Smoothness Theorems for Erdős Weights II

S. B. Damelin*
University of the Witwatersrand, South Africa

24 January, 1998

Abstract

We obtain new characterisations of smoothness, saturation results and existence theorems of derivatives for weighted polynomials associated with Erdős weights on the real line.

Our methods rely heavily on realization functionals.

AMS(MOS) Classification: 41A10, 42C05
Keywords and Phrases: Erdős Weight, Jackson-Bernstein Theorem, Modulus of Smoothness, Realization functional, Polynomial Approximation.

1 Introduction

Recently, there has been much interest in the study of rates of polynomial approximation in weighted $L_{p}(0<p \leq \infty)$ spaces, associated with fast decaying weights on the real line and $[-1,1]$. We refer the reader to $[1],[4],[7]$ and the references cited therein, for a detailed and comprehensive account of the above topic.

In this paper, we consider smoothness theorems in $L_{p}(0<p \leq \infty)$ for weighted polynomials associated with Erdős weights on the real line complementing earlier work of [1], [2] and [4]. In order to state our results, we need to define our class of weight functions and various quantities. First we say that a real valued function $f:(a, b) \longrightarrow(0, \infty)$ is quasi increasing if there exists a positive constant C such that

$$
a<x<y<b \Longrightarrow f(x) \leq C f(y)
$$

[^0]Our weight class will assumed to be admissible in the sense of the following definition.

Definition 1.1

Let

$$
W=\exp (-Q)
$$

where $Q: \mathbb{R} \longrightarrow \mathbb{R}$ is even and continuous. Then W is an admissible weight and we shall write $W \in \mathcal{E}$ if the following conditions below hold.
(a) $x Q^{\prime}(x)$ is strictly increasing in $(0, \infty)$ with

$$
\lim _{|x| \rightarrow 0^{+}} x Q^{\prime}(x)=0
$$

(b)

$$
T(x):=\frac{x Q^{\prime}(x)}{Q(x)}
$$

is quasi increasing in (C, ∞) for some $C>0$ and

$$
\lim _{|x| \rightarrow \infty} \frac{x Q^{\prime}(x)}{Q(x)}=\infty
$$

(c) Assume that for each $\varepsilon>0$, there exists $C_{j}>0, j=1,2$ such that

$$
\begin{equation*}
\frac{y Q^{\prime}(y)}{x Q^{\prime}(x)} \leq C_{1}\left(\frac{Q(y)}{Q(x)}\right)^{1+\varepsilon}, y \geq x \geq C_{2} \tag{1.1}
\end{equation*}
$$

It is instructive to present two classical examples of our admissible weights below:
(a)

$$
\begin{equation*}
W_{k, \alpha}(x):=\exp \left(-\exp _{k}\left(|x|^{\alpha}\right)\right), \alpha>1, k \geq 1, x \in \mathbb{R} \tag{1.2}
\end{equation*}
$$

Here $\exp _{k}(;):=\exp (\exp (\ldots(\exp (;)))$ denotes the k th iterated exponential.
(b)

$$
\begin{equation*}
W_{A, B}(x):=\exp \left(-\exp \left(\log \left(A+x^{2}\right)^{B}\right)\right), x \in \mathbb{R} \tag{1.3}
\end{equation*}
$$

Here $B>1$ and A is a fixed but large enough real number.

Armed with the above class of admissible weights above, we now define a suitable measure of weighted distance.

Let $I \subseteq \mathbb{R}$ be an interval and

$$
L_{p, W}(I):=\left\{f: I \longrightarrow \mathbb{R}: f W \in L_{p}(I), 0<p \leq \infty\right\}
$$

where if $p=\infty, f$ is further continuous and satisfies

$$
\lim _{|x| \rightarrow \infty} f W(x)=0
$$

We equip $L_{p, W}(I)$ with the quasi norm

$$
\|f W\|_{L_{p}(I)}:= \begin{cases}\left(\int_{I}|f W|^{p}(x) d x\right)^{1 / p} & , 0<p<\infty \\ \sup _{x \in I}|f W|(x) & , p=\infty\end{cases}
$$

and interpret $\left(L_{p, W}(I),\|;\|\right)$ as a metric space in the usual way. In particular, taking $I=\mathbb{R}$, we may define the $L_{p}(0<p \leq \infty)$ error in best weighted polynomial approximation by:

$$
\begin{equation*}
E_{n}[f]_{W, p}:=\inf _{P \in \mathcal{P}_{n}}\|(f-P) W\|_{L_{p}(\mathbb{R})}, f \in L_{p, W}(\mathbb{R}) \tag{1.4}
\end{equation*}
$$

where \mathcal{P}_{n} denotes the class of polynomials of degree at most $n \geq 1$.
In [1] and [4], Jackson and Bernstein estimates for $E_{n}[f]$ for fixed $f \in$ $L_{p, W}(0<p \leq \infty)$ were investigated. In order to describe these results, we need the notion of the Mhaskar-Rakhmanov-Saff number and a suitable weighted modulus of smoothness which we define below.

Mhaskar-Rakhmanov-Saff number

Let $W \in \mathcal{E}$ and define the Mhaskar-Rakhmanov-Saff number, $a_{u}, u \geq 0$ by the equation:

$$
u=\frac{2}{\pi} \int_{0}^{1} \frac{a_{u} t Q^{\prime}\left(a_{u} t\right)}{\sqrt{1-t^{2}}} d t, u>0
$$

Then under our assumptions on Q, it was shown in [4] that a_{u} is uniquely defined and is a strictly increasing function of u. Moreover, it is continuous for $u \in(0, \infty)$ and satisfies for every fixed $\delta>0$

$$
\begin{equation*}
\frac{a_{u}}{u^{\delta}} \longrightarrow 0, u \longrightarrow \infty \tag{1.5}
\end{equation*}
$$

The Weighted Jackson Modulus of Continuity

The following weighted Jackson modulus of continuity was introduced and studied in [1], [2] and [4].

Definition 1.2

Let $W \in \mathcal{E}, 0<p \leq \infty, f \in L_{p, W}(\mathbb{R}), r \geq 1$ and set:

$$
\begin{align*}
\omega_{r, p}(f, W, t):= & \sup _{0<h \leq t}\left\|\Delta_{h \Phi_{t}(x)}^{r}(f, x, \mathbb{R})\right\|_{L_{p}(|x| \leq \sigma(2 t))} \tag{1.6}\\
& +\inf _{R \in \mathcal{P}_{r-1}}\|(f-R) W\|_{L_{p}(|x| \geq \sigma(4 t))}
\end{align*}
$$

Here:

(a)

$$
\begin{equation*}
\sigma(t):=\inf \left\{a_{u}: \frac{a_{u}}{u} \leq t\right\}, t>0 \tag{1.7}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\Phi_{t}(x):=\left|1-\frac{|x|}{\sigma(t)}\right|^{\frac{1}{2}}+T(\sigma(t))^{\frac{-1}{2}}, x \in \mathbb{R} \tag{1.8}
\end{equation*}
$$

For a real interval J,

$$
\Delta_{h}^{r}(f, x, J):= \begin{cases}\sum_{i=0}^{r}\binom{r}{i}(-1)^{i} f\left(x+\frac{r h}{2}-i h\right) & , x \pm \frac{r h}{2} \in J \\ 0 & , \text { otherwise }\end{cases}
$$

is the rth symmetric difference of f.
The following remark assists in the assimilation of the complicated terminology above.

Remark 1.3

(a) The essential feature of the function σ in (1.7) is that it satisfies the following important condition. Uniformly for $n \geq 1$, there exist constants $C_{j}>0, j=1,2$ independent of n such that

$$
C_{1} \leq \frac{\sigma\left(\frac{a_{n}}{n}\right)}{a_{n}} \leq C_{2}
$$

Thus, in a sense, $\sigma\left(\frac{a_{n}}{n}\right)$ serves as the inverse of the function

$$
a_{n}: \longrightarrow \frac{a_{n}}{n}, n \geq 1
$$

Typically, t is small and will be taken as $\frac{a_{n}}{n}$ for $n \geq n_{0}$ for some fixed but large enough n_{0}.
(b) The function Φ_{t} is a suitable replacement for the well known factor $\sqrt{1-x^{2}}$ in the Ditzian-Totik modulus, i.e., it describes the improvement in the degree of approximation near $\pm a_{\frac{n}{2}}$.
(c) The tail of the modulus $\omega_{r, p}(f, W, ;)$ reflects the inability of $(P W), P \in \mathcal{P}_{n}$ to approximate beyond $\left[-a_{\frac{n}{2}}, a_{\frac{n}{2}}\right]$. Its presence ensures that for $f \in \mathcal{P}_{r-1}$, $r \geq 1$,

$$
\begin{equation*}
\omega_{r, p}(f, W, ;) \equiv 0 \tag{1.9}
\end{equation*}
$$

We finish this section with two important theorems which were established in [1] and [4]. In order to state them, we adopt the following convention that will be used in the sequel.

Throughout, for real sequences $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\} \neq 0$
$A_{n}=O\left(B_{n}\right), A_{n} \sim B_{n}$ and $A_{n}=o\left(B_{n}\right)$ will mean respectively that there exist constants $C_{1}, C_{2}, C_{3}>0$ independent of n such that $\frac{A_{n}}{B_{n}} \leq C_{1}, C_{2} \leq$ $A_{n} / B_{n} \leq C_{3}$ and $\lim _{n \rightarrow \infty}\left|\frac{A_{n}}{B_{n}}\right|=0$.

Similar notation will be used for functions and sequences of functions.

Theorem 1.4

Let $W \in \mathcal{E}, 0<p \leq \infty, f \in L_{p, W}(\mathbb{R}), r \geq 1$ and $n \geq n_{0}$. Assume that there is a Markov-Bernstein inequality of the form

$$
\begin{equation*}
\left\|R^{\prime} \Phi_{\frac{a_{n}}{n}} W\right\|_{L_{p}(\mathbb{R})} \leq C_{1} \frac{n}{a_{n}}\|R W\|_{L_{p}(\mathbb{R}),} R \in \mathcal{P}_{n} \tag{1.10}
\end{equation*}
$$

Then there exists $C_{2}>0$ independent of f and n such that

$$
\begin{equation*}
E_{n}[f]_{W, p} \leq C_{2} w_{r, p}\left(f, W, \frac{a_{n}}{n}\right) \tag{1.11}
\end{equation*}
$$

The result indicated a Nikolskii-Timan-Brudnyi effect whereby as in weights on $[-1,1]$, we have better approximation towards the endpoints of the Mhaskar-Rakhmanov-Saff interval.

In order to establish (1.11), we used a natural realization functional defined by:

$$
\begin{equation*}
K_{r, p}\left(f, W, t^{r}\right):=\inf _{P \in \mathcal{P}_{n}}\left\{\|(f-P) W\|_{L_{p}(\mathbb{R})}+t^{r}\left\|P^{(r)} \Phi_{t}^{r} W\right\|_{L_{p}(\mathbb{R})}\right\} \tag{1.12}
\end{equation*}
$$

Here $t>0$ is chosen in advance and n depends on t by the following relation:

$$
\begin{equation*}
n=n(t):=\inf \left\{k: \frac{a_{k}}{k} \leq t\right\} \tag{1.13}
\end{equation*}
$$

The concept of realization should be attributed to Hristov and Ivanov [6]. It enabled us to use a general technique of Ditzian, Hristov and Ivanov [6] to show:

Theorem 1.5

Let $W \in \mathcal{E}, 0<p \leq \infty, f \in L_{p, W}(\mathbb{R}), r \geq 1, \alpha>0$ and assume (1.10). Let $t \in(0, D)$ where D is a small enough fixed positive number and determine n by (1.13). Then uniformly for f and t the following hold:
(a)

$$
\begin{equation*}
\omega_{r, p}(f, W, t) \sim K_{r, p}\left(f, W, t^{r}\right) \tag{1.14}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\omega_{r, p}(f, W, t) \sim \omega_{r, p}(f, W, \alpha t) \sim \omega_{r, p}\left(f, W, \frac{a_{n}}{n}\right) \tag{1.15}
\end{equation*}
$$

(c)

$$
\begin{gather*}
K_{r, p}\left(f, W, t^{r}\right) \\
\sim\left\|\left(f-P_{n}^{*}\right) W\right\|_{L_{p}(\mathbb{R})}+t^{r}\left\|P_{n}^{*(r)} \Phi_{t}^{r} W\right\|_{L_{p}(\mathbb{R})} . \tag{1.16}
\end{gather*}
$$

Here, $P_{n, p}^{*}=P_{n}^{*}$ is the best approximant to f from \mathcal{P}_{n} satisfying

$$
\begin{equation*}
\left\|\left(f-P_{n}^{*}\right) W\right\|_{L_{p}(\mathbb{R})}=E_{n}[f]_{W, p} \tag{1.17}
\end{equation*}
$$

(d) Moreover if $1 \leq p \leq \infty$ and f satisfies the extra smoothness requirement

$$
f^{r} W \in L_{p}(\mathbb{R})
$$

then there exists $C_{1}>0$ independent of t and f such that

$$
\begin{equation*}
\omega_{r, p}(f, W, t) \leq C_{1} t^{r}\left\|f^{(r)} W\right\|_{L_{p}(\mathbb{R})} \tag{1.18}
\end{equation*}
$$

This paper is organized as follows: In Section 2, we present our main results. In Section 3, we establish Theorem 2.1 and Theorem 2.3. In Section 4, we present the proofs of Theorems 2.6, 2.7, 2.9 and 2.10.

2 Statements of Results

Throughout this paper, C, C_{1}, \ldots will denote positive constants independent of t, n, x and $P \in \mathcal{P}_{n}$ while the symbol D will always denote a small enough but fixed positive constant. The same symbol does not necessarily denote the same constant in different occurrences. We shall write $C \neq C(L)$ to mean that the constant in question is independent of the parameter L.

2.1 A Smoothness Inequality in $L_{p}, p \geq 1$

In general, the constants in the \sim relation in (1.15) depend on α and one has typically for the modulus $\omega^{r}(f, ;)_{p}$ of [8] the inequality

$$
\omega^{r}(f, \lambda t)_{p} \leq C_{1} \lambda^{r} \omega^{r}(f, t)_{p}
$$

for $\lambda \geq 1$ and $p \geq 1$. Here $C_{1}>0$ is independent of f, t and λ.
In this paper we prove:
Theorem 2.1 Let $W \in \mathcal{E}, 1 \leq p \leq \infty, f \in L_{p, W}(\mathbb{R})$, $r \geq 1$, and $t \in(0, D)$. Then uniformly for $\lambda \in\left[1, \frac{D}{t}\right]$, there exists $C_{1}>0$ independent of f and t such that

$$
\begin{equation*}
w_{r, p}(f, W, \lambda t) \leq C_{1} \lambda^{r}\left(\sup _{x \in \mathbb{R}} \Psi_{\lambda t, t}(x)\right)^{r} w_{r, p}(f, W, t) \tag{2.1}
\end{equation*}
$$

where for any $y, z>0$

$$
\begin{equation*}
\Psi_{y, z}(x):=\frac{\Phi_{y}(x)}{\Phi_{z}(x)}, x \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

In particular, given $\varepsilon>0$, we have for $0<t<D$ and uniformly for $\lambda \in$ $\left[1, \frac{D}{t}\right]$,

$$
\begin{equation*}
w_{r, p}(f, W, \lambda t) \leq C_{2} \lambda^{r+\varepsilon} w_{r, p}(f, W, t) \tag{2.3}
\end{equation*}
$$

Here, C_{2} is independent of t, f and λ.

Remark 2.2

One can prove, under the hypotheses of Theorem 2.1 the following infinitefinite range inequality:

Let $\alpha>1, \beta \in \mathbb{R}$ and $0<t<D$. Define $n=n(t)$ by (1.13). Then for all $P \in \mathcal{P}_{n}$ and uniformly for $\lambda \geq 1$,

$$
\left\|P W \Phi_{\lambda t}^{\beta}\right\|_{L_{p}(\mathbb{R})} \leq C_{1}\left\|P W \Phi_{\lambda t}^{\beta}\right\|_{L_{p}\left(|x| \leq \sigma\left(\frac{t}{4 \alpha}\right)\right)} .
$$

This enables us to replace

$$
\sup _{x \in \mathbb{R}} \Psi_{\lambda t, t}(x)
$$

in (2.1) by

$$
\max _{|x| \leq \sigma\left(\frac{t}{4 \alpha}\right)} \Psi_{\lambda t, t}(x)
$$

However as the proof of Lemma 3.2 will show, the main contribution of $\Psi_{\lambda t, t}(x)$ comes from the interval

$$
\sigma\left(\frac{\lambda t}{4 \alpha}\right) \leq|x| \leq \sigma\left(\frac{t}{4 \alpha}\right)
$$

so this replacement still yields (2.3) and is hardly worth the effort.
As a corollary, of the above, we are able to prove the following saturation type result complementing (1.9).

Theorem 2.3 Let $W \in \mathcal{E}, 1 \leq p \leq \infty, f \in L_{p, W}(\mathbb{R})$ and $r \geq 1$. Suppose that for a given $\varepsilon>0$,

$$
\begin{equation*}
\liminf _{t \longrightarrow 0^{+}} \frac{\omega_{r, p}(f, W, t)}{t^{r+\varepsilon}}=0 \tag{2.4}
\end{equation*}
$$

Then f is a polynomial of degree $r-1$ a.e.

Remark 2.4

We observe that (2.4) is false for $0<p<1$.
Indeed set:

$$
f(x):= \begin{cases}0 & , x \in(-1,0) \\ x^{r-1} & , x \in(0,1)\end{cases}
$$

Then $f \in L_{p}, p<1, f$ is of compact support and

$$
\omega^{r}(f, t):=\sup _{0<h \leq t}\left\|\Delta_{h}^{r}(f)\right\|_{L_{p}(-1,1)}=O\left(t^{r-1+1 / p}\right)
$$

As f is of compact support,

$$
\omega^{r}(f, t) \sim \omega_{r, p}(f, W, t)
$$

It remains to observe that a polynomial of degree $r-1$ of compact support $\equiv 0$.

2.2 A Characterisation Theorem

In order to formulate our next two results, we need the following characterisation theorem which was proved in [1].
Theorem 2.5 Let $W \in \mathcal{E}, 0<\alpha<r, 0<p \leq \infty, f \in L_{p, W}(\mathbb{R})$ and assume (1.10).

Then the following are equivalent:
(a)

$$
\begin{equation*}
E_{n}[f]_{W, p}=O\left(\frac{a_{n}}{n}\right)^{\alpha}, n \longrightarrow \infty \tag{2.5}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\omega_{r, p}(f, W, t)=O\left(t^{\alpha}\right), t \longrightarrow 0^{+} \tag{2.6}
\end{equation*}
$$

Observe that Theorem 2.5 does not include the case $\alpha=r$. To this end, we replace (2.5) by a different characterisation and prove:

Theorem 2.6 Let $W \in \mathcal{E}, 1 \leq p \leq \infty, f \in L_{p, W}(\mathbb{R})$ and assume (1.10). Suppose further that

$$
\begin{equation*}
\left\|P_{n}^{*(r)} \Phi_{\frac{a_{n}}{n}}^{r} W\right\|_{L_{p}(\mathbb{R})} \leq C_{1}\left(\frac{n}{a_{n}}\right)^{r} \psi\left(\frac{a_{n}}{n}\right), n \longrightarrow \infty \tag{2.7}
\end{equation*}
$$

for some quasi-increasing

$$
\psi:[0, \infty] \longrightarrow[0, \infty]
$$

satisfying

$$
\psi(x) \longrightarrow 0, x \longrightarrow 0^{+}
$$

Then,
(a)

$$
\begin{equation*}
E_{n}[f]_{W, p} \leq C_{2}\left(\int_{0}^{C_{3} \frac{a_{n}}{n}} \frac{\psi(\tau)}{\tau} d \tau\right), n \longrightarrow \infty \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{r, p}(f, W, t) \leq C_{4}\left(\int_{0}^{C_{5} t} \frac{\psi(\tau)}{\tau} d \tau\right), t \longrightarrow 0^{+} \tag{2.9}
\end{equation*}
$$

Here the $C_{j}, j=1,2,3,4,5$ are positive and independent of t and n.
(b) In particular, if ψ satisfies

$$
\int_{0}^{C_{6} t} \frac{\psi(\tau)}{\tau} d \tau=O(\psi(t)), t \longrightarrow 0^{+}
$$

then there exist $C_{j}>0, j=7,8$ independent of t and n such that

$$
\begin{equation*}
E_{n}[f]_{W, p}=O\left(\psi\left(C_{7} \frac{a_{n}}{n}\right)\right), n \longrightarrow \infty \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{r, p}(f, W, t)=O\left(\psi\left(C_{8} t\right)\right), t \longrightarrow 0^{+} \tag{2.11}
\end{equation*}
$$

We deduce the following analogue of Theorem 2.5.

Theorem 2.7-Characterisation Theorem

Let $W \in \mathcal{E}, 0<\alpha \leq r, 1 \leq p \leq \infty, f \in L_{p, W}(\mathbb{R})$ and assume (1.10).
(a) Then the following are equivalent:

$$
\begin{align*}
\omega_{r, p}(f, W, t) & =O\left(t^{\alpha}\right), t \longrightarrow 0^{+} \tag{2.12}\\
\left\|P_{n}^{*(r)} \Phi_{\frac{a_{n}}{n}}^{r} W\right\|_{L_{p}(\mathbb{R})} & =O\left(\frac{n}{a_{n}}\right)^{r-\alpha}, n \longrightarrow \infty \tag{2.13}
\end{align*}
$$

(b) In particular, the following are equivalent:

$$
\begin{gather*}
\omega_{r, p}(f, W, t)=O\left(t^{r}\right), t \longrightarrow 0^{+} \tag{2.14}\\
\left\|P_{n}^{*(r)} \Phi_{\frac{a_{n}}{r}}^{r} W\right\|_{L_{p}(\mathbb{R})}=O(1), n \longrightarrow \infty \tag{2.15}
\end{gather*}
$$

Remark 2.8

(a) We believe that is unlikely that (2.5) and (2.6) should hold with $\alpha=r$. Indeed it seems that the characterisation (2.15) is the better replacement. We deduce that in the range for which $\omega_{r, p}(f, W, ;)$ and $\omega_{r+1, p}(f, W, ;)$ have different behavior, $E_{n}[f]_{W, p}$ yields information on $\omega_{r+1, p}(f, W, ;)$ and $\left\|P_{n}^{*(j)} \Phi_{\frac{a_{n}}{n}}^{j} W\right\|_{L_{p}(\mathbb{R})}$ yields information on $\omega_{j, p}(f, W, ;)$ for $j=r$ and $j=$ $r+1$.
(b) Concerning the relationship between $\omega_{r, p}(f, W, ;)$ and $\omega_{r+1, p}(f, W, ;)$ we proved a Marchaud inequality in [2].

We now establish:

Theorem 2.9-Quasi r-Monotonicity of the modulus

Let $W \in \mathcal{E}, 0<p \leq \infty, f \in L_{p, W}(\mathbb{R}), t \in(0, D), r \geq 1$ and assume (1.10). Then there exists $C_{1}>0$ independent of f and t such that

$$
\begin{equation*}
\omega_{r+1, p}(f, W, t) \leq C \omega_{r, p}(f, W, t) \tag{2.16}
\end{equation*}
$$

2.3 Estimates and Existence of $f^{(k)}, k \geq 1$

We are able to prove the following existence theorem.
Theorem 2.10 Let $W \in \mathcal{E}, 0<p \leq \infty, f \in L_{p, W}(\mathbb{R}), n \geq n_{0}$ and $q=$ $\min (1, p)$. Moreover assume (1.10). Then if

$$
\sum_{j=1}^{\infty}\left(\frac{2^{j-1} n}{a_{2^{j-1} n}}\right)^{k q} 2^{j \varepsilon} E_{2^{j-1} n}[f]_{W, p}^{q}<\infty
$$

for some $\varepsilon>0$ and positive integer k,

$$
f^{(k)} W \in L_{p}(\mathbb{R})
$$

and

$$
\begin{array}{r}
\left\|\left(f-P_{n}^{*}\right)^{(k)} \Phi_{\frac{a_{n}}{k}}^{k} W\right\|_{L_{p}(\mathbb{R})} \\
\leq C_{1}\left(\sum_{j=1}^{\infty}\left(\frac{2^{j-1} n}{a_{2^{j-1} n}}\right)^{k q} 2^{j \varepsilon} E_{2^{j-1} n}[f]_{W, p}^{q}\right)^{\frac{1}{q}} \tag{2.17}
\end{array}
$$

Remark 2.11

It is possible under our hypotheses to reformulate all our results for $n \geq r$.

3 The Proofs of Theorems 2.1 and 2.3

In this section, we present the proofs of Theorem's 2.1 and 2.3. To this end, we require three lemmas. Our first lemma concerns the functions a_{u}, σ, Φ_{t} and $\Psi_{y, z}$.
Lemma 3.1. Let $W \in \mathcal{E}$. Then
(a) Given fixed $\alpha>1$, we have uniformly for $u>u_{0}$,

$$
\begin{equation*}
\left|\frac{a_{\alpha u}}{a_{u}}-1\right| \sim T\left(a_{u}\right)^{-1} \tag{3.1}
\end{equation*}
$$

(b) Given $\alpha>0$ and $\gamma>1$ we have uniformly for $u \geq u_{0}$:
(i)

$$
\begin{equation*}
Q\left(a_{u}\right) \sim u T\left(a_{u}\right)^{-\frac{1}{2}} \tag{3.2}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
T\left(a_{u}\right) \sim T\left(a_{\alpha u}\right) \tag{3.3}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\frac{Q\left(a_{\gamma u}\right)}{Q\left(a_{u}\right)}>1 \tag{3.4}
\end{equation*}
$$

(c) There exists s_{0} and v_{0} such that for $s \in\left(0, s_{0}\right)$ and $v \geq v_{0}$, we may write $s=\frac{a_{v}}{v}$ where $v \geq v_{0}$. Moreover,

$$
\begin{equation*}
\sigma(s)=\sigma\left(\frac{a_{v}}{v}\right)=a_{\beta(v)} \tag{3.5}
\end{equation*}
$$

where

$$
v(1-\varepsilon) \leq \beta(v) \leq v
$$

(d) Let $a>1$. Then there exists $C_{1}>0$ such that for $\frac{t}{a} \leq s \leq t$ and $0<t \leq D$

$$
\begin{equation*}
1 \leq \frac{\sigma(s)}{\sigma(t)} \leq 1+\frac{C_{1}}{T(\sigma(s))} \tag{3.6}
\end{equation*}
$$

Moreover, uniformly for s, t above and $x \in \mathbb{R}$

$$
\begin{equation*}
\Phi_{s}(x) \sim \Phi_{t}(x) \tag{3.7}
\end{equation*}
$$

(e) Given $0 \leq s \leq t \leq D$, there exists $C>0$ independent of s and t such that

$$
\begin{equation*}
T(\sigma(t))\left(1-\frac{\sigma(t)}{\sigma(s)}\right) \leq C \log \left(2+\frac{t}{s}\right) \tag{3.8}
\end{equation*}
$$

(f) Given $u \geq v \geq u_{0}$ for some large enough but fixed u_{0}, there exists positive constants $C_{j}, j=1,2$ independent of u and v such that

$$
\begin{equation*}
(u / v)^{C_{1} T(v)} \leq \frac{Q(u)}{Q(v)} \leq(u / v)^{C_{2} T(u)} . \tag{3.9}
\end{equation*}
$$

Proof

Part (a) is Lemma 2.2 (d) in [4] while (3.2) is Lemma 2.2(b) in [4]. (3.3) is (2.2) of [1] and (3.4) is (2.9) of [4]. (3.5) is Lemma 3.1 (a) of [4] and (3.6) is (2.14) of [1]. (3.7) is (2.18) of [1], (3.8) is (7.1) of [4] and (3.9) is (2.1) of [4].

Our next Lemma is an estimate of the function $\Psi_{y, z}$ defined by (2.2).

Lemma 3.2 Let $W \in \mathcal{E}, \varepsilon, \alpha>0$. Then there exists positive $C_{j}, j=1,2$ independent of s, t and x such that for $0<s \leq t \leq D$,

$$
\begin{equation*}
C_{1}\left(\log \left(2+\frac{t}{s}\right)\right)^{\frac{-\alpha}{2}} \leq\left(\sup _{x \in \mathbb{R}}\left(\Psi_{t, s}(x)\right)^{\alpha} \leq C_{2}\left(\frac{t}{s}\right)^{\varepsilon}\right. \tag{3.10}
\end{equation*}
$$

Proof

Firstly the lower bound in (3.10) was established in (7.2) of [4]. Thus it suffices to establish the corresponding upper bound. Firstly if $|x| \leq \sigma(t)$, then the result follows by (3.5) of [4] since in this case

$$
\Psi_{t, s}(x) \leq C_{1}
$$

for some positive constant C_{1} independent of s, t and x. Thus we may assume without loss of generality that $|x|>\sigma(t)$. We first claim that

$$
\Phi_{t}(x) \leq C_{2}\left|1-\frac{|x|}{\sigma(2 t)}\right|^{1 / 2}
$$

for some positive constant C_{2} independent of x and t.
To see this, first observe that (3.6) implies that

$$
\left|1-\frac{|x|}{\sigma(2 t)}\right|^{1 / 2} \geq C_{3} \max \left(\left|1-\frac{|x|}{\sigma(t)}\right|^{1 / 2}, T(\sigma(t))^{-1 / 2}\right)
$$

for our range of $|x|$. Then using the estimate above yields

$$
\begin{gathered}
\Phi_{t}(x) \\
\leq 2 / C_{3}\left|1-\frac{|x|}{\sigma(2 t)}\right|^{1 / 2}
\end{gathered}
$$

Now using the estimate above, the triangle inequality and the definition of Φ_{s}, we have

$$
\begin{align*}
& \Phi_{t}(x) \tag{3.11}\\
& \leq\left|1-\frac{|x|}{\sigma(s)}\right|^{1 / 2}+\left|1-\frac{\sigma(s)}{\sigma(2 t)}\right|^{1 / 2}\left[\left|1-\frac{|x|}{\sigma(s)}\right|^{1 / 2}+1\right] \\
& \leq C_{4}\left[\Phi_{s}(x)+\left(\frac{\sigma(s)}{\sigma(2 t)}\right)^{\frac{1}{2}}\left|1-\frac{\sigma(2 t)}{\sigma(s)}\right|^{1 / 2} \Phi_{s}(x)\right]
\end{align*}
$$

$$
\begin{gathered}
+C_{4}\left[\left(\frac{\sigma(s)}{\sigma(t)}\right)^{\frac{1}{2}}\left|1-\frac{\sigma(2 t)}{\sigma(s)}\right|^{1 / 2} T(\sigma(2 t))^{1 / 2}\left(\frac{T(\sigma(s))}{T(\sigma(2 t))}\right)^{\frac{1}{2}} \Phi_{s}(x)\right] \\
\leq C_{5}\left(\frac{T(\sigma(s))}{T(\sigma(t))}\right)^{\frac{1}{2}}\left(\frac{\sigma(s)}{\sigma(t)}\right)^{\frac{1}{2}} \sqrt{\log \left(2+\frac{2 t}{s}\right)} \Phi_{s}(x)
\end{gathered}
$$

where in the last line we used (3.8). We observe that the positive constant C_{5} is independent of t, s and x.

We now estimate each of the terms in (3.11). Thus let $\varepsilon>0$ be given. By Lemma 3.1 (c), we may write $s=a_{u} / u$ and $2 t=a_{v} / v$ where $u \geq v \geq v_{0}$ and v_{0} is a large enough but fixed real number. Observe that

$$
a_{\beta(u)}=\sigma(s) \geq \sigma(2 t)=a_{\beta_{v}}
$$

with $\beta(u) \geq \beta(v), \beta(u)=u(1+o(1))$ and $\beta(v)=v(1+o(1))$.
Then as T is quasi increasing it follows from (3.2), (3.3), (3.4) and (3.9) that

$$
\begin{equation*}
(u / v) \leq C_{6}(t / s)^{1 / 1-\varepsilon} \tag{3.12}
\end{equation*}
$$

Now applying (1.1) with $y=\sigma(s)$ and $x=\sigma(2 t)$ together with (3.2) and (3.12) then yields

$$
\left(\frac{T(\sigma(s))}{T(\sigma(t))}\right)^{\frac{1}{2}} \leq C_{7}(t / s)^{\varepsilon}
$$

and

$$
\left(\frac{\sigma(s)}{\sigma(t)}\right)^{\frac{1}{2}} \leq C_{8}(t / s)^{\varepsilon}
$$

Inserting these estimates into (3.11), recalling that logarithms grow slower than any polynomial and dividing by $\Phi_{s}(x)$ yields the upper bound in (3.10) and hence the lemma.

Our final lemma concerns (1.13) and an extension of the Markov-Bernstein inequality (1.10).

Lemma 3.3 Let $W \in \mathcal{E}, r \geq 1,0<p \leq \infty, f \in L_{p, W}(\mathbb{R})$ and assume (1.10).
(a) Then if $n \geq N_{0}$ and $P \in \mathcal{P}_{n}$, there exists $C_{1} \neq C_{1}(n, P)$ such that

$$
\begin{array}{r}
\left\|P^{(r+1)} \Phi_{\frac{a_{n}}{n}}^{r+1} W\right\|_{L_{p}(\mathbb{R})} \tag{3.13}\\
\leq C_{1} \frac{n}{a_{n}}\left\|P^{(r)} \Phi_{\frac{a_{n}}{n}}^{r} W\right\|_{L_{p}(\mathbb{R})} .
\end{array}
$$

(b) Let $0<t<D$ and define $n(t)$ by (1.13). Then uniformly for f, t and $\lambda \in\left[1, \frac{D}{t}\right]$,

$$
\begin{align*}
\frac{a_{n(\lambda t)}}{n(\lambda t)} & \leq \lambda t<2 \frac{a_{n(\lambda t)}}{n(\lambda t)} \tag{3.14}\\
K_{r, p}\left(f, W,(\lambda t)^{r}\right) & \sim K_{r, p}\left(f, W,\left(\frac{a_{n(\lambda t)}}{n(\lambda t)}\right)^{r}\right) \tag{3.15}
\end{align*}
$$

and

$$
\begin{equation*}
\omega_{r, p}(f, W, \lambda t) \sim \omega_{r, p}\left(f, W, \frac{a_{n(\lambda t)}}{n(\lambda t)}\right) . \tag{3.16}
\end{equation*}
$$

Proof.

Part (a) appeared first in [1, Lemma 3.1]. Part (b) for $\lambda=1$, follows from $[1,(2.25)],[1,(1.23)]$ and $[1,(1.14)]$. The general case follows by replacing t by λt and using (1.15), (1.16) and (3.7).

We are ready for the proofs of Theorem 2.1 and 2.3.
We begin with:

The Proof of Theorem 2.1.

Let $t \in(0, D), \lambda \in\left[1, \frac{D}{t}\right], \varepsilon>0$ and determine $n(t)$ and $n(\lambda t)$ by (1.13). By (1.12) we may choose $P \in \mathcal{P}_{n(t)}$ such that

$$
\begin{equation*}
\|(f-P) W\|_{L_{p}(\mathbb{R})}+t^{r}\left\|W P^{(r)} \Phi_{t}^{r}\right\|_{L_{p}(\mathbb{R})} \leq 2 K_{r, p}\left(f, W, t^{r}\right) \tag{3.17}
\end{equation*}
$$

Next by (1.11), (1.16), (1.18) and (3.16) we may choose $R \in \mathcal{P}_{n(\lambda t)}$ such that

$$
\begin{align*}
&\|(R-P) W\|_{L_{p}(\mathbb{R})} \leq C_{1} w_{r, p}\left(P, W, \frac{a_{n(\lambda t)}}{n(\lambda t)}\right) \\
& \leq C_{2} w_{r, p}(P, W, \lambda t) \leq C_{3}(\lambda t)^{r}\left\|P^{(r)} W \Phi_{\lambda t}^{r}\right\|_{L_{p}(\mathbb{R})} \tag{3.18}
\end{align*}
$$

where $C_{3} \neq C_{3}(f, t, \lambda)$.
Similarly we obtain

$$
\begin{gather*}
(\lambda t)^{r}\left\|W R^{(r)} \Phi_{\lambda t}^{r}\right\|_{L_{p}(\mathbb{R})} \\
\leq C_{4} K_{r, p}\left(P, W,(\lambda t)^{r}\right) \leq C_{5} w_{r, p}(P, W, \lambda t) \\
\leq C_{6}(\lambda t)^{r}\left\|P^{(r)} W \Phi_{\lambda t}^{r}\right\|_{L_{p}(\mathbb{R})} \tag{3.19}
\end{gather*}
$$

for some $C_{6} \neq C_{6}(f, t, \lambda)$.

Let $q=\min (1, p)$. Then (1.12), (2.2), (3.17), (3.18) and (3.19) yield

$$
\begin{gathered}
K_{r, p}\left(f, W,(\lambda t)^{r}\right)^{q} \\
\leq C_{7}\left(\|(f-R) W\|_{L_{p}(\mathbb{R})}^{q}+(\lambda t)^{r q}\left\|R^{(r)} W \Phi_{\lambda t}^{r}\right\|_{L_{p}(\mathbb{R})}^{q}\right) \\
\leq C_{8}\left(\|(f-P) W\|_{L_{p}(\mathbb{R})}^{q}+(\lambda t)^{r q}\left\|P^{(r)} W \Phi_{\lambda t}^{r}\right\|_{L_{p}(\mathbb{R})}^{q}\right) \\
\leq C_{9} \lambda^{r q}\left(\sup _{x \in \mathbb{R}} \Psi_{\lambda t, t}(x)\right)^{r q} K_{r, p}\left(f, W, t^{r}\right) .
\end{gathered}
$$

Here $C_{9} \neq C_{9}(f, t, \lambda)$.
Taking q th roots and using (1.14) gives (2.1). (2.3) then follows using (3.10).

With Theorem 2.1 at our disposal, we may proceed with:

The Proof of Theorem 2.3

Our method of proof uses an idea from [8]. Choose $t_{0} \in[t, D]$. We first show that (2.4) implies that

$$
\begin{equation*}
\omega_{r, p}\left(f, W, t_{0}\right)=0 \tag{3.20}
\end{equation*}
$$

This follows as given $\varepsilon>0$, we have by Theorem 2.1 that uniformly for $t \in(0, D)$,

$$
\begin{gathered}
\omega_{r, p}\left(f, W, t_{0}\right)=\omega_{r, p}\left(f, W, \frac{t_{0} t}{t}\right) \\
\leq C_{1} \frac{\omega_{r, p}(f, W, t)}{t^{r+\varepsilon}}
\end{gathered}
$$

where $C_{1} \neq C_{1}(f, t)$.
We see now why it is crucial that (2.3) should hold uniformly for $\lambda \in\left[1, \frac{D}{t}\right]$.

Then (2.4) implies (3.20) and so (1.14) implies

$$
\begin{equation*}
K_{r, p}\left(f, W, t_{0}^{r}\right)=0 \tag{3.21}
\end{equation*}
$$

Here $n=n\left(t_{0}\right)$ is defined by (1.13). By (3.21), we may choose a sequence of polynomials $\left(P_{i}\right)_{i=1}^{\infty} \in \mathcal{P}_{n}$ such that

$$
\begin{equation*}
\left\|\left(f-P_{i}\right) W\right\|_{L_{p}(\mathbb{R})}+t_{0}^{r}\left\|P_{i}^{(r)} \Phi_{\frac{a_{n}}{n}}^{r} W\right\|_{L_{p}(\mathbb{R})} \leq 2^{-i} t_{0}^{r} \tag{3.22}
\end{equation*}
$$

Then for a.e $x \in \mathbb{R}$ we have,

$$
f(x)=P_{i}(x)+\sum_{j=i}^{\infty}\left(P_{j+1}-P_{j}\right)(x)
$$

and so (3.21) and (3.22) give

$$
\begin{align*}
&\left\|f^{(r)} \Phi_{\frac{\alpha_{n}}{n}}^{r} W\right\|_{L_{p}(\mathbb{R})} \leq C_{1}\left(2^{-i}+\sum_{j=i}^{\infty} 2^{-(j+1)}+2^{-j}\right) \\
& \leq C_{2} 2^{-i} . \tag{3.23}
\end{align*}
$$

As (3.23) holds for each $i \geq 1$, we must have

$$
\left\|f^{(r)} \Phi_{\frac{a_{n}}{n}}^{r} W\right\|_{L_{p}(\mathbb{R})}=0
$$

which implies that for a.e $x \in \mathbb{R}$

$$
f^{(r)} \Phi_{\frac{a_{n}}{n}}^{r} W(x)=0
$$

or f is a polynomial of degree $r-1$ a.e \square.

4 Our Remaining Proofs

In this section, we present the proofs of Theorems 2.6, 2.7, 2.9 and 2.10 following ideas from [5] and [8].

4.1 Characterisation Theorem

We begin with:

The Proof of Theorem 2.6

Let $P_{n}^{*}\left(P_{2 n}^{*}\right)$ be the best approximant to $P_{2 n}^{*}$ from \mathcal{P}_{n} satisfying,

$$
\begin{equation*}
\left\|\left(P_{2 n}^{*}-P_{n}^{*}\left(P_{2 n}^{*}\right)\right) W\right\|_{L_{p}(\mathbb{R})}=E_{n}\left[P_{2 n}^{*}\right]_{W, p} . \tag{4.1}
\end{equation*}
$$

Then using (1.4),

$$
\begin{align*}
I_{n}^{q} & :=\left\|\left(P_{2 n}^{*}-P_{n}^{*}\left(P_{2 n}^{*}\right)\right) W\right\|_{L_{p}(\mathbb{R})} \tag{4.2}\\
& \geq C\left(E_{n}[f]_{W, p}-E_{2 n}[f]_{W, p}\right)
\end{align*}
$$

for some $C \neq C(n, f)$.
Also, by (1.11), (1.15), (1.18), (2.7) and (3.1),

$$
\begin{gather*}
I_{n} \leq C_{1} \omega_{r, p}\left(P_{2 n}^{*}, W, \frac{a_{n}}{n}\right) \tag{4.3}\\
\leq C_{2} \psi\left(\frac{a_{2 n}}{2 n}\right)
\end{gather*}
$$

Here, $C_{2} \neq C_{2}(n)$.
Then (4.2) and (4.3) give

$$
\begin{align*}
& E_{n}[f]_{W, p} \leq C_{3} \sum_{k=0}^{\infty} I_{2^{k} n} \\
\leq & C_{4} \sum_{k=1}^{\infty} \psi\left(\frac{a_{2^{k} n}}{2^{k} n}\right)=C_{4} S_{n} \tag{4.4}
\end{align*}
$$

where

$$
\begin{equation*}
S_{n}:=\sum_{k=1}^{\infty} \psi\left(\frac{a_{2^{k} n}}{2^{k} n}\right), n \geq 1 \tag{4.5}
\end{equation*}
$$

and $C_{4} \neq C_{4}(n)$.
We now estimate (4.5) in terms of an integral.
First observe using (3.1), that there exists n_{0} such that uniformly for $k \geq 1$ and $n \geq n_{0}$,

$$
\begin{aligned}
& \int_{\frac{a_{2} k_{n}}{2^{k} n}}^{\frac{a_{2 k-1}{ }^{k}-1_{n}}{2}} \frac{1}{\tau} d \tau \\
& \quad \geq \frac{1}{2} \log 2 .
\end{aligned}
$$

Then the quasi-monotonicity of ψ gives,

$$
\begin{align*}
S_{n} \leq C_{5} & \sum_{k=1}^{\infty} \int_{\frac{a_{2 k} k_{n}}{2^{k} n}}^{\frac{a_{2 k-1}}{2^{k-1} n}} \frac{\psi(\tau) d \tau}{\tau} \\
& \leq C_{6} \int_{0}^{\frac{a_{n}}{n}} \frac{\psi(\tau)}{\tau} d \tau \tag{4.6}
\end{align*}
$$

where $C_{6} \neq C_{6}(n)$.
Substituting (4.6) into (4.4) gives (2.8).
Now let $0<t<D$ and define $n:=n(t)$ by (1.13).
Then using (1.4), (1.14), (1.16), (2.7), (3.1) and (4.4), we proceed much as in the proof of (2.8) and obtain

$$
\begin{gather*}
\omega_{r, p}(f, W, t) \leq C_{1} \omega_{r, p}\left(f, W, \frac{a_{2 n}}{2 n}\right) \\
\leq C_{2} K_{r, p}\left(f, W,\left(\frac{a_{2 n}}{2 n}\right)^{r}\right) \\
\leq C_{3}\left(\left\|\left(f-P_{2 n}^{*}\right) W\right\|_{L_{p}(\mathbb{R})}+\left(\frac{a_{2 n}}{2 n}\right)^{r}\left\|P_{2 n}^{*(r)} \Phi_{\frac{a_{2 n}}{r n}} W\right\|_{L_{p}(\mathbb{R})}\right) \\
\leq C_{4}\left(E_{2 n}[f]_{W, p}+\psi\left(\frac{a_{2 n}}{2 n}\right)\right) \\
\leq C_{5}\left(\sum_{k=0}^{\infty} \psi\left(\frac{a_{2^{k+1} n}}{2^{k+1} n}\right)\right) \leq C_{6} \int_{0}^{C_{7} t} \frac{\psi(\tau)}{\tau} d \tau . \tag{4.7}
\end{gather*}
$$

Here $C_{6} \neq C_{6}(t)$. Thus we have (2.9). (2.10) and (2.11) then follow easily.

We may proceed with

The Proof of Theorem 2.7

We apply Theorem 2.6 with $\psi(\tau):=\tau^{\alpha}$. This then shows that (2.13) implies (2.12). The other way follows from (1.14) and (1.16). The equivalence of (2.14) and (2.15) follow from part (a) of Theorem 2.7 by setting $\alpha=r$.

4.2 Existence theorems and Monotonicity

In this section, we present the proofs of Theorem's 2.9 and 2.10.
We begin with

The Proof of Theorem 2.9

Let $q=\min (1, p)$ and let P_{n}^{*} be the best approximant to f satisfying (1.17). Then (1.11), (1.12), (1.14), (1.16) and (3.13) give for $n \geq n_{0}$,

$$
\begin{equation*}
\omega_{r+1, p}\left(f, W, \frac{a_{n}}{n}\right)^{q} \tag{4.8}
\end{equation*}
$$

$$
\begin{gathered}
\leq C_{1}\left(\left\|\left(f-P_{n}^{*}\right) W\right\|_{L_{p}(\mathbb{R})}^{q}+\left(\frac{a_{n}}{n}\right)^{(r+1) q}\left\|P_{n}^{*(r+1)} \Phi_{\frac{a_{n}}{n}}^{r+1} W\right\|_{L_{p}(\mathbb{R})}^{q}\right) \\
\leq C_{2}\left(E_{n}[f]_{W, p}^{q}+\left(\frac{a_{n}}{n}\right)^{r q}\left\|P_{n}^{*(r)} \Phi_{\frac{a_{n}}{n}}^{r} W\right\|_{L_{p}(\mathbb{R})}^{q}\right) \\
\leq C_{3} \omega_{r, p}\left(f, W, \frac{a_{n}}{n}\right)^{q}
\end{gathered}
$$

Here $C_{3} \neq C_{3}(f, n)$.
Now let $0<t<D$ and determine $n:=n(t)$ by (1.13) Then (3.16) with $\lambda=1$ and (4.8) together imply (2.16).

We finish this section with

The Proof of Theorem 2.10

Let P_{n}^{*} be the best approximant to f satisfying (1.17). Then much as in the proof of Theorem 2.3, we write for a.e $x \in \mathbb{R}$,

$$
\begin{equation*}
f(x)=P_{n}^{*}(x)+\sum_{j=1}^{\infty}\left(P_{2^{j} n}^{*}(x)-P_{2^{j-1} n}^{*}(x)\right) \tag{4.9}
\end{equation*}
$$

Now let $\varepsilon>0$ and apply (4.9) together with (3.13), (3.10) and $\frac{\varepsilon}{q}$. This gives,

$$
\begin{array}{r}
\left\|\left(f-P_{n}^{*}\right)^{(k)} \Phi_{\frac{a_{n}}{k}}^{k} W\right\|_{L_{p}(\mathbb{R})}^{q} \\
\leq C_{1} \sum_{j=1}^{\infty} 2^{j \varepsilon}\left(\frac{2^{j} n}{a_{2^{j} n}}\right)^{k q}\left\|\left(P_{2^{j} n}^{*}-P_{2^{j-1} n}^{*}\right) W\right\|_{L_{p}(\mathbb{R})}^{q} \\
\leq C_{2} \sum_{j=1}^{\infty}\left(\frac{2^{j-1} n}{a_{2^{j-1} n}}\right)^{k q} 2^{j \varepsilon} E_{2^{j-1} n}^{q}[f]_{W, p} .
\end{array}
$$

Here, $C_{2} \neq C_{2}(n, f)$. Taking q th roots gives the theorem.

References

[1] S. B. Damelin, Converse and smoothness theorems for Erdős weights in $L_{p}(0<p \leq \infty)$, J. Approx Theory, (to appear).
[2] S. B. Damelin, Marchaud inequalities for a class of Erdős weights, Approximation Theory VIII-Vol1 (1995), Approximation and Interpolation, Chui(eds), pp. 169-175.
[3] S. B. Damelin, Smoothness theorems of polynomial approximation for non Szegő weights on $[-1,1]$, postscript.
[4] S. B. Damelin and D. S. Lubinsky, Jackson theorems for Erdős weights in $L_{p}(0<p \leq \infty)$, J. Approx Theory (to appear).
[5] Z. Ditzian, D. Jiang and D. Leviatan, Inverse theorem for best polynomial approximation in $L_{p}(0<p<1)$, Proc. Amer. Math. Soc. 120 (1994), 151-155.
[6] Z. Ditzian, V. H. Hristov and K. G. Ivanov, Moduli of smoothness and k-functionals in $L_{p}(0<p<\infty)$, Constr. Approx. 11 (1995), 67-83.
[7] Z. Ditzian and D. S. Lubinsky, Jackson and smoothness theorems for Freud weights in $L_{p}(0<p \leq \infty)$, Constructive Approximation, 13 (1997), 99-152.
[8] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer Series in Computational Mathematics, Vol 9, Springer, Berlin, 1987.
[9] P. Petrushev and V. Popov, Rational Approximation of Real Functions, Cambridge University Press.
[10] E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer-Verlag, Heidelberg (1997).
[11] V. Totik, Weighted Approximation with Varying Weight, Lect. Notes in Math. vol. 1569, Springer-Verlag, Berlin, 1994.
*Department of Mathematics, University of the Witwatersrand, PO Wits 2050, South Africa.

Email address:steven@brutus.ms1.wits.ac.za

[^0]: * The research of the author was completed while visiting the University of South Florida during the Fall Semester, 1996

