�1

n

(x)): (3.12)

Now apply (3.12) together with (1.6). This gives,

k(f � P

�

n

)

(k)

Wk

q

L

p

(R)

� C

1

1

X

j=1

�

2

j

n

a

2

j

n

�

kq

k(P

�

2

j

n

� P

�

2

j�1

n

)Wk

q

L

p

(R)

� C

2

1

X

j=1

�

2

j�1

n

a

2

j�1

n

�

kq

E

q

2

j�1

n

[f ]

W;p

:

Here, C

2

6= C

2

(n; f): Taking qth roots gives the theorem. 2
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