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Abstract

We establish pointwise as well as uniform estimates for Lebesgue

functions associated with a large class of Erd}os weights on the real

line. An Erd}os weight is of the form:

W := exp(�Q)

where Q : R ! R is even and is of faster than polynomial growth at

in�nity. The archetypal examples are

(i)

W

k;�

(x) := exp (�Q

k;�

(x))

where

Q

k;�

(x) := exp

k

(jxj

�

) ; � > 1; k � 1:

Here exp

k

:= exp (exp (exp(:::))) denotes the kth iterated expo-

nential.

(ii)

W

A;B

(x) := exp (�Q

A;B

(x))

where

Q

A;B

(x) := exp

�

log

�

A+ x

2

��

B

; B > 1 and A > A

0

:
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For a carefully chosen system of nodes

�

n

:= f�

1

; �

2

; :::; �

n

g; n � 1;

our results imply in particular, that the Lebesgue constant

k�

n

(W

k;�

; �

n

)k

L

1

(R)

:= sup

x2R

j�

n

(W

k;�

; �

n

)j (x)

satis�es uniformly for n � N

0

;

k�

n

(W

k;�

; �

n

)k

L

1

(R)

� logn:

Moreover, we show that this choice of nodes is optimal with respect

to the zeros of the orthonormal polynomials generated byW

2

: Indeed,

let

U

n

:= fx

j;n

: 1 � j � ng; n � 1;

where the x

k;n

are the zeros of the orthogonal polynomials p

n

�

W

2

; :

�

generated by W

2

: Then in particular, we have uniformly for n � N;

k�

n

(W

k;�

; U

n

)k

L

1

(R)

� n

1

6

0

@

k

Y

j=1

log

j

n

1

A

1

6

:

Here, log

j

:= log (log (log (:::))) denotes the jth iterated logarithm.

We deduce sharp theorems of uniform convergence of weighted La-

grange interpolation together with rates of convergence. In particular,

these results apply to W

k;�

and W

A;B

:

1 Introduction and Statement of Results

In this paper, we investigate Lebesgue bounds and uniform convergence of

Lagrange interpolation for Erd}os weights. We recall that an Erd}os weight

has the form:

W := exp (�Q)

where Q : R ! R is even and is of faster than polynomial growth at in�nity.

The archetypal examples are

(i)

W

k;�

(x) := exp (�Q

k;�

(x)) ; (1.1)
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where

Q

k;�

(x) := exp

k

(jxj

�

) ; k � 1; � > 1:

Here exp

k

:= exp (exp (exp(:::))) denotes the kth iterated exponential.

(ii)

W

A;�

(x) := exp (�Q

A;B

(x)) (1.2)

where

Q

A;B

(x) := exp

�

log

�

A+ x

2

��

B

; B � 1 and A is large enough but �xed.

Throughout, let f : R ! R be continuous and satisfy the decay condition,

lim

jxj�!1

jfW j (x) = 0: (1.3)

We set

E

n

[f ]

W;1

:= inf

P2P

n

k(f � P ) (x)W (x)k

L

1

(R)

(1.4)

to be the error of best weighted polynomial approximation to f from P

n

; n �

1:

Here, P

n

denotes the class of polynomials of degree � n:

It is well known ([9]) that

E

n

[f ]

W;1

�! 0 as n �!1:

Now let

�

n

:= f�

1

; �

2

; :::; �

n

g; n � 1;

be an arbitrary set of nodes. The Lagrange interpolation polynomial to f

with respect to �

n

is denoted by L

n

[f;W; �

n

]: Thus, if

l

j;n

(�

n

) 2 P

n�1

; 1 � j � n;

are the fundamental polynomials of Lagrange interpolation at �

j

; 1 � j � n;

satisfying,

l

j;n

(�

n

) (�

j;n

) = �

j;k

; 1 � k � n;

then,

L

n

[f;W; �

n

] (x) =

n

X

j=1

f (�

j;n

) l

j;n

(�

n

) (x) 2 P

n�1

: (1.5)
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Now write,

kW (f � L

n

[f;W; �

n

])k

L

1

(R)

� E

n�1

[f ]

W;1

0

B

@

1 +













W (x)

n

X

j=1

jl

j;n

(�

n

)(x)jW

�1

(�

j

)













L

1

(R)

1

C

A

= E

n�1

[f ]

W;1

�

1 + k�

n

(W;�

n

)k

L

1

(R)

�

(1.6)

where k�

n

(W;�

n

)k

L

1

(R)

is called the Lebesgue constant with respect to the

weight W and the set of nodes �

n

; and �

n

(W;�

n

) is the corresponding

Lebesgue function.

Using (1:6), we see that estimates of the size of the Lebesgue constant

enable one to deduce theorems on uniform convergence of Lagrange interpo-

lation. As the subject of weighted Lagrange interpolation is an extensively re-

searched and widely studied subject, we refer the reader to [1; 5; 6; 7; 10; 11; 12,

13; 14; 15]:

Now given a weightW : R �! (0; 1] as above, we may de�ne orthonormal

polynomials

p

n

(x) := p

n

(W

2

; x) = 

n

x

n

+ :::; with 

n

= 

n

(W

2

) > 0;

satisfying

Z

R

p

n

(W

2

; x)p

m

(W

2

; x)W

2

(x)dx = �

mn

:

We denote the zeros of p

n

by

�1 < x

n;n

< x

n�1;n

< ::: < x

2;n

< x

1;n

<1:

Put

U

n

:= fx

j;n

: 1 � j � ng; n � 1: (1.7)

To formulate our results, we need a suitable class of Erd}os weights from

[8] :

De�nition 1.1. Let W := exp (�Q) ; where Q : R ! R is even, continuous,

Q

00

exists in (0;1) ; Q

(j)

� 0 in (0;1) ; j = 0; 2; Q

(1)

> 0 in (0;1) and the

function

T (x) := 1 +

xQ

00

(x)

Q

0

(x)

(1.8)
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is increasing in (0;1) with

lim

x�!1

T (x) =1; T

�

0

+

�

:= lim

x�!0

+

T (x) > 1: (1.9)

Moreover, we assume that for some C

j

> 0; 1 � j � 3;

C

1

�

T (x)

xQ

0

(x)

Q(x)

� C

2

; x � C

3

(1.10)

and for every " > 0;

T (x) = O ((Q(x))

"

) ; x �!1: (1.11)

Then, we write W 2 E :

The principle examples of W 2 E are W

k;�

and W

A;B

given by (1:1) and

(1:2) respectively. For more on this subject we refer the reader to [2; 3; 4; 8]:

To state our results, we need some more notation:

We need the Mhaskar-Rakhmanov-Sa� number a

u

de�ned as the positive

root of the equation

u =

2

�

Z

1

0

a

u

tQ

0

(a

u

t) dt

p

1� t

2

; u > 0: (1.12)

Here, a

u

exists and is a strictly increasing function of u [8; 9] : Amongst

its uses is the in�nite-�nite range inequality

kPWk

L

1

(R)

= kPWk

L

1

[�a

n

;a

n

]

; P 2 P

n

; (1.13)

Note that a

n

depends only on the degree of the polynomial P and not on P

itself.

Now choose y

0

2 [�a

n

; a

n

] so that

jp

n

W (y

0

)j = kp

n

Wk

L

1

(R)

: (1.14)

As W is even, we may assume that y

0

� 0: We will show later that in

fact y

0

> 0 and is very \close" to a

n

: Fix y

0

as above.

Finally set

�

n

:= (nT (a

n

))

�2

3

; n � 1; (1.15)
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and

	

n

(x) :=

8

>

>

<

>

>

:

max

8

<

:

q

1�

jxj

a

n

+ L�

n

;

1

T (a

n

)

q

1�

jxj

a

n

+L�

n

9

=

;

; jxj � a

n

	(a

n

) ; jxj � a

n

: (1.16)

Here, L > 0 is �xed, but large enough throughout.

For more on these special sequences of functions, we refer the reader to

[5; 8] :

Here and throughout,

a

n

= O (b

n

) ; a

n

� b

n

and a

n

= o (b

n

)

will mean respectively that there exist constants C

j

> 0; j = 1; 2; 3; inde-

pendent of n; such that

a

n

b

n

� C

1

; C

2

�

a

n

b

n

� C

3

and lim

n�!1

�

�

�

�

a

n

b

n

�

�

�

�

= 0:

Similar notation will be used for functions and sequences of functions.

Bounds for Lebesgue constants and uniform convergence of La-

grange Interpolation for U

n

; n � 1:

We begin our investigation with the sequence of nodes, U

n

; n � 1; de�ned

by (1:7) :

We prove:

Theorem 1.2. Let W 2 E : Then, uniformly for n � N

0

;

k�

n

(W;U

n

)k

L

1

(R)

� n

1

6

T (a

n

)

1

6

: (1.17)

In particular, given " > 0; there exists C > 0 independent of n such that

k�

n

(W;U

n

)k

L

1

(R)

� Cn

1

6

+"

:

We deduce:
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Corollary 1.3. Let W 2 E and r � 1: Then there exists C

j

> 0 j = 1; 2

independent of n and f so that for n � N

0

,

(a)

k(f � L

n

[f;W; U

n

])Wk

L

1

(R)

� C

1

E

n�1

[f ]

W;1

n

1

6

T (a

n

)

1

6

� C

2

!

r;1

(f;W;

a

n

n

)n

1

6

T (a

n

)

1

6

: (1.18)

Here,

!

r;1

(f;W; t) :=

2

4

sup

0<h�t











W�

r

h�

1

2

t

(x)

(f)











L

1

(jxj��(2t))

+ inf

P2P

r�1

k(f � P )Wk

L

1

(jxj��(4t))

3

5

; t > 0

is the weighted modulus of smoothness of f ,

� (t) := inf

�

a

u

:

a

u

u

� t

�

; (1.19)

�

t

(x) :=

�

�

�

�

�

1�

jxj

� (t)

�

�

�

�

�

+ T (� (t))

�1

; x 2 R; (1.20)

and for an interval J and h > 0;

�

r

h

(f; x; J) :=

8

>

<

>

:

P

r

i=0

 

r

i

!

(�1)

i

f

�

x+

rh

2

� ih

�

; x�

rh

2

2 J

0 ; otherwise

9

>

=

>

;

:

(b) Moreover, if f satis�es f

(r)

W 2 L

1

(R); then given " > 0;

k(f � L

n

[f;W; U

n

])Wk

L

1

(R)

� C

3

�

a

n

n

�

r

n

1

6

T (a

n

)

1

6

(1.21)

� C

3

n

1

6

+"�r

: (1.22)

Here C

3

> 0 is independent of n:

Thus we can ensure uniform convergence for every r � 1:
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Remark.

It is instructive at this point to recall that for Q = Q

k;�

of (1:1) ;

T (a

n

) =

k

Y

j=1

log

j

n:

Moreover, in general, given " > 0 and n � 1;

T (a

n

) = O (n

"

) :

(See also (2.7)). We thus observe that we may dispense with the T (a

n

)

1

6

on

the right hand side of (1:17) by inserting an extra weighting factor into the

left hand side of (1:17) in the following sense:

Under the hypotheses of Theorem 1:2; we have uniformly for n � N

0

;













�

n

(W;U

n

)

 

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

�

+ T (a

n

)

�1

!

1

6













L

1

(R)

� n

1

6

: (1.23)

This follows easily using the proof of (1:17) and (2:11) :

A better behaving Lebesgue function.

We observe that although (1:21) yields uniform convergence for every

r � 1; we can substantially improve our results, by choosing our interpolation

points more carefully. For weights on the real line, J. Szabados was the �rst

to exploit this idea and many of the proofs in this section rely heavily on

his ideas [14] : Motivated by (1:13) and recalling the de�nition of y

0

in (1:14)

and U

n

in (1:7) ; we set:

V

n+2

:= f�y

0

; y

0

g [ U

n

; n � 1;

and prove:

Theorem 1.4. Let W 2 E : Then uniformly for n � N

0

;

k�

n+2

(W;V

n+2

)k

L

1

(R)

� logn: (1.24)
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Thus, by adding two completely new points of interpolation, we can

achieve the much better order logn in comparison to the order (nT (a

n

))

1

6

that we obtained merely using the zeros of p

n

:

We deduce,

Corollary 1.5. Let W 2 E and r � 1: Then there exists C

j

> 0 j = 1; 2

independent of f and n so that for n � N

0

;

(a)

k(f � L

n+1

[f;W; V

n+2

])Wk

L

1

(R)

� C

1

E

n

[f ]

W;1

logn

� C

2

!

r;1

(f;W;

a

n

n

) logn: (1.25)

(b) Moreover, if f satis�es f

(r)

W 2 L

1

(R) then, given " > 0;

k(f � L

n

[f;W; U

n

])Wk

L

1

(R)

� C

3

�

a

n

n

�

r

logn (1.26)

� C

3

n

�r+"

logn: (1.27)

Here C

3

> 0 is independent of n:

Remark.

A natural question arises as to whether (1:24) holds (in a lower bound

sense) for any system of nodes, at least for some Erd}os weight. This and

related questions will be considered in a future paper.

Pointwise estimates for �

n

(W;U

n

):

We present pointwise estimates for �

n

(W;U

n

): We emphasize our results

and briey sketch their proofs in Section 5 as the arguments are straightfor-

ward, but rather lengthy.

Theorem 1.6. Let W 2 E :

(a) Then for n � N

0

;there exists C > 0 such that for jxj � a

n

�

1 +

L

2

�

n

�

;

�

n

(W;U

n

)(x) � C [1 +

p

a

n

jp

n

W j (x) (1.28)

�

2

4

 

1�

jxj

a

n

+ L�

n

!

1

4

log

0

@

n

�

1�

jxj

a

n

+ L�

n

�

	

n

(x)

1

A

+ 1

3

5

3

5

:
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Moreover, we have uniformly for jxj � x

1;n

and n;

�

n

(W;U

n

)(x) � 1 +

p

a

n

jp

n

W j (x) (1.29)

�

2

4

 

1�

jxj

a

n

+ L�

n

!

1

4

log

0

@

n

�

1�

jxj

a

n

+ L�

n

�

	

n

(x)

1

A

+ 1

3

5

3

5

:

(b) Uniformly for n � N

0

and a

n

(1 +

L

2

�

n

) � jxj � 2a

n

;

�

n

(W;U

n

)(x) �

p

a

n

jp

n

W j (x)[1 + �

1

4

n

]: (1.30)

(c) Uniformly for n � N

0

and jxj � 2a

n

;

�

n

(W;U

n

)(x) �

a

3

2

n

jp

n

W j (x)

jxj

[1 + �

1

4

n

]: (1.31)

Structure of this paper.

We close this section with some notation and remarks concerning the

structure of this paper. Throughout, C;C

1

; C

2

::: > 0 will denote constants

independent of n; x and P 2 P

n

: The same symbol does not necessarily

denote the same constant in di�erent occurrences. We write C 6= C (L) to

indicate that C is independent of L:

This paper is organized as follows:

In Section 2, we present our technical lemmas. In Section 3, we present

the proofs of our upper bounds for (1.17) and (1.24). In Section 4, we prove

Theorems 1.2 and 1.4 and Corollaries 1.3 and 1.5. Finally in Section 5, we

sketch briey the main ideas in the proof of Theorem 1.6.

2 Technical Lemmas

Lemma 2.1. Let W 2 E and set

x

0;n

:= x

1;n

(1 + L�

n

) and x

n;n+1

:= �x

0;n

:

(a) There exists A > 0 independent of n and L such that for n � 1;

�

�

�

�

x

1;n

a

n

� 1

�

�

�

�

� A�

n

: (2.1)
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(b) Uniformly for n � 2 and 0 � j � n� 1;

x

j;n

� x

j+1;n

�

a

n

n

	

n

(x

j;n

) : (2.2)

(c) Uniformly for n � 2 and 0 < j � n� 1;

1�

jx

j;n

j

a

n

+ L�

n

� 1�

jx

j+1;n

j

a

n

+ L�

n

(2.3)

and

	

n

(x

j;n

) � 	

n

(x

j+1;n

) : (2.4)

(d) For n � 1;

sup

x2R

jp

n

W j (x)

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

�

1

4

� a

�1

2

n

(2.5)

and

sup

x2R

jp

n

W j (x) � n

1

6

T (a

n

)

1

6

a

�1

2

n

: (2.6)

Proof: This is part of Lemma 2.1 of [5] :2

Now �x A in (2:1) :

Lemma 2.2. Let W 2 E :

(a) Given " > 0 and n � 1; there exists C > 0 independent of n such

that,

a

n

� Cn

"

; T (a

n

) � Cn

"

and �

n

� CT (a

n

)

�"

: (2.7)

(b) Given 0 < � < �; we have uniformly for n � C;

T (a

�n

) � T (a

�n

) : (2.8)

(c) Uniformly for u 2 (C;1); v 2 [

u

2

; 2u] ; we have

�

�

�

�

a

u

a

v

� 1

�

�

�

�

�

�

�

�

�

u

v

� 1

�

�

�

�

T (a

n

)

�1

: (2.9)

(d) Given m 2 N and n � N

0

; we have for every fP

k

g

m

k=1

2 P

n











W

m

X

k=1

jP

k

j











L

1

(R)

=











W

m

X

k=1

jP

k

j











L

1

[�a

n

;a

n

]

: (2.10)
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Moreover, given r > 1; there exists C = C (r) > 0 independent of n;m

and P

k

such that













W

 

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

�

+ T (a

n

)

�1

!

1

6

m

X

k=1

jP

k

j













L

1

(R)

� C













W

 

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

�

+ T (a

n

)

�1

!

1

6

m

X

k=1

jP

k

j













L

1

[�a

r(n+1)

;a

r(n+1)

]

: (2.11)

Proof. (a){(c) are part of Lemma 2.3 of [5] ; (2:10) follows as in Lemma 1

of [14] and then (2:11) follows using (2:10) and the method of Lemma 3.3 in

[3] :2

Our next lemma establishes how \close" y

0

is to a

n

:

Lemma 2.3: Let W 2 E ; n � N

0

and y

0

as in (1:14) : Then, we have

a

n

(1�B�

n

) � y

0

� a

n

(2.12)

for some B > 0 independent of n and L:

Proof. By (2:5) ; (2:6) and the de�nition of �

n

[see (1:15)] ; there exist C

j

>

0; j = 1; 2 such that

C

1

a

�1

2

n

(nT (a

n

))

1

6

� jp

n

(y

0

)jW (y

0

)

� C

2

a

�1

2

n

min

(

�

�

�

�

1�

y

0

a

n

�

�

�

�

�1

4

; �

�1

4

n

)

: (2.13)

Then, this gives

max

�

�

�

�

�

1�

y

0

a

n

�

�

�

�

; �

n

�

� C

3

�

n

: (2.14)

Now by the de�nition of y

0

; we have clearly that y

0

� a

n

: Moreover, if

y

0

� a

n

(1� �

n

) then (2:12) is satis�ed with B = 1: Suppose then, that

0 � y

0

< a

n

(1� �

n

):

Then (2:14) becomes

�

1�

y

0

a

n

�

� C

4

�

n

12



which again implies (2:12) with B = C

4

:2

Now, �x B in (2:12) :

Lemma 2.4. Let W 2 E :

(a) Uniformly for n � 1; 1 � j � n and x 2 R;

jl

j;n

(U

n

)(x)j �

a

3

2

n

n

	

n

W (x

j;n

)

 

1�

jx

j;n

j

a

n

+ L�

n

!

1

4

�

�

�

�

�

p

n

(x)

x� x

j;n

�

�

�

�

�

: (2.15)

(b) There exists C > 0 such that uniformly for n � 1; 1 � j � n and

x 2 R;

jl

j;n

(U

n

) (x)W (x)jW

�1

(x

j;n

) � C: (2.16)

(c) Uniformly for n � 1 and 1 � j � n;

a

3

2

n

n

	

n

(x

j;n

)

 

1�

jx

j;n

j

a

n

+ L�

n

!

1

2

jp

0

n

W j (x

j;n

)

� a

1

2

n

jp

n�1

W j (x

j;n

) �

 

1�

jx

j;n

j

a

n

+ L�

n

!

1

4

: (2.17)

(d) For n � 1; 1 � j � n and jxj � a

n

; there exists C > 0 such that

jp

n

(x)jW (x) � C

n

a

3

2

n

2

4

	

n

(x)	

n

(x

j;n

)

 

1�

jx

j;n

j

a

n

+ L�

n

!

1

2

3

5

�1

2

�

� jx� x

j;n

j : (2.18)

Proof. (a), (b) and (c) are (2:13) ; (2:14) and (2:11) resp in [5] : (d) is (10:28)

in [8] :2

Lemma 2.5. Let W 2 E and let l

n+1;n+2

(V

n+2

) and l

n+2;n+2

(V

n+2

) be

respectively the fundamental polynomials of degree � n+ 1 at the points y

0

and -y

0

: Then there exists C > 0 such for all x 2 R;

jl

n+1;n+2

(V

n+2

)j (x)W (x)W

�1

(y

0

) � C (2.19)

13



and

jl

n+2;n+2

(V

n+2

)j (x)W (x)W

�1

(�y

0

) � C: (2.20)

Proof. We prove (2:19) : (2:20) is similar. First observe that

l

n+1;n+2

(V

n+2

) (x) =

p

n

(x) (y

0

+ x)

2y

0

p

n

(y

0

)

2 P

n+1

(2.21)

and satis�es

l

n+1;n+2

(V

n+2

) (y

0

) = 1; (2.22)

l

n+1;n+2

(V

n+2

) (x

j;n

) = 0; 1 � j � n (2.23)

and

l

n+1;n+2

(V

n+2

) (�y

0

) = 0:

Observe that by (2:10) ; we may assume that jxj � a

n+1

: Then by (2:6) ; (2:9) ;

the de�nition of y

0

; (2:12) and (2:21) ;

�

�

�l

n+1;n+2

(V

n+2

)W (x)W

�1

(y

0

)

�

�

� � C

W (x) jp

n

(x)j jy

0

+ xj

2y

0

jp

n

(y

0

)jW (y

0

)

� C

1

a

�1

2

n

n

1

6

T (a

n

)

1

6

a

n

2a

n

(1� B�

n

) a

�1

2

n

n

1

6

T (a

n

)

1

6

� C

2

:2

We next need a lemma which gives an estimate of the distance between

y

0

and jx

j;n

j ; 1 � j � n:

Lemma 2.6. Let W 2 E : Then for n � N

0

and uniformly for 1 � j � n; we

have

jy

0

� jx

j;n

jj � a

n

 

�

�

�

�

�

1�

jx

j;n

j

a

n

�

�

�

�

�

+ L�

n

!

: (2.24)
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Proof. We begin with our lower bound. We consider two cases:

Case 1: jx

j;n

j � a

n

(1� 2L�

n

) :

Note that here,

1�

jx

j;n

j

a

n

+ L�

n

� 3L�

n

:

Moreover (2:1) implies

�

�

�

�

�

1�

jx

j;n

j

a

n

�

�

�

�

�

+ L�

n

� 3L�

n

(2.25)

if L is large enough.

Next observe that by (2:12) and the de�nition of 	

n

[see (1:16)] ; we have

that

	

1

2

n

(y

0

) �

�

T (a

n

)

1

2

�

1

4

n

(B + L)

1

4

�

�1

: (2.26)

Now asQ and jp

n

j are both even functions, the de�nition of 	

n

(1:16) ; (2:6) ;

(2:18) ; (2:25) and (2:26) yield

jy

0

� jx

j;n

jj � C

1

a

n

�

n

� C

2

a

n

 

�

�

�

�

�

1�

jx

j;n

j

a

n

�

�

�

�

�

+ L�

n

!

uniformly for 1 � j � n:

Case 2: jx

j;n

j � a

n

(1� 2L�

n

) :

Observe that if L is large enough,

jy

0

� jx

j;n

jj � a

n

 

�

�

�

�

�

1�

jx

j;n

j

a

n

�

�

�

�

�

+ L�

n

!

� (a

n

(1 + L�

n

)� y

0

) : (2.27)

Now by (2:12) ;

(a

n

(1 + L�

n

)� y

0

) �

a

n

2

"

1�

jx

j;n

j

a

n

+ L�

n

#

(2.28)

if

1�

jx

j;n

j

a

n

� 2�

n

�

B +

L

2

�

: (2.29)
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But then it is easy to see that jx

j;n

j � a

n

(1� 2L�

n

) implies (2:29) if L is

large enough and so we have (2:28) : (2:27) then becomes

jy

0

� jx

j;n

jj �

a

n

2

 

�

�

�

�

�

1�

jx

j;n

j

a

n

�

�

�

�

�

+ L�

n

!

and we have our lower bound for this case as well.

The upper bound is easier. We again distinguish two cases:

Case 1: jx

j;n

j � a

n

:

Here, if L is large enough, we have by (2:12) ;

jy

0

� jx

j;n

jj � La

n

�

n

+ a

n

 

1�

jx

j;n

j

a

n

!

= a

n

 

�

�

�

�

�

1�

jx

j;n

j

a

n

�

�

�

�

�

+ L�

n

!

:

Case 2: a

n

� jx

j;n

j � a

n

(1 + A�

n

) :

Here if L is large enough, we have by (2:1) and (2:12) ;

jy

0

� jx

j;n

jj � Ba

n

�

n

+ x

1;n

� a

n

� a

n

�

n

(B + A) � a

n

"

�

�

�

�

�

1�

jx

j;n

j

a

n

�

�

�

�

�

+ L�

n

#

:

The lemma is proved.2

Let us put

�x

j;n

:= x

j;n

� x

j+1;n

,1 � j � n:

We prove:

Lemma 2.7: Let W 2 E ; n � N

0

; r > 1 and jxj � a

rn

: Then there exists

C

j

> 0 j = 1; 2 such that for 1 � j � n;

(a)

W (x) l

j;n

(U

n

) (x)W

�1

(x

j;n

)

� C

1

 

�

�

�

�

�

1�

jx

j;n

j

a

n

�

�

�

�

�

+ L�

n

!

1

4

 

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

�

+ L�

n

!

�1

4

�x

j;n

jx� x

j;n

j

: (2.30)
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(b)

W (x) l

j;n+2

(V

n+2

) (x)W

�1

(x

j;n

)

� C

1

 

�

�

�

�

�

1�

jx

j;n

j

a

n

�

�

�

�

�

+ L�

n

!

�3

4

 

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

�

+ L�

n

!

3

4

�x

j;n

jx� x

j;n

j

: (2.31)

Proof. We begin �rst with (2:30) : First note that (2:5) and (2:6) show that

uniformly for n and x;

jp

n

(x)jW (x) � C

1

a

�1

2

n

 

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

�

+ L�

n

!

�1

4

: (2.32)

Then by (2:32) ;

W (x) l

j;n

(U

n

) (x)W

�1

(x

j;n

)

=

W (x) jp

n

(x)jW

�1

(x

j;n

)

jp

0

n

(x

j;n

)j jx� x

j;n

j

� C

1

a

�1

2

n

�

�

�

�1�

jxj

a

n

�

�

�+ L�

n

�

�1

4

W

�1

(x

j;n

)

jp

0

n

(x

j;n

)j jx� x

j;n

j

� C

2

 

�

�

�

�

�

1�

jx

j;n

j

a

n

�

�

�

�

�

+ L�

n

!

1

4

 

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

�

+ L�

n

!

�1

4

�x

j;n

jx� x

j;n

j

:

by (2:2) and (2:17) : So we have (2:30) :

We now proceed with (2:31) :

First observe that for 1 � j � n;

l

j;n+2

(V

n+2

) (x) =

 

y

2

0

� x

2

y

2

0

� x

2

j;n

!

l

j;n

(U

n

) (x) : (2.33)

Next, we claim that

jy

0

� xj � C

3

a

n

 

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

�

+ L�

n

!

: (2.34)

We consider two cases:
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Case 1: jxj � a

n

:

Here much as in the proof of Lemma 2.6,

jy

0

� jxjj � Ba

n

�

n

+ a

n

 

1�

jxj

a

n

!

� C

3

a

n

 

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

�

+ L�

n

!

if L is large enough.

Case 2: a

n

< jxj � a

rn

:

Here, using (2:9) ;

jxj � a

n

� a

rn

� a

n

� C

4

a

n

T (a

n

)

�1

� C

5

a

n

 

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

�

!

so that

jy

0

� jxjj � ja

n

� y

0

j+ ja

n

� jxjj

� C

6

a

n

 

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

�

+ L�

n

!

so (2:34) is established. Then (2:24) ; (2:30), (2:33) and (2:34) yield (2:31) :2

3 The Proofs of our Upper Bounds

In this section we establish our upper bounds for (1:17) and (1:24) : Through-

out we assume thatW 2 E ; x 2 R is �xed and x

k(x);n

is that zero of p

n

closest

to x:

We need two lemmas.

Lemma 3.1. There exist M and � > 0 with the following properties:

(a) If jxj 2

h

0; a

n

�

1 +

L

2

�

n

�i

then:

18



(i)

fj : jj � k (x)j � 2g �

�

j : jx� x

j;n

j �

Ma

n

n

	

n

(x)

�

: (3.1)

(ii)

�

�

�x� x

k(x)�k;n

�

�

� � �

a

n

n

	

n

(x) ; k = 0; 1:

(iii)

�

�

�x� x

k(x)�3;n

�

�

� >

Ma

n

n

	

n

(x) : (3.2)

(b) If jxj 2 [a

n

(1 +

L

2

�

n

);1);

jx� x

j;n

j >

Ma

n

n

	

n

(x) (3.3)

for all 1 � j � n:

Proof. Suppose �rst that x 2

h

0; a

n

�

1 +

L

2

�

n

�i

:Observe that if t 2 [x

j+1;n

; x

j;n

] ;

1 � j � n; we have

�

�

�

�

�

�

1�

jtj

a

n

+ L�

n

1�

jx

j;n

j

a

n

+ L�

n

� 1

�

�

�

�

�

�

�

1

a

n

�

�

�

�

�

�

x

j;n

� t

1�

jx

j;n

j

a

n

+ L�

n

�

�

�

�

�

�

�

1

a

n

�

�

�

�

�

�

x

j;n

� x

j+1;n

1�

jx

j;n

j

a

n

+ L�

n

�

�

�

�

�

�

�

C	

n

(x

j;n

)

n (L� A) �

n

�

1

2

(3.4)

by (1:16) ; (2:1) and (2:2) if L is large enough.

We conclude using (1:16) and (3:4) that

	

n

(t) � 	

n

(x

j;n

) uniformly for j; n and t 2 [x

j+1;n

; x

j;n

] : (3.5)

Now by de�nition of x

k(x);n

; we must have x 2

h

x

k(x)+1;n

; x

k(x);n

i

or x 2

h

x

k(x);n

; x

k(x)�1;n

i

at least when x � x

1;n

: Using (2:3) and (2:4) if necessary,

we may assume without loss of generality that x 2

h

x

k(x)+1;n

; x

k(x);n

i

:

Then by (2:2) and (3:5) ;

�

�

�x� x

k(x)�2;n

�

�

� �

�

�

�x

k(x)�2;n

� x

k(x)+2;n

�

�

�

� C

a

n

n

	

n

�

x

k(x);n

�

�

a

n

n

	

n

(x) : (3.6)
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Using (3:6) and (2:2) we see that it is possible to choose M such that

(3:1) holds at least when x � x

1;n

: Suppose x � x

1;n

: We may then suppose

that L is chosen large enough such that x

3;n

� a

n

�

1�

L

4

�

n

�

and then

jx� x

3;n

j � a

n

�

1 +

L

2

�

n

�

� a

n

�

1�

L

4

�

n

�

� a

n

�

n

�

a

n

n

	

n

(x)

using (1:15) and (1:16) :

Thus also in this case, it is possible to choose M such that (3:1) holds.

Parts (ii) and (iii) of the lemma then follow similarly.2

Now �x M and � in Lemma 3.1 and put

J

n

:= [x

n;n

; x

1;n

] n

h

x

k(x)+2;

x

k(x)�2

i

(3.7)

if jxj 2

h

0; a

n

�

1 +

L

2

�

n

�i

and

J

n

:= [x

n;n

; x

1;n

] (3.8)

if jxj 2 [a

n

(1 +

L

2

�

n

;1):

We modify the de�nition in (3:7) accordingly if jxj � x

1;n

:

We have the following estimate.

Lemma 3.2. Uniformly for 1 � j � n and n � N

0

;

n

X

j=1

j =2[k(x)+2;k(x)�2]

�x

j;n

jx� x

j;n

j

�

=

8

>

>

<

>

>

:

O (a

1��

n

) ; 0 < � < 1

O (logn) ; � = 1

O

�

n

a

n

	

n

(x)

�

��1

; � > 1:

9

>

>

=

>

>

;

(3.9)

Proof. First note that if jxj � a

n

�

1 +

L

2

�

n

�

;we have uniformly for n � N

0

and 1 � j � n;

jx� tj � jx� x

j;n

j ; t 2 [x

j+1;n

; x

j;n

] ; j =2 [k (x) + 2; k (x)� 2] : (3.10)
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This follows much as in [3] using Lemma 3:1 (a) and (2:2) since,

�

�

�

�

�

x� t

x� x

j;n

� 1

�

�

�

�

�

=

�

�

�

�

�

t� x

j;n

x� x

j;n

�

�

�

�

�

�

�

�

�

�

�

x

j;n

� x

j+1;n

x� x

j;n

�

�

�

�

�

� C

and similarly we can bound

x� x

j;n

x� t

:

Then, from (2:2) and the de�nition of J

n

in (3:7) ; we obtain

n

X

j=1

j =2[k(x)+2;k(x)�2]

�x

j;n

jx� x

j;n

j

�

= O

 

Z

jtj�a

n

(1+A�

n

)

t2J

n

dt

jx� tj

�

!

=

8

>

>

<

>

>

:

O (a

1��

n

) ; 0 < � < 1

O (logn) ; � = 1

O

�

n

a

n

	

n

(x)

�

��1

� > 1:

9

>

>

=

>

>

;

:

The case for jxj � a

n

�

1 +

L

2

�

n

�

is similar but easier.2

We may now proceed with the proofs of our upper bounds. We begin

with:

The Proof of the Upper bound in (1.17).

From (2:30) we have for 1 � j � n;

W (x) l

j;n

(U

n

) (x)W

�1

(x

j;n

) � C

1

0

@

�

�

�1�

jx

j;n

j

a

n

�

�

�+ L�

n

�

�

�1�

jxj

a

n

�

�

�+ L�

n

1

A

1

4

�x

j;n

jx� x

j;n

j

:

Thus, by (1:6) and using the above, we have

�

n

(W;U

n

) (x) =

n

X

j=1

W (x) jl

j;n

(U

n

) (x)jW

�1

(x

j;n

)

�

X

j2[k(x)+2;k(x)�2]

W (x) jl

j;n

(U

n

) (x)jW

�1

(x

j;n

)

+ C

1

X

j =2[k(x)+2;k(x)�2]

0

@

�

�

�1�

jx

j;n

j

a

n

�

�

�+ L�

n

�

�

�1�

jxj

a

n

�

�

�+ L�

n

1

A

1

4

�x

j;n

jx� x

j;n

j

: (3.11)
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First observe that we may write

�

�

�1�

jx

j;n

j

a

n

�

�

�+ L�

n

�

�

�1�

jxj

a

n

�

�

�+ L�

n

� 1 +

jx� x

j;n

j

a

n

�

�

�

�1�

jxj

a

n

�

�

�+ L�

n

�

: (3.12)

Next we observe that using (2:10) ; we may assume without loss of general-

ity that jxj � a

n

: Then (3:12) becomes using the de�nition of �

n

; [see (1:15)] ;

0

@

�

�

�1�

jx

j;n

j

a

n

�

�

�+ L�

n

�

�

�1�

jxj

a

n

�

�

�+ L�

n

1

A

1

4

= O (1) +O

0

@

n

1

6

T (a

n

)

1

6

jx� x

j;n

j

1

4

a

1

4

n

1

A

: (3.13)

Thus using (2:16) ; (3:9) and (3:13) ; we now rewrite (3:11) as,

�

n

(W;U

n

) (x) � C

2

X

j2[k(x)+2;k(x)�2]

1 +O

0

@

X

j =2[k(x)+2;k(x)�2]

n

1

6

T (a

n

)

1

6

�x

j;n

a

1

4

n

jx� x

j;n

j

3

4

1

A

+ O

0

@

X

j =2[k(x)+2;k(x)�2]

�x

j;n

jx� x

j;n

j

1

A

= O (1) + O (logn) +O

�

n

1

6

T (a

n

)

1

6

�

= O

�

n

1

6

T (a

n

)

1

6

�

(3.14)

and so we have taking sups,

k�

n

(W;U

n

)k

L

1

(R)

= O

�

n

1

6

T (a

n

)

1

6

�

(3.15)

as required.2

We now present,

The Proof of our Upper bound in (1.24).

Firstly, from (2:31) we have for 1 � j � n;

W (x) l

j;n+2

(V

n+2

) (x)W

�1

(x

j;n

)

� C

1

0

@

�

�

�1�

jx

j;n

j

a

n

�

�

�+ L�

n

�

�

�1�

jxj

a

n

�

�

�+ L�

n

1

A

�3

4

�x

j;n

jx� x

j;n

j

: (3.16)
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Thus by (1:6), (2:19), (2:20) and (3:16) ; we have

�

n+2

(W;V

n+2

) (x)

� O (1) +

n

X

j=1

j2[k(x)+2;k(x)�2]

W (x) jl

j;n+2

(V

n+2

) (x)jW

�1

(x

j;n

)

+ C

2

n

X

j=1

j =2[k(x)+2;k(x)�2]

0

@

�

�

�1�

jx

j;n

j

a

n

�

�

�+ L�

n

�

�

�1�

jxj

a

n

�

�

�+ L�

n

1

A

�3

4

�x

j;n

jx� x

j;n

j

(3.17)

= O (1) +

X

1

(x) +

X

2

(x) (3.18)

where

X

1

(x) :=

n

X

j=1

j2[k(x)+2;k(x)�2]

W (x) jl

j;n+2

(V

n+2

) (x)jW

�1

(x

j;n

)

and

X

2

(x) := C

2

n

X

j=1

j =2[k(x)+2;k(x)�2]

0

@

�

�

�1�

jx

j;n

j

a

n

�

�

�+ L�

n

�

�

�1�

jxj

a

n

�

�

�+ L�

n

1

A

�3

4

�x

j;n

jx� x

j;n

j

:

We observe that using (2:11) ; we may assume without loss of generality

that jxj � a

n+1

: We begin with the estimation of

P

1

(x) :

Note, that by (2:24) ; (2:33) and (2:34) ;

X

1

(x) =

n

X

j=1

j2[k(x)+2;k(x)�2]

�

�

�

�

�

y

2

0

� x

2

y

2

0

� x

2

j;n

�

�

�

�

�

W (x) jl

j;n

(U

n

) (x)jW

�1

(x

j;n

)

= O

0

B

B

@

n

X

j=1

j2[k(x)+2;k(x)�2]

0

@

�

�

�1�

jxj

a

n

�

�

�+ L�

n

�

�

�1�

jx

j;n

j

a

n

�

�

�+ L�

n

1

A

(3.19)

� W (x) jl

j;n

(U

n

) (x)jW

�1

(x

j;n

) :

�
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Next, using (2:1) ; (2:2) and (2:4) ; it is easy to see that if L is large enough,

we have uniformly for x and j 2 [k (x) + 2; k (x)� 2] ;

0

@

�

�

�1�

jxj

a

n

�

�

�+ L�

n

�

�

�1�

jx

j;n

j

a

n

�

�

�+ L�

n

1

A

� 1

so that

X

1

(x) = O

0

B

B

@

n

X

j=1

j2[k(x)+2;k(x)�2]

W (x) jl

j;n

(U

n

) (x)jW

�1

(x

j;n

)

1

C

C

A

= O (1) (3.20)

by (2:16) :

We now turn to the delicate estimation of

P

2

(x) :

Much as in (3:12) ;we observe that for 1 � j � n we have

0

@

�

�

�1�

jxj

a

n

�

�

�+ L�

n

�

�

�1�

jx

j;n

j

a

n

�

�

�+ L�

n

1

A

3

4

� 1 +

jx� x

j;n

j

3

4

a

3

4

n

�

�

�

�1�

jx

j;n

j

a

n

�

�

�+ L�

n

�

3

4

: (3.21)

Then, using (3:20) ; we may write

X

2

(x) = O

0

B

B

@

X

j2S

�x

j;n

jx� x

j;n

j

+

X

j2S

�x

j;n

a

3

4

n

jx� x

j;n

j

1

4

�

�

�

�1�

jx

j;n

j

a

n

�

�

�+ L�

n

�

3

4

1

C

C

A

where,

S = fj : 1 � j � n; j =2 [k (x) + 2; k (x)� 2]g ;

= O (logn) +O

0

@

X

j2S

�x

j;n

jx� x

j;n

j

1

4

(ja

n

� jx

j;n

jj+ a

n

L�

n

)

3

4

1

A

by (3.9)

= O (logn) +O

0

B

B

@

X

j2S

jx

j;n

j�a

n

(1��

n

)

�x

j;n

jx� x

j;n

j

1

4

(a

n

� jx

j;n

j)

3

4

1

C

C

A
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+O

0

B

B

@

X

j2S

jx

j;n

j>a

n

(1��

n

)

�x

j;n

n

1

2

T (a

n

)

1

2

jx� x

j;n

j

1

4

a

3

4

n

1

C

C

A

: (3.22)

Next, using the Geometric and Arithmetic mean inequality and (3:9)

again, we may continue (3:21) as

X

2

(x) = O (logn)

+O

0

B

B

@

X

j2S

jx

j;n

j�a

n

(1��

n

)

�x

j;n

jx� x

j;n

j

1

C

C

A

+O

0

B

B

@

X

j2S

jx

j;n

j�a

n

(1��

n

)

�x

j;n

a

n

� jx

j;n

j

1

C

C

A

+O

0

B

B

@

n

1

2

T (a

n

)

1

2

a

3

4

n

X

j2S

jx

j;n

j>a

n

(1��

n

)

�x

j;n

jx� x

j;n

j

1

4

1

C

C

A

= O (logn) +O

0

B

B

@

X

j2S

jx

j;n

j>a

n

(1��

n

)

1

1

C

C

A

(3.23)

where in the last line we used (1:15) ; (1:16) ; (2:1) and (2:2) :

Now it remains to observe that the spacing (2:2) and (1:16) ; imply that

there exist at most a �nite number of j such that jx

j;n

j > a

n

(1� �

n

) : Then

(3:22) yields,

X

2

(x) = O (logn) +O (1) = O (logn) : (3.24)

Combining (3:23) with (3:19) and taking sups yields

k�

n+2

(W;V

n+2

)k

L

1

(R)

= O (logn) (3.25)

as required.2

4 The Proofs of Theorems 1.2 and 1.4 and

Corollaries 1.3 and 1.5.

In this section we present the proofs of our lower bounds in (1:17) and (1:24) :

We deduce Theorems 1.2 and 1.4 and Corollaries 1.3 and 1.5.
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We begin with,

The Proof of our lower bound in (1.17).

Write

�

n

(W;U

n

) (x)

= W (x) jp

n

(x)j

n

X

j=1

p

0

n

(x

j;n

)

�1

W (x

j;n

)

�1

jx� x

j;n

j

�1

: (4.1)

In particular, (4:1) becomes using (1:16) ; (2:9) ; (2:12) and (2:17) ;

�

n

(W;U

n

) (y

0

) � C

1

X

0�x

j;n

�

a

n

2

a

�1

2

n

n

1

6

T (a

n

)

1

6

a

�1

2

n

�

1�

jx

j;n

j

a

n

+ L�

n

�

�1

4

n

� C

2

n

�5

6

T (a

n

)

1

6

X

0�x

j;n

�

a

n

2

1: (4.2)

Now it remains to observe that the spacing (2:2) and (1:16) imply that there

exist � C

3

n j such that x

j;n

2 [0;

a

n

2

]: Then (4:2) becomes

�

n

(W;U

n

) (y

0

) � C

4

n

1

6

T (a

n

)

1

6

so that

k�

n

(W;U

n

)k

L

1

(R)

� �

n

(W;U

n

) (y

0

) � C

5

n

1

6

T (a

n

)

1

6

; (4.3)

as required.2

We now turn to the proof of our lower bound (1:24) : Here a choice of

x = y

0

is not su�cient to achieve our lower bound and we need to proceed

more carefully. Indeed, we will show that the point we need sits \far" away

from a

n

:

The Proof of our lower bound for (1.24).

First we claim that there exists y 2 R satisfying jyj � �a

n

; for some

0 < � < 1 and uniformly for n � 1;

a

1

2

n

p

n

W (y) � 1: (4.4)
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To see this, observe �rst that if 0 < � < 1 is given, then by (1:16) ; (2:2)

and (2:9) ; there exists > C

1

n j, 1 � j � n + 1 such that jx

j;n+1

j 2 [0; �a

n

].

Now choose y = y

1

= x

k;n+1

for some 1 � k � n+1 such that jy

1

j 2 [0; �a

n

].

Then (2:9) and (2:17) give

a

1

2

n

jp

n

W j (y

1

) � 1

and (4:4) is established. Fix y

1

as above.

We now proceed as follows. Since y

1

< cy

0

; for some 0 < c < 1; we have

by (1:29) ; (2:12) ; (2:33) and (4:4) ;

�

n+2

(W;V

n+2

) (y

1

) �

n

X

j=1

W (y

1

)W (x

j;n

)

�1

 

y

2

0

� y

2

1

y

2

0

!

l

j;n

(U

n

) (y

1

)

� C

1

n

X

j=1

W (y

1

)W (x

j;n

)

�1

l

j;n

(U

n

) (y

1

)

� C

2

�

n

(W;U

n

) (y

1

) � C

3

a

1

2

n

jp

n

W j (y

1

) logn

� C

4

logn:

Thus,

k�

n+2

(W;V

n+2

)k

L

1

(R)

� C

4

logn (4.5)

and we have proved our lower bound.2

We may now present:

The Proof of Theorem 1.2.

This follows immediately from (3:15) and (4:3)2

The Proof of Corollary 1.3:

(1:18) follows from the representation (1:6) ; (1:17) and Theorem 1:2 of

[4] : (1:21) and (1:22) follow from (1:18) ;Corollary 1:7 of [3] and (2:7) :2

The Proof of Theorem 1.4.

This follows immediately from (3:24) and (4:5) :2

The Proof of Corollary 1.5.

(1:25) follows from the representation (1:6) ; (1:24) and Theorem 1:2 of

[4] : (1:26) and (1:27) follow from (1:25) ;Corollary 1:7 of [3] and (2:7) :2
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5 Pointwise estimates of �

n

(W;U

n

)

In this section, we sketch briey the proof of Theorem 1:6:

Fix x; x

k(x);n

;M; � and J

n

as in Section 3:

Step 1: Set

S

1

:=

(

j : 1 � j � n; jx� x

j;n

j �

�a

n

n

	

n

(x)

)

;

S

2

:=

(

j : 1 � j � n;

�a

n

n

	

n

(x) � jx� x

j;n

j �

Ma

n

n

	

n

(x)

)

and

S

3

:=

�

j : 1 � j � n; jx� x

j;n

j >

Ma

n

n

	

n

(x)

�

:

Now write:

�

n

(U

n

;W ) (x) :=

X

j2S

1

(x) +

X

j2S

2

(x) +

X

j2S

3

(x) :

Step 2: Estimation of

P

j2S

1

(x) and

P

j2S

2

(x).

First observe that it su�ces to estimate the above sums for x 2

h

0; a

n

�

1 +

L

2

�

n

�i

for they are identically zero outside this range of x: Moreover, recall that we

may assume by symmetry that x > 0:

Then the following holds:

Lemma 5.1. Let W 2 E .

(a) There exists C

1

� 0 such that uniformly for n � 1 and x 2

h

0; a

n

�

1 +

L

2

�

n

�i

,

0 �

X

j2S

1

(x) � C

1

: (5.1)

Moreover, uniformly for n � 1 and x 2 [0; x

1;n

] ;

X

j2S

1

(x) � 1: (5.2)
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(b) Uniformly for x 2

h

0; a

n

�

1 +

L

2

�

n

�i

and n � N

0

;

X

j2S

2

(x) �

p

a

n

jp

n

W j (x)

 

1�

jxj

a

n

+ L�

n

!

1

4

: (5.3)

Proof. First note that (2:16) gives

X

j2S

1

(x) = W (x)

X

j2S

1

jl

j;n

(U

n

) (x)jW

�1

(x

j;n

)

� C

X

j2S

1

1 � C

1

for some C

1

> 0 independent of x and n as the above sum is �nite.

For the lower sum, we use the weighted Erd}os-Turan inequality

(see for example [5]) ;

l

j;n

(U

n

) (x)W (x)W

�1

(x

j;n

) + l

j+1;n

(U

n

) (x)W (x)W

�1

(x

j+1;n

) � 1 (5.4)

valid for n � 2; 1 � j � n� 1 and x 2 [x

j+1;n

; x

j;n

] :

If x � x

1;n

;we may assume without loss of generality that x 2

h

x

k(x)+1;n

; x

k(x);n

i

:

Then (5:4) gives

X

j2S

1

(x) � W (x)

k(x)+1

X

j=k(x)

l

j;n

(U

n

) (x)W

�1

(x

j;n

) � C

2

:

Thus (5:1) and (5:2) follow.

It remains to show (5:3) : Here we �rst observe that by (2:2) we have

uniformly for j 2 S

2

;

a

n

n

	

n

(x

j;n

) � jx

j;n

� x

j�1;n

j � jx� x

j;n

j : (5.5)

Then (2:15) and (5:5) easily yield

X

j2S

2

(x) �

p

a

n

jp

n

W j (x)

 

1�

jxj

a

n

+ L�

n

!

1

4
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as required.2

Preliminary estimation of

P

j2S

3

(x):

Lemma 5.2. Let W 2 E .

(a) If jxj � 2a

n

;we have uniformly for x and n � N

0

;

X

j2S

3

(x) �

p

a

n

p

n

W (x)

Z

jtj�a

n

(1+A�

n

)

t2J

n

�

1�

jtj

a

n

+ L�

n

�

1

4

jx� tj

dt: (5.6)

(b) If jxj � 2a

n

;we have uniformly for x and n � N

0

;

X

j2S

3

(x) �

p

a

n

p

n

W (x)

jxj

Z

jtj�a

n

(1+A�

n

)

t2J

n

 

1�

jtj

a

n

+ L�

n

!

1

4

dt: (5.7)

Proof. We consider the case x 2

h

0; a

n

�

1 +

L

2

�

n

�i

and x � x

1;n

: The other

cases are similar.

By (2:2) and (2:15) ;

X

j2S

3

(x) �

p

a

n

p

n

W (x)

X

j2[1;n]n[k(x)+2;k(x)�2]

Z

x

j;n

x

j+1;n

�

1�

jx

j;n

j

a

n

+ L�

n

�

1

4

jx� x

j;n

j

dt:

(5.8)

Then much as in (3:10) ; (5:8) readily yields (5:6) for this case.2

Step 4: Estimation of

J :=

Z

jtj�a

n

(1+A�

n

)

t2J

n

 

1�

jtj

a

n

+ L�

n

!

1

4

dt:

We now record the following technical estimate for J :

Lemma 5.3. Let W 2 E and suppose that x 2

h

0; a

n

�

1 +

L

2

�

n

�i

: Then

uniformly for x and n � N

0

;

J �

 

1�

jxj

a

n

+ L�

n

!

1

4

log

0

@

n

�

1�

jxj

a

n

+ L�

n

�

	

n

(x)

1

A

+ 1: (5.9)
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Step 5: The Proof of Theorem 1.6.

Observe that for jxj � a

n

�

1 +

L

2

�

n

�

;

log

0

@

n

�

1�

jxj

a

n

+ L�

n

�

	

n

(x)

1

A

> 0 if L is large enough.

Then (5:1) ; (5:2) ; (5:3) and (5:9) yield the result for this case. Theorem

1.6 (b) and (c) are similar but easier.2
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