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Abstract

We prove Marchaud Inequalities for a class of Erd}os Weights. The

main feature of these weights is that they are of faster than polynomial

growth at in�nity. We also survey some other classical properties of our

modulus of continuity.

1 Introduction and Statement of Results

An Erd}os Weight is of the form: W (x) := exp [�Q(x)], where Q : R �! R is

even, xQ

0

(x) is increasing and

Q > x

r

; r > 0; x � x

0

:

That is, Q is of faster than polynomial growth at in�nity [5,6,7]. In particular,

W

k;�

(x) := exp (� exp

k

(�jxj

�

)) � > 1 (1)

and

W

A;B

(x) := exp

�

� exp

�

log

�

A+ x

2

��

B

�

B > 1; A large enough (2)

are examples of Erd}os Weights. Here, exp

k

= exp (exp (::: exp ())) denotes the

kth iterated exponential. In [1,2], we considered the subject of weighted poly-

nomial approximation for Erd}os Weights, W; and estimated the quantity,

E

n

[f ]

W;p

:= inf

P2�

n

k(f � P )Wk

L

p

(R)

(3)

where, f : R �! R is a suitable real valued function, �

n

denotes the class

of polynomials of degree � n; n � 1 and 0 < p � 1. In this paper, we con-

tinue this investigation by presenting some interesting properties of our weighted

modulus of continuity.

We �rst however, need some notation and backround.
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1.1 Notation and Backround

1.1.1 a

n

Given W an Erd}os Weight, set for u > 0; a

u

to be the Mhaskar{Rakhmanov{

Sa� number de�ned as the positive root of,

u =

2

�

Z

1

0

a

u

tQ

0

(a

u

t)

p

1� t

2

dt: (4)

For example, for W (x) =W

k;�

(x); a

n

= a

n

(Q

k;�

) satis�es,

a

n

=

2

4

log

k�1

0

@

logn�

1

2

k+1

X

j=2

log

j

n +O (1)

1

A

3

5

1

�

(5)

where log

j

= log (log ::: (log ())) denotes the jth iterated logarithm.The impor-

tance of a

n

lies in the fact that for P 2 �

n

; n � 1; the quantity (PW ) \lives"

mostly on [�a

n

; a

n

] [8] :

1.1.2 Moduli and K-Functionals

To prove Jackson and Converse theorems for Erd}os Weights, we need a suitable

weighted modulus of continuity. This was �rst introduced in [4] ; in a similar

context and suitably modi�ed in [1; 3] : For h > 0 and r � 1; let

�

r

h

f (x) := f

�

x+

h

2

�

� f

�

x�

h

2

�

and

�

r

h

f (x) :=

r

X

j=0

�

r

j

�

(�1)

j

f

�

x+

�

r

2

� j

�

h

�

denote respectively, the �rst and rth order symmetric di�erences of a real valued

f : R �! R. Further, set:

(1)

T (x) :=

xQ

0

(x)

Q (x)

x 2 R (6)

satisfying T (x) �!1 as x �!1:

(2)

� (t) := inf

n

a

u

:

a

u

u

� t

o

t > 0: (7)

(3)

	

n

(x) :=

�

�

�

�

�

1�

�

jxj

a

n

�

2

�

�

�

�

�

+ T (a

n

)

�1

; x 2 R; n � 1: (8)
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(4)

�

t

(x) :=

�

�

�

�

1�

jxj

� (t)

�

�

�

�

1

2

+ T (� (t))

�

1

2

; x 2 R; t > 0: (9)

Then we de�ne for 0 < p � 1; t > 0 and r � 1 our weighted modulus of

continuity,

w

r;p

(f;W; t) : = sup

0<h�t







W�

h�

t

(x)

f







L

p

(jxj��(t)+rt)

(10)

+ inf

P2�

r�1

k(f � P )Wk

L

p

(jxj��(t))

and corresponding weighted realisation-functional for W given by:

K

r;p

(f;W; t

r

) := inf

P2�

n

�

k(f � P )Wk

L

p

(R)

+ t

r










P

(r)

	

r

2

n

W










L

p

(R)

�

(11)

where,

n := n (t) = inf

n

k :

a

k

k

� t

o

(12)

[1; 2; 3; 4; 6] :

We remark that it is shown in [1; 2] ; that if t > 0 is small enough and n is

determined by (12) then,

a

n

n

� t < 2

a

n

n

: (13)

1.1.3 Jackson Theorem, and Realization-functional equivalence

For a wide class of Erd}os Weights, E ; which satisfy [ in particular] ;

(a)

W

k;�

; W

A;B

2 E ;

[ recall (1) and (2)] ;

(b)

a

u

u

�"

�! 0; u �!1 8" > 0

�

a

u

2

a

u

�

�! 1; u �!1;

(14)

(c)

sup

x2R

	

n

(x)

	

m

(x)

� C log

�

2 +

n

m

�

(15)

for m � n; and the Markov-Bernstein inequality
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(d)










P

(r+1)

W�

r

2

n










L

p

(R)

� C

1

n

a

n










P

(r)

W










L

p

(R)

(16)

0 < p � 1; r � 1; P 2 �

n

and some C

1

> 0 [2; 5; 7] ; we note the

following unpublished results of [1; 2] :

Theorem 1.1[ Jackson Theorem]

Let W 2 E ; n � N be given by (12) ; r � 1 and 0 < p � 1: Then 9 C

2

>

0; C

2

6= C

2

(f; t) such that,

E

n

[f ]

W;p

� C

2

w

r;p

�

f;W;

a

n

n

�

: (17)

Theorem 1.2[ Equivalence of K-functional and modulus]

Let W 2 E ; L > 0; r � 1 and 0 < p � 1: Then 9 C

3

; C

4

; C

5

> 0

independent of f and t; such that for small enough t > 0;

w

r;p

(f;W;Lt) � C

3

K

r;p

(f;W; t

r

) � C

4

w

r;p

(f;W;C

5

t) : (18)

Naturally, it is (18) that allows us to deduce:

Corrolary 1.3.

Let W 2 E ; r � 1; 0 < p �1: Let t > 0 be small enough and n determined

by (12) : Then there exists C

5

; C

6

> 0 independent of t and n such that uni-

formly in f;

C

5

�

w

r;p

�

f;W;

a

n

n

�

w

r;p

(f;W; t)

� C

6

: (19)

2 Statement of Results.

In this paper we use (18) and (19) to deduce a Marchaud Inequality for our

modulus. Here is our theorem:

Theorem 1.4. [ Marchaud Inequality]

Let W 2 E and further suppose that W satis�es (16) and (17) : Let q =

min (1; p) ; 0 < p � 1: Then for some C

7

; C

8

independent of f and t and

t small enough,

w

r;p

(f;W; t) � C

7

t

r

"

Z

C

8

t

w

r+1;p

(f;W; u)

q

u

rq

�

log

2

�

1

ut

��

rq

2

du +

�

log

2

�

1

tr

��

rq

2

kfWk

q

L

p

(R)

#

1

q

(20)

for all f : R �! R for which (10) and (11) are meaningful.
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3 Proof of Theorem 1.4

First let n be large enough and let P

�

n

be the best approximant to f which exists

and satis�es,

E

n

[f ]

W;p

:= k(f � P )Wk

L

p

(R)

: (21)

By (11) ; (17) and (18) we may thus write using (21) ;

w

r;p

�

f;W;

a

n

n

�

q

(22)

� C

9

�

k(f � P

�

n

)Wk

L

p

(R)

+

�

a

n

n

�

rq










P

�(r)

n

	

r

2

n

W










L

p

(R)

�

� C

10

w

r+1;p

�

f;W;

a

n

n

�

q

+

�

a

n

n

�

rq










P

�(r)

n

	

r

2

n

W










L

p

(R)

for some C

9

; C

10

> 0:Here we use the inequality (a+ b)

�

� a

�

+ b

�

a; b >

0; 0 < � < 1: Now choose l = l (n) such that,

r2

l+2

� n � r2

l+1

(23)

where n � 2r; and write,

P

�

n

(x) =

l�1

X

k=0

�

P

�

[

n

2

k

]

(x) � P

[

n

2

k+1

]

(x)

�

+ P

[

n

2

l+1

]

(x) (24)

where [x] =the largest integer � x:

Using (16) and (21) gives for 0 � k � l;













�

P

�

[

n

2

k

]

(x)� P

�

[

n

2

k+1

]

(x)

�

W













q

L

p

(R)

(25)

�













�

f � P

�

[

n

2

k+1

]

(x)

�

W













q

L

p

(R)

+













�

P

�

[

n

2

k

]

(x)� f

�

W













q

L

p

(R)

� C

11

w

r+1;p

 

f;W;

a

[

n

2

k+1

]

�

n

2

k+1

�

!

q

for some C

11

> 0: Keeping in mind (22) ; we may now combine (15) ; (16) ; (24) and

(25) to give,










P

�(r)

n

	

r

2

n

W










q

L

p

[R]

� C

12

2

4
















l�1

X

k=0

�

P

�(r)

[

n

2

k

]

(x)� P

�(r)

[

n

2

k+1

]

(x)

�

	

r

2

n

W
















q

L

p

(R)

(26)

+










P

�(r)

n

2

l

(x)	

r

2

n

W










q

L

p

(R)

#

5



� C

13

2

4
















l�1

X

k=0

(k + 2)

rq

�

P

�(r)

[

n

2

k

]

(x)� P

�(r)

[

n

2

k+1

]

(x)

�

	

r

2

n

2

k

W
















q

L

p

(R)

(27)

+










l

rq

P

�(r)

n

2

l

(x) 	

r

2

n

2

l

W










q

L

p

(R)

#

(28)

� C

14

"

l�1

X

k=0

 

a

[

n

2

k+1

]

�

n

2

k+1

�

!

rq

(k + 2)

rq













�

P

�

[

n

2

k

]

(x)� P

�

[

n

2

k+1

]

(x)

�

W













q

L

p

(R)

+

 

a

[

n

2

l

]

�

n

2

l

�

!

rq

l

rq

kfWk

q

L

p

(R)

#

for some C

12

; C

13

and C

14

> 0:

We may now combine (26) with (22) and express this as an integral with the

help of (14) and (23) as,

w

r;p

�

f;W;

a

n

n

�

q

� C

15

�

a

n

n

�

rq

"

Z

C

16

a

n

n

w

r+1;p

(f;W; u)

q

u

rq

�

log

2

�

n

u

��

rq

2

du +

�

log

2

�

n

r

��

rq

2

kfWk

q

L

p

(R)

#

1

q

(29)

whereby following the proof carefully, it may be easily seen that C

15

and C

16

are

independent of f and t: Now let t > 0 be small enough and determine n by

(12) : First observe that using (13) and (14) ; we deduce that there exists con-

stants C

17

and C

18

> 0 independent of t and n such that,

C

18

�

logn

log

�

1

t

�

� C

17

(30)

so that using (13) ; (19) and (28) ; (27) becomes,

w

r;p

(f;W; t)

q

� C

19

(t)

rq

"

Z

C

20

a

n

n

w

r+1;p

(f;W; u)

q

u

rq

�

log

2

�

1

ut

��

rq

du +

�

log

2

�

1

tr

��

rq

kfWk

q

L

p

(R)

#

1

q

:

Taking qth roots gives the result.2
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