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Abstract

In this note a new characterisation of smoothness is obtained for

weighted polynomial approximation in L

p

(1 � p � 1) with repect to

a large class of exponential weights in (�1; 1) which include the classi-

cal Pollaczek weights. Along the way we prove Marchaud inequalities,

saturation theorems, existence theorems for derivatives and generalize a

theorem of D. Lubinsky.
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1 Introduction

The purpose of this note, is to generalize [5, (1.22)] of Lubinsky for a large class

of symmetric exponential weights on (�1; 1) which include the classical Pol-

laczek weights and thus extend earlier results of Ditzian and Totik for Jacobi

type weight functions. Along the way, we prove Marchaud inequalities, satura-

tion and quasi r monotonicity theorems, existence theorems for derivatives and

clarify a statement made by Lubinsky in [6, Section 5, pg 19].

In [5], Lubinsky has recently investigated forward and converse theorems of

polynomial approximation in L

p

(1 � p �1) for a class of symmetric non Szeg}o

weights in (�1; 1). By a symmetric non Szeg}o weight in (�1; 1), we mean a

weight

w := exp(�Q)
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where Q : (�1; 1) ! R is even and unlike classical Jacobi weights, vanishes so

strongly near �1 that it violates the classical Szeg}o condition

Z

1

�1

logw(x)

p

1� x

2

dx > �1:

As examples we mention

w(x) = w

0;�

(x) := exp

�

�(1� x

2

)

��

�

; � > 0; x 2 (�1; 1)

and

w(x) = w

k;�

(x) := exp(� exp

k

([1� x

2

]

��

)); � > 0; k � 1; x 2 (�1; 1):

Here exp

k

(; ) := exp(exp(:::(exp(; )))) denotes the kth iterated exponential and

exp

0

(x) = x. In particular, w

0;1=2

is the well known Pollaczek weight, see [9,

(1.10), pg 389].

For such weights, w, we de�ne the error of best weighted approximation by

E

n

[f ]

w;p

:= inf

P2�

n

k(f � P )wk

L

p

(�1;1)

; f 2 L

p;w

(�1; 1) (1.1)

where �

n

denotes the class of polynomials of degree at most n � 1,

L

p;w

(�1; 1) := ff : (�1; 1) �! R : fw 2 L

p

(�1; 1); 1 � p � 1g

and if p =1, f is further continuous and satis�es

lim

jxj!1

fw(x) = 0:

It is well known, see [6], that

E

n

[f ]

w;p

! 0; n!1:

We denote by P

�

n;p

= P

�

n

, the best approximating polynomial at which the

in�mum in (1.1) is attained.

For parameters r > 1, 0 < � < r, 1 � p � 1, a modulus of smoothness

!

r;p

(f; w; ; ) which is de�ned in (1.4) below and for positive constants C

j

; j = 1; 2

independent of n and t, Lubinsky in [5, (1.22)] established the equivalence:

(a)

E

n

[f ]

w;p

� C

1

n

��

; n!1: (1.2)

(b)

!

r;p

(f; w; t) � C

2

t

�

; t! 0

+

: (1.3)
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The importance of the above result lies in the fact that it enables one to

say something about the `smoothness' properties of the function f knowing in

advance how fast one can approximate it by weighted polynomials and visa

versa.

Indeed will show the following:

(1) For 0 < � � r and for rates of decrease as fast as a negative power of n,

there exists a new and more optimal characterisation of smoothness which

implies (1.2) and is equivalent to (1.3).

(2) The importance of this new characterisation lies in the often di�erent

behaviour of the rth and (r + 1)th moduli of smoothness and to this end

we completely describe this relationship by proving a Marchaud inequality

and a corresponding converse theorem which works in L

p

(0 < p � 1).

(3) A closer examination of (1.2) and (1.3) reveals that they also hold for a

certain logarithmic rate of decrease  slower than a negative power of n

and that for such  , the characterisation (1.2) and (1.3) is more optimal

so that in general both characterisations are applicable to di�erent ranges

and supplement each other.

(4) A saturation theorem, quasi r monotonicity theorem and existence theo-

rem for derivatives hold true and in the process we clarify a statement of

Lubinsky in [6, Section 5, pg 19] and extend results of Ditzian and Totik,

see [4, Chapter 7,8].

To state our main results, we de�ne formally our class of weights, our mod-

ulus of smoothness and introduce some needed notation.

First we say that a real valued function f : (a; b) �! (0;1) is quasi increas-

ing (quasi decreasing) if there exists a positive constant C

1

such that

a < x < y < b =) f(x) � C

1

f(y) (f(x) � C

1

f(y)):

For any two sequences (b

n

) and (c

n

) of nonzero real numbers, we write

b

n

. c

n

;

if there exists a constant C

1

> 0, independent of n such that

b

n

� C

1

c

n

and

b

n

� c

n

;
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if there exist positive constants C

j

; j = 2; 3, independent of n such that

C

3

c

n

� b

n

� C

2

c

n

:

Similar notation will be used for functions and sequences of functions. By C

we will mean a positive absolute constant which may take on di�erent values in

di�erent places.

Our weight class, much as in [5], is de�ned as follows:

De�nition 1.1

Let

w = exp(�Q)

where Q : (�1; 1) �! R is even, continuous, has limit 1 at 1 and Q

0

is positive

in (0; 1). Then we shall write w 2 E if the following conditions below hold.

(a) xQ

0

(x) is strictly increasing in (0; 1) with right limit 0 at 0.

(b)

T (x) :=

Q

0

(x)

Q(x)

is quasi increasing in (C

1

; 1) for some 0 < C

1

< 1.

(c) Assume that for each " > 0, there exist constants C

j

> 0; j = 1; 2 such

that uniformly for x and y

Q

0

(y)

Q

0

(x)

� C

1

�

Q(y)

Q(x)

�

1+"

; y � x � C

2

:

(d) For some � > 0 and 0 < C

1

< 1, (1�x

2

)

1+�

Q

0

(x) is increasing in (C

1

; 1).

In particular, w

0;�

and w

k;�

2 E .

In [5], the following modulus of continuity was studied for the class E .

De�nition 1.2

Let w 2 E, 0 < p � 1, f 2 L

p;w

(�1; 1), r � 1, t 2 (0; t

0

) and set:

!

r;p

(f; w; t) : = sup

0<h�t

k�

r

h�

t

(x)

(f; x; (�1; 1))k

L

p

(jxj�a

1=2t

)

(1.4)

+ inf

R2�

r�1

k(f �R)wk

L

p

(jxj�a

1=4t

)

:
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Here,

�

t

(x) : =

�

�

�

�

1�

jxj

a

1=t

�

�

�

�

1

2

+ T (a

1=t

)

�1

2

; x 2 (�1; 1); (1.5)

�

r

h

(f; x; (�1; 1)) : =

�

P

r

i=0

�

r

i

�

(�1)

i

f(x+

rh

2

� ih) ; x�

rh

2

2 (�1; 1)

0 ; otherwise

is the rth symmetric di�erence of f and a

1=t

is the (1=t)th

Mhaskar-Rakhmanov-Sa� number for w

2

de�ned by

1=t =

2

�

Z

1

0

a

1=t

uQ

0

(a

1=t

u)

p

1� u

2

du:

For those who are unfamilar, its signi�cance lies partly in the identity

kPwk

L

1

(�1;1)

= kPwk

L

1

(�a

n

;a

n

)

; P 2 �

n

:

For example for classical Jacobi weights, the interval [�a

n

; a

n

] is essentially

[�1�n

�2

; 1�n

�2

] and thus the remaining subintervals of [�1; 1] of length n

�2

are negligible. For the class of weights E however, a

n

is much smaller and so it

is more signi�cant. For example for w

k;�

,

1� a

n

(log

k

n)

�1=�

� 1

where log

k

denotes the usual kth iterated logarithm.

The function h�

t

is a suitable replacement for the well known factor h

p

1� x

2

in the Ditzian-Totik modulus, see [4], i.e. it describes the improvement in the

degree of approximation over fx : a

�n

� jxj � a

n

2

g for any �xed � 2 (0; 1=2) in

much the same way as

p

1� x

2

does for Jacobi weights on [�1; 1].

Following is our �rst main result:

Theorem 1.3

Let w 2 E, 0 < � � r, 1 � p �1 and f 2 L

p;w

(�1; 1). Further de�ne

 (�) := �

�

; � � 0:

Then

!

r;p

(f; w; t) . t

�

; t! 0

+

(1.6)

5



i�

kP

�(r)

n

�

r

1

n

wk

L

p

(�1;1)

. n

r

 (1=n); n!1: (1.7)

Moreover (1:7) implies

E

n

[f ]

w;p

. n

��

; n!1: (1.8)

In particular it is well known, see [8], that

E

n

[f ]

w;p

. n

�r

; n!1:

does not imply that

!

r;p

(f; w; t) . t

r

; t! 0

+

but as we have seen

kP

�(r)

n

�

r

1

n

wk

L

p

(�1;1)

. 1; n!1

does.

We deduce that in the range for which !

r;p

(f; w; ; ) and !

r+1;p

(f; w; ; ) have

di�erent behavior, E

n

[f ]

w;p

yields information on !

r+1;p

(f; w; ; ) only while

kP

�(j)

n

�

j

1

n

wk

L

p

(�1;1)

yields information on !

j;p

(f; w; ; ) for j = r and j = r+1: Concerning the precise

relationship between !

r;p

(f; w; ; ) and !

r+1;p

(f; w; ; ) the following Marchaud

inequality and corresponding converse theorem hold true.

Theorem 1.4

Let w 2 E, 0 < p � 1, q = min(1; p), t 2 (0; t

0

) and f 2 L

p;w

(�1; 1). Then

uniformly for f and t,

!

r;p

(f; w; t) . t

r

"

Z

C

t

!

r+1;p

(f; w; u)

q

�

log

2

�

1

t

��

rq=2

u

rq

du (1.9)

+

�

log

2

�

1

tr

��

rq=2

kfwk

q

L

p

(�1;1)

#

1=q

:

Moreover

!

r+1;p

(f; w; t) . !

r;p

(f; w; t): (1.10)
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The appearance of (1.9) might seem at �rst unatural because of the presence

of the logarithmic terms. However they arise because of the function �

t

in the

modulus (1.4) which is necessary to depict endpoint e�ects in the Mhaskar-

Rakhmanov-Sa� interval. They also appear for Erd}os weights in R, see [2], and

in earlier work of Ditzian and Totik, see [4]. The estimate (1.10) is classical and

follows [4] and [1].

Theorem 1.5

Let w 2 E, � > 0, 1 � p � 1 and f 2 L

p;w

(�1; 1). Further de�ne for "

su�ciently small and positive

 (�) := (log 1=�)

��

; � 2 [0; "):

Then

(a)

!

r;p

(f; w; t) .  (t); t! 0

+

(1.11)

i�

E

n

[f ]

w;p

.  (1=n); n!1: (1.12)

Moreover

kP

�(r)

n

�

r

1

n

wk

L

p

(�1;1)

. n

r

 (1=n); n!1 (1.13)

yields essentially no information on the function f .

(b) We always have

kP

�(r)

n

�

r

1

n

wk

L

p

(�1;1)

. n

r

Z

1=n

0

!

r;p

(f; w; �)

�

d�: (1.14)

We deduce that for the slow decreasing  as above, the characterisation

(1.2) and (1.3) is better whereas for faster decreasing  , Theorem 1.3 is the

correct replacement. Thus both theorems are applicable to di�erent ranges and

supplement each other. A similar e�ect occurs in the unweighted case, see [4,

Theorem 7.3.2], for Jacobi type weights on (�1; 1), see [4, Chapter 8] and for

Freud and Erd}os weights on R, see [1, Theorem 2.5 ] and [3, Theorem 2.2].

Concerning, (1.14) this is non trivial as the modulus in (1.4) is not necessary

increasing. Nevertheless, using a strong quasi r monotonicity property of the

modulus (1.4) which we will establish in Theorem 1.7 below, we are able to

establish (1.14) and this may then be used to give an alternative proof of the

implication :

kP

�(r)

n

�

r

1

n

wk

L

p

(�1;1)

. n

r��

; n!1:
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if

!

r;p

(f; w; t) . t

�

; t! 0

+

for 0 < � � r.

We pause briey to outline the structure of this paper. In Section 2, we

present the proofs of Theorems 1.3-1.4 and the implications (1.11), (1.12) and

(1.13) of Theorem 1.5. In Section 3, we formulate and prove a saturation the-

orem, Theorem 1.6, a quasi r monotonicity theorem, Theorem 1.7 and in the

process clarify a statement of Lubinsky in [6, Section 5, pg 19]. We then prove

(1.14) of Theorem 1.5 and �nally formulate and prove an existence theorem for

derivatives, Theorem 1.8. We close with some �nal remarks and open problems.

2 The Proof of Theorems 1.3-1.4 and implica-

tions (1.11)-(1.13)

We begin with the:

Proof of Theorem 1.3

The proof follows from the following observation which is of independent

interest.

Suppose that uniformly for n � n

0

kP

�(r)

n

�

r

1

n

wk

L

p

(�1;1)

. n

r

 

�

1

n

�

(2.1)

for some quasi increasing or quasi decreasing

 : (0; ") �! [0;1)

satisfying

 (x) �! 0; x �! 0

+

:

Here, " is a su�ciently small positive number.

Then the following hold:

(a) Uniformly for n � n

0

and t 2 (0; t

0

)

(i)

E

n

[f ]

w;p

.

 

Z

1=n

0

 (�)

�

d�

!

: (2.2)
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(ii)

!

r;p

(f; w; t) .

 

Z

Ct

0

 (�)

�

d�

!

: (2.3)

(b) In particular, if uniformly for t 2 (0; t

0

),

Z

Ct

0

 (�)

�

d� .  (t) (2.4)

then uniformly for n � n

0

and t 2 (0; t

0

)

E

n

[f ]

w;p

.  

�

1

Cn

�

(2.5)

and

!

r;p

(f; w; t) .  (t): (2.6)

We follow the method of [4, Theorem 7.3.2] and let P

�

2n

(f) = P

�

2n

be the

best approximant to f from �

2n

satisfying

k(f � P

�

2n

)wk

L

p

(�1;1)

= E

2n

[f ]

w;p

: (2.7)

Moreover let P

�

n

(P

�

2n

) be the best approximant to P

�

2n

from �

n

satisfying,

k(P

�

2n

� P

�

n

(P

�

2n

))wk

L

p

(�1;1)

= E

n

[P

�

2n

]

w;p

: (2.8)

First observe that using (1.1) and the fact that P

�

n

(P

�

2n

) is a polynomial of

degree at most n gives

E

n

[f ]

w;p

= inf

P2�

n

k(f � P )wk

L

p

(�1;1)

� k(f � P

�

n

(P

�

2n

))wk

L

p

(�1;1)

: (2.9)

Then (2.7) and (2.9) yield

I

n

: = k(P

�

2n

� P

�

n

(P

�

2n

))wk

L

p

(�1;1)

� k(f � P

�

n

(P

�

2n

))wk

L

p

(�1;1)

� k(f � P

�

2n

)wk

L

p

(�1;1)

� E

n

[f ]

w;p

�E

2n

[f ]

w;p

: (2.10)
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We now need the estimates, see [5, (1.17)], [5, (5.9)], [5, (1.23)],

!

r;p

(f; w; 1=n) � k(f � P

�

2n

)wk

L

p

(�1;1)

+

�

1

2n

�

r

kP

�(r)

2n

�

r

1

2n

wk

L

p

(�1;1)

(2.11)

and

!

r;p

(P

�

2n

; w; 1=n) . n

�r

kP

�

2n

(r)

w�

r

1=n

k

L

p

(�1;1)

: (2.12)

Combining these with (2.1) gives

I

n

. !

r;p

�

P

�

2n

; w;

1

n

�

.  

�

1

n

�

: (2.13)

(2.10) and (2.13) then readily give

E

n

[f ]

w;p

.

1

X

k=1

 

�

1

2

k

n

�

= S

n

(2.14)

where

S

n

:=

1

X

k=1

 

�

1

2

k

n

�

; n � n

0

: (2.15)

First observe that for each �xed k

Z
1

2

k�1

n

1

2

k

n

1

�

d� = log 2

and assume without loss of generality that  is quasi-increasing for the other

case is similar.

Then the quasi-monotonicity of  gives,

S

n

.

1

X

k=1

Z

1

2

k�1

n

1

2

k

n

 (�)d�

�

(2.16)

.

Z

1

n

0

 (�)

�

d�:

Substituting (2.16) into (2.14) gives (2.2).

To see (2.3), we let t 2 (0; t

0

), de�ne n to be the largest integer � 1=t and

use (2.11) and the identity

!

r;p

(f; w; t) � !

r;p

(f; w; 1=n) (2.17)

10



which holds unformly for n.

Then (2.3) follows as in (2.2) using (1.1) and (2.1). Thus we have shown

(2.2) and (2.3). Applying the claim above with  (�) := �

�

shows that (1.7)

implies (1.6) and (1.8). The reverse implication follows from (2.11). 2

We next present the:

Proof of Theorem 1.5: (1.11)-(1.13)

We �rst observe that the implication (1.11) to (1.12) follows from (2.17) and

the identity, see [5, (1.20)],

E

n

[f ]

w;p

. !

r;p

(f; w; 1=n) (2.18)

uniformly for the given n. Moreover, it is clear that we cannot deduce from

(1.13) anything about the smoothness of the function f if we recall (2.4) and

the de�nition of  . Thus it remains to prove the implication (1.12) to (1.11).

To this end we choose n � n

0

, set l := log

2

n and recall the identity, see [5,

(1.21)]

!

r;p

(f; w; 1=n) . (1=n)

r

l

X

j=�1

(l � j + 1)

r=2

2

jr

E

2

j
[f ]

w;p

: (2.19)

From (2.19) and assuming (1.12), we obtain

!

r;p

(f; w; 1=n) . (1=n)

r

l

X

j=�1

(l � j + 1)

r=2

2

jr

 (1=2

j

):

Then the above becomes

!

r;p

(f; w; 1=n) .  (1=n)

l

X

j=�1

(l � j + 1)

r=2

(l=j)

�

2

(l�j)r

(2.20)

.  (1=n):

Now for the given t 2 (0; t

0

), we set n to be the largest integer � 1=t. Then

the implication (1.12) to (1.11) follows from (2.20) and the identity (2.17). This

completes the proof of the implications (1.11)-(1.13). 2:

Next we present the:

Proof of Theorem 1.4 (b)

Let n � n

0

, q = min(1; p) and let P

�

n

be the best approximant to f satisfying

(1.1). Then it follows from (2.11), (2.18) and the Markov-Bernstein inequality,

see [5, Lemma 2.3],

kP

�(r+1)

n

�

r+1

1

n

wk

L

p

(�1;1)

. nkP

�(r)

n

�

r

1

n

wk

L

p

(�1;1)

(2.21)
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that for n � n

0

;

!

r+1;p

�

f; w;

1

n

�

q

. k(f � P

�

n

)wk

q

L

p

(�1;1)

+

�

1

n

�

(r+1)q

kP

�(r+1)

n

�

r+1

1

n

wk

q

L

p

(�1;1)

. E

n

[f ]

q

w;p

+

�

1

n

�

rq

kP

�(r)

n

�

r

1

n

wk

q

L

p

(�1;1)

. !

r;p

�

f; w;

1

n

�

q

:

Finally for the given t 2 (0; t

0

), let n be the largest integer � 1=t and apply

(2.17) and (2.21). This establishes (1.10). 2

Before we may proceed with the proof of Theorem 1.4 (a) we need a lemma

which generalizes [7, (7.2)] and which will prove useful in the proof of Theorem

1.6 as well.

Lemma 2.1 Let w 2 E , ", � > 0 and for any y; z > 0 set

	

y;z

(x) :=

�

y

(x)

�

z

(x)

; x 2 (�1; 1) (2.22)

where �

t

is de�ned by (1.5). Then uniformly for 0 < s � t � t

0

,

�

log(2 +

t

s

)

�

��

2

.

 

sup

x2[�1;1]

(	

t;s

(x))

!

�

.

�

t

s

�

"

: (2.23)

Proof

Firstly the lower bound in (2.23) follows from (7.2) of [7]. Thus it su�ces to

establish the corresponding upper bound. Firstly if jxj � a

1=t

, then the result

follows by (3.2) of [7] since in this case

	

t;s

(x) . 1

uniformly for s, t and x. Thus we may assume without loss of generality that

jxj > a

1=t

.

We �rst show that uniformly for t and x

�

t

(x) .

�

�

�

�

1�

jxj

a

1=2t

�

�

�

�

1=2

:

12



To see this, �rst observe that [5, (2.3)] implies that

max

 

�

�

�

�

1�

jxj

a

1=t

�

�

�

�

1=2

; T (a

1=t

)

�1=2

!

.

�

�

�

�

1�

jxj

a

1=2t

�

�

�

�

1=2

for our range of jxj.

Now using the estimate above, the lower bound in (2.23), [7, (7.1)], the

triangle inequality and (1.5) yields

�

t

(x) (2.24)

.

�

�

�

�

1�

jxj

a

1=s

�

�

�

�

1=2

+

�

�

�

�

1�

a

1=s

a

1=2t

�

�

�

�

1=2

"

�

�

�

�

1�

jxj

a

1=s

�

�

�

�

1=2

+ 1

#

.

"

�

s

(x) +

�

a

1=s

a

1=2t

�

1

2

�

�

�

�

1�

a

1=2t

a

1=s

�

�

�

�

1=2

�

s

(x)

+

�

a

1=s

a

1=2t

�

1=2

�

�

�

�

1�

a

1=2t

a

1=s

�

�

�

�

1=2

T (a

1=2t

)

1=2

�

T (a

1=s

)

T (a

1=2t

)

�

1=2

�

s

(x)

#

.

�

T (a

1=s

)

T (a

1=t

)

�

1=2

�

a

1=s

a

1=t

�

1=2

s

log

�

2 +

2t

s

�

�

s

(x):

We now estimate each of the terms in (2.24).

Firstly as T is quasi increasing it follows from De�nition 1.1 (c) and [7, (2.7)]

that

�

T (a

1=s

)

T (a

1=t

)

�

1=2

.

�

Q(a

1=s

)

Q(a

1=t

)

�

"

. (t=s)

"

:

On the otherhand we always have

�

a

1=s

a

1=t

�

1=2

. 1:

Inserting these estimates into (2.24), recalling that logarithms grow slower than

any polynomial and dividing by �

s

(x) yields the upper bound in (2.23) and

hence the lemma. 2

We are now ready for the:

Proof of Theorem 1.4 (a)

We let �rst n � n

0

. Then if [; ] denotes the largest integer �;, we may write

using (2.11) and (2.18)

!

r;p

�

f; w;

1

n

�

q

(2.25)

13



.

�

!

r+1;p

�

f; w;

1

n

�

q

+

�

1

n

�

rq







P

�(r)

n

�

r

1=n

w







q

L

p

(�1;1)

�

:

Now choose l = l (n) with

r2

l+2

� n � r2

l+1

and n � 2r. We then write

P

�

n

(x) =

l�1

X

k=0

�

P

�

[

n

2

k

]

(x)� P

�

[

n

2

k+1

]

(x)

�

+ P

�

[

n

2

l+1

]

(x) :

Applying (2.23), (2.21) and (1.1) yields







P

�(r)

n

�

r

1=n

w







q

L

p

(�1;1)

(2.26)

.

l�1

X

k=0

�h

n

2

k+1

i�

rq

(k + 2)

rq=2









�

P

�

[

n

2

k

]

(x)� P

�

[

n

2

k+1

]

(x)

�

w









q

L

p

(�1;1)

+

�h

n

2

l

i�

rq

l

rq=2

kfwk

q

L

p

(�1;1)

:

For our given t, set n = [1=t]. Then we may, using (1.1) and (2.18), express

(2.26) as an integral and combining this with (2.25) and (2.17) obtain the result.

Thus Theorem 1.4 is completely proved 2.

3 Saturation theorem, Quasi r monotonicity the-

orem, Existence theorem for derivatives and

(1.14)

In this section, we establish a saturation theorem, a quasi r monotonicity theo-

rem, and an existence theorem for derivatives which are of independent interest

and arise naturally from our previous considerations. In the process, we clarify

a statement raised in [6, Section 5, pg 19] and prove (1.14).

We begin with:

Theorem 1.6 Let w 2 E, 1 � p � 1, f 2 L

p;w

(�1; 1) and r � 1. Suppose that

for a given " > 0,

lim inf

t�!0

+

!

r;p

(f; w; t)

t

r+"

= 0: (3.1)

Then f is a polynomial of degree r � 1 a.e.

14



The essence of (3.1) lies in the fact that it easily follows from (1.4) that for

any P 2 �

r�1

, we have

!

r;p

(P;w; ; ) � 0

and so (3.1) is a strong converse.

We observe that (3.1) is false for 0 < p < 1:

Indeed set:

f(x) :=

�

0 ; x 2 (�1; 0)

x

r�1

; x 2 (0; 1):

Then f 2 L

p

, p < 1; and

!

r

(f; t) := sup

0<h�t

k�

r

h

(f)k

L

p

(�1;1)

. t

r�1+1=p

:

As f is of compact support,

!

r

(f; t) � !

r;p

(f; w; t)

and so (3.1) holds for any 0 < " < �1 + 1=p.

The essential ingredient in the proof of Theorem 1.6 is the following result

which is of independent interest:

Theorem 1.7 Let w 2 E, 1 � p � 1, f 2 L

p;w

(�1; 1), r � 1, and t 2 (0; t

0

).

Then uniformly for � 2 [1;

t

0

t

] and f and t

!

r;p

(f; w; �t) . �

r

 

sup

x2[�1;1]

	

�t;t

(x)

!

r

!

r;p

(f; w; t) (3.2)

where 	

�t;t

was de�ned in (2:22).

In particular, given " > 0, we have uniformly for 0 < t < t

0

,

f and � 2 [1;

t

0

t

]

!

r;p

(f; w; �t) . �

r+"

!

r;p

(f; w; t): (3.3)

Remark

We remark that the analogue of Theorem 1.7 for Erd}os weights is Theorem

2.1 in [1]. Moreover in [4, Theorem 4.1.2], (3.3) is established for a large class of

Freud weights with no " on the right hand side in keeping with classical results.

The reason for this unexpected extra factor is again due to the function �

t

in

the main part of the modulus which depends on t and is necessary to describe

endpoint e�ects. These endpoint e�ects do not occur and are not natural for

Freud weights. (3.3) then clari�es a statement of Lubinsky in [6, Section 5, pg

19] where it is claimed that (3.3) holds with " = 0 and for every � > 1.

15



Before we prove Theorem 1.7, we show how Theorem 1.6 follows from it.

Thus we present the:

Proof of Theorem 1.6

Our method of proof follows that of [1, Theorem 2.3] and [4, Theorem 4.2.1].

Choose t 2 (0; t

0

) and de�ne for 0 < p � 1

K

r;p

(f; w; t

r

) := inf

P2�

1=t

�

k(f � P )wk

L

p

(�1;1)

+ t

r

kP

(r)

�

r

t

wk

L

p

(�1;1)

�

: (3.4)

Then it follows easily from (2.11) and [5, (5.9)] that we have uniformly for t

K

r;p

(f; w; t

r

) � !

r;p

(f; w; t): (3.5)

Now choose t

1

2 [t; t

0

]. Then applying (3.3) with � := t

1

=t and using (3.5)

yields

K

r;p

(f; w; t

r

1

) = 0: (3.6)

Now using (3.4) and (3.6), we may choose a sequence of polynomials (P

i

)

1

i=1

2

�

1=t

1

such that

k(f � P

i

)wk

L

p

(�1;1)

+ t

r

1

kP

(r)

i

�

r

t

1

wk

L

p

(�1;1)

� 2

�i

t

r

1

: (3.7)

Then for a.e x 2 (�1; 1) we have,

f(x) = P

i

(x) +

1

X

j=i

(P

j+1

� P

j

)(x)

and so using (3.7) gives

kf

(r)

�

r

t

1

wk

L

p

(�1;1)

.

0

@

2

�i

+

1

X

j=i

2

�(j+1)

+ 2

�j

1

A

(3.8)

. 2

�i

:

As (3.8) holds for each i � 1; we must have

kf

(r)

�

r

t

1

wk

L

p

(�1;1)

= 0

which implies that for a.e x 2 (�1; 1)

f

(r)

�

r

t

1

w(x) = 0

16



or f is a polynomial of degree r � 1 a.e 2:

We now present the:

The Proof of Theorem 1.7

Let t 2 (0; t

0

), � 2 [1;

t

0

t

], " > 0 and let n = the largest integer � 1=t. By

(3.4) we may choose P 2 �

1=t

such that

k(f � P )wk

L

p

(�1;1)

+ t

r

kwP

(r)

�

r

t

k

L

p

(�1;1)

� 2K

r;p

(f; w; t

r

): (3.9)

Then using (2.11), (2.12) and (3.5) we may choose R 2 �

1=�t

such that

k(R� P )wk

L

p

(�1;1)

. (�t)

r

kP

(r)

w�

r

�t

k

L

p

(�1;1)

: (3.10)

Similarly we obtain

(�t)

r

kwR

(r)

�

r

�t

k

L

p

(�1;1)

(3.11)

. K

r;p

(P;w; (�t)

r

) . !

r;p

(P;w; �t)

. (�t)

r

kP

(r)

w�

r

�t

k

L

p

(�1;1)

:

Then using (3.10), (3.11), (2.11), (3.5) and (3.4) gives (3.2). (3.3) then

follows from (3.2) and (2.23). 2

We present and prove the following existence theorem for derivatives.

Theorem 1.8

Let w 2 E, 0 < p � 1, f 2 L

p;w

(�1; 1), n � n

0

and q = min(1; p). Then if

1

X

j=1

2

j("+kq)

n

kq

E

2

j�1

n

[f ]

q

w;p

<1

for some " > 0 and positive integer k the following hold:

(a)

f

(k)

w 2 L

p

(�1; 1):

(b)

k(f � P

�

n

)

(k)

�

k

1

n

wk

L

p

(�1;1)

(3.12)

.

0

@

1

X

j=1

2

j("+kq)

n

kq

E

2

j�1

n

[f ]

q

w;p

1

A

1

q

:
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Proof

Let P

�

n

be the best approximant to f satisfying (1.1). Then much as in the

proof of Theorem 1.4, we write for a.e x 2 (�1; 1),

f(x) = P

�

n

(x) +

1

X

j=1

(P

�

2

j

n

(x)� P

�

2

j�1

n

(x)): (3.13)

Now let " > 0 and apply (3.13) together with (2.21), (2.23) and

"

q

. This

gives:

k(f � P

�

n

)

(k)

�

k

1

n

wk

q

L

p

(�1;1)

.

1

X

j=1

2

j("+kq)

n

kq

k(P

�

2

j

n

� P

�

2

j�1

n

)wk

q

L

p

(�1;1)

.

1

X

j=1

2

j("+kq)

n

kq

E

q

2

j�1

n

[f ]

w;p

:

Taking qth roots completes the proof of the theorem. 2

Finally we present the:

Proof of (1.14)

Let P

�

n

be chosen to satisfy (1.1) so that (3.13) holds. Then using Theorem

1.7 and (1.1) we may write

k(f � P

�

n

)wk

L

p

(�1;1)

.

1

X

j=1

k(P

�

2

j

n

� P

�

2

j�1

n

)wk

L

p

(�1;1)

.

1

X

j=1

!

r;p

(f; w; 2

�j

n

�1

):

Then observing that for each �xed j

Z
1

2

j�1

n

1

2

j

n

1

�

d� = log 2

and using Theorem 1.7, we obtain the identity

E

n

[f ]

w;p

.

Z

1=n

0

!

r;p

(f; w; �)

�

d�: (3.14)
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Set l := log

2

n. Then combining (2.11), (2.19) and (3.14) yields

kP

�(r)

n

�

r

1

n

wk

L

p

(�1;1)

(3.15)

. n

r

l

X

j=�1

(l � j + 1)

r=2

2

�r(2l�j)

Z

1=2

j

0

!

r;p

(f; w; �)

�

d�:

Let 0 < " < r=2. Then Theorem 1.7 shows that we have for each �xed j

Z

1=2

j

0

!

r;p

(f; w; �)

�

d� . 2

(l�j)(r+")

Z

1=2

l

0

!

r;p

(f; w; �)

�

d�: (3.16)

Thus combining (3.16) and (3.15) yields (1.14). 2

We close with some �nal comments and open problems:

As is illustrated in this paper, the modulus of smoothness (1.4) has the

advantage that it illustrates endpoint e�ects in the Mhaskar-Rakhmanov-Sa�

interval by virtue of the function �

t

. This however does introduce extra loga-

rithmic terms in Theorem 1.4 (a) and an extra " term in Theorem 1.6. Moreover

and more importantly, it is not obvious that in L

p

(0 < p < 1) the modulus in

(1.4) tends to zero for small t as there is a symmetric di�erence of f in the main

part of the modulus multiplied by w. For the case p � 1 this follows by the

equivalences (3.5) and, see [5, (1.24)],

K

r;p

(f; w; t

r

) � inf

g

�

k(f � g)wk

L

p

(�1;1)

+ t

r

kg

(r)

�

r

t

wk

L

p

(�1;1)

�

where g

(r�1)

is locally absolutely continuous.

Thus it would be interesting to investigate in detail the relationship between

the modulus (1.4) and one with �

t

replaced by �

h

for the class E . Moreover,

in L

p

(0 < p < 1) it seems appropriate to replace symmetric di�erences in the

main part of (1.4) by a backward di�erence operator

^

�

r

h

(f; x; (�1; 1)) :=

�

P

r

i=0

�

r

i

�

(�1)

i

f(x� ih) ; x 2 (�1; 1)

0 ; otherwise

and then use the relation

w(x)jf(x � h)j � w(x � h)jf(x� h)j:
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