Marchaud Inequalities for a class of Erdős Weights.

S. B. Damelin, Department of Mathematics, University of the Witwatersrand, P.O. Wits, South Africa.
email: 036SBD@COSMOS.WITS.AC.ZA
May 4, 1995

Abstract

We prove Marchaud Inequalities for a class of Erdős Weights. The main feature of these weights is that they are of faster than polynomial growth at infinity. We also survey some other classical properties of our modulus of continuity.

1 Introduction and Statement of Results

An Erdős Weight is of the form: \(W(x) := \exp[-Q(x)] \), where \(Q : \mathbb{R} \to \mathbb{R} \) is even, \(xQ'(x) \) is increasing and

\[Q > x^r, \quad r > 0, \quad x \geq x_0. \]

That is, \(Q \) is of faster than polynomial growth at infinity [5,6,7]. In particular,

\[W_{k,\alpha}(x) := \exp\left(-\exp_k (-|x|^\alpha)\right) \quad \alpha > 1 \]

and

\[W_{A,B}(x) := \exp\left(-\exp\left[\log\left(A + x^2\right)^B\right]\right) \quad B > 1, \quad A \text{ large enough} \]

are examples of Erdős Weights. Here, \(\exp_k = \exp(\exp(\ldots\exp(\,))) \) denotes the \(k \)th iterated exponential. In [1,2], we considered the subject of weighted polynomial approximation for Erdős Weights, \(W \), and estimated the quantity,

\[E_n[f]_{W,p} := \inf_{P \in \Pi_n} \| (f - P) W \|_{L_p(\mathbb{R})} \]

where \(f : \mathbb{R} \to \mathbb{R} \) is a suitable real valued function. \(\Pi_n \) denotes the class of polynomials of degree \(\leq n \). \(n \geq 1 \) and \(0 < p \leq \infty \). In this paper, we continue this investigation by presenting some interesting properties of our weighted modulus of continuity.

We first however, need some notation and background.
1.1 Notation and Background

1.1.1 \(a_n \)

Given \(W \) an Erdős Weight, set for \(u > 0 \), \(a_u \) to be the Mhaskar–Rakhmanov–Saff number defined as the positive root of

\[
\frac{a}{\sqrt{1-x^2}} = \frac{1}{\pi} \int_0^1 a_u Q \left(a_u t \right) dt.
\]

(4)

For example, for \(W(x) = W_{k, \alpha}(x) \), \(a_n = a_n (Q_{k, \alpha}) \) satisfies

\[
a_n = \left[\log_{k-1} \left(\log n - \frac{1}{2} \sum_{j=2}^{k+1} \log_j n + O(1) \right) \right]^{\frac{1}{1}}
\]

(5)

where \(\log_j = \log (\log \ldots (\log (\log))) \) denotes the \(j \)th iterated logarithm. The importance of \(a_n \) lies in the fact that for \(P \in \Pi_n, \ n \geq 1 \), the quantity \((P W) \) “lives” mostly on \([-a_n, a_n]\) [8].

1.1.2 Moduli and K-Functionals

To prove Jackson and Converse theorems for Erdős Weights, we need a suitable weighted modulus of continuity. This was first introduced in [4], in a similar context and suitably modified in [1, 3]. For \(h > 0 \) and \(r \geq 1 \), let

\[
\Delta_h f (x) := f \left(x + \frac{h}{2} \right) - f \left(x - \frac{h}{2} \right)
\]

and

\[
\Delta_r^j f (x) := \sum_{j=0}^{r} \binom{r}{j} (-1)^j f \left(x + \left(\frac{r}{2} - j \right) h \right)
\]

denote respectively, the first and \(r \)th order symmetric differences of a real valued \(f : \mathbb{R} \rightarrow \mathbb{R} \). Further, set:

(1)

\[
T (x) := \frac{x Q' (x)}{Q (x)} \quad x \in \mathbb{R}
\]

satisfying \(T (x) \rightarrow \infty \) as \(x \rightarrow \infty \).

(2)

\[
\sigma (t) := \inf \left\{ a_u : \frac{a_u}{u} \leq t \right\} \quad t > 0.
\]

(7)

(3)

\[
\Psi_n (x) := \left| 1 - \left(\frac{x}{a_n} \right)^2 \right| + T (a_n)^{-1} \quad x \in \mathbb{R}, \ n \geq 1.
\]

(8)
Then we define for $0 < p \leq \infty$, $t > 0$ and $r \geq 1$ our weighted modulus of continuity,

$$
\Phi_t(x) := \left| 1 - \frac{|r|}{\sigma(t)} \right|^\frac{1}{2} + T(\sigma(t))^{-\frac{1}{2}}, \quad x \in \mathbb{R}, \quad t > 0.
$$

(9)

and corresponding weighted realisation-functional for W given by:

$$
K_{r,p}(f, W, t^r) := \inf_{P \in \Pi_n} \left\{ \| (f - P) W \|_{L_p[\mathbb{R}]} + t^r \left\| P(t^r) \Psi_{\frac{\pi}{r}} W \right\|_{L_p[\mathbb{R}]} \right\}
$$

(11)

where,

$$
n := n(t) = \inf \left\{ k : \frac{a_k}{k} \leq t \right\}
$$

(12)

[1, 2, 3, 4, 6].

1.1.3 Jackson Theorem, and Realization-functional equivalence

For a wide class of Erdős Weights, E, which satisfy \mid in particular \mid,

(a)

$$
W_{k,\alpha}, W_{A,B} \in E,
$$

[recall (1) and (2) \mid,

(b)

$$
a_\alpha u^{-\varepsilon} \longrightarrow 0, \quad u \longrightarrow \infty \quad \forall \varepsilon > 0
$$

$$
\left(\frac{a_\alpha}{a_n} \right) \longrightarrow 1, \quad u \longrightarrow \infty.
$$

(14)

(c)

$$
\sup_{x \in \mathbb{R}} \frac{\Phi_n(x)}{\Psi_m(x)} \leq C \log \left(2 + \frac{n}{m} \right)
$$

(15)

for $m \leq n$, and the Markov-Bernstein inequality

$$
\text{for } m \leq n, \text{ and the Markov-Bernstein inequality}
$$

3
0 < p ≤ ∞, r ≥ 1. P ∈ Π_n and some C_1 > 0 [2, 5, 7], we note the following unpublished results of [1, 2].

Theorem 1.1[Jackson Theorem]
Let W ∈ E, n ≥ N be given by (12), r ≥ 1 and 0 < p ≤ ∞. Then ∃ C_2 > 0, C \neq C_2 (f, t) such that,

\[E_n [f]_{W, p} \leq C_2 w_{r, p} \left(f, W, \frac{a_n}{n} \right). \]

(17)

Theorem 1.2[Equivalence of K-functional and modulus]
Let W ∈ E, L > 0, r ≥ 1 and 0 < p ≤ ∞. Then ∃ C_3, C_4, C_5 > 0 independent of f and t, such that for small enough t > 0,

\[w_{n, p} (f, W, Lt) \leq C_3 K_{n, p} (f, W, t') \leq C_4 w_{n, p} (f, W, C_5 t). \]

(18)

Naturally, it is (18) that allows us to deduce:

Corollary 1.3.
Let W ∈ E, r ≥ 1, 0 < p ≤ ∞. Let t > 0 be small enough and n determined by (12). Then there exists C_5, C_6 > 0 independent of t and n such that uniformly in f,

\[C_5 \leq \frac{w_{n, p} (f, W, \frac{a_n}{n})}{w_{r, p} (f, W, t)} \leq C_6. \]

(19)

2 Statement of Results.

In this paper we use (18) and (19) to deduce a Marchaud Inequality for our modulus. Here is our theorem:

Theorem 1.4.[Marchaud Inequality]
Let W ∈ E and further suppose that W satisfies (16) and (17). Let q = min(1, p), 0 < p ≤ ∞. Then for some C_7, C_8 independent of f and t and t small enough,

\[w_{n, p} (f, W, t) \leq C_7 t^r \left[\int_{t}^{C_8 w_{r+1, p} (f, W, u)^q u^q \left(\log_2 \left(\frac{1}{ut} \right) \right) \frac{du}{u} + \left(\log_2 \left(\frac{1}{itr} \right) \right)^{\frac{q}{2}} \|fW\|_{L^p (\mathbb{R})} \right]^{\frac{1}{q}} \]

(20)

for all f : \mathbb{R} → \mathbb{R} for which (10) and (11) are meaningful.
3 Proof of Theorem 1.4

First let \(n \) be large enough and let \(P_n^* \) be the best approximant to \(f \) which exists and satisfies

\[
E_n [f]_{W,p} := \| (f - P) W \|_{L_p(\mathbb{R})}.
\]

(21)

By (11), (17) and (18) we may thus write using (21),

\[
w_{r,p} \left(f, W, \frac{a_n}{n} \right)^q \\
\leq C_0 \left[\| (f - P_n^*) W \|_{L_p(\mathbb{R})} + \left(\frac{a_n}{n} \right)^q \| P_n^* \Psi \|_{L_p(\mathbb{R})} \right]
\]

(22)

\[
\leq C_{10} w_{r+1,p} \left(f, W, \frac{a_n}{n} \right)^q + \left(\frac{a_n}{n} \right)^q \| P_n^* \Psi \|_{L_p(\mathbb{R})}
\]

for some \(C_0, C_{10} > 0. \) Here we use the inequality \((a + b)^\alpha \leq a^\alpha + b^\alpha\) for \(a, b > 0, 0 < \alpha < 1. \) Now choose \(l = l(n) \) such that

\[r^{2l+2} \geq n \geq r^{2l+1} \]

(23)

where \(n \geq 2r \) and write

\[
P_n^* (x) = \sum_{k=0}^{l-1} \left(P_{\left[\frac{x}{2^{l+1}} \right]}^* (x) - P_{\left[\frac{x}{2^{l+1}} \right]} (x) \right) + P_{\left[\frac{x}{2^{l+1}} \right]} (x)
\]

(24)

where \([x] = \text{the largest integer} \leq x.

Using (16) and (21) gives for \(0 \leq k \leq l, \)

\[
\left\| \left(P_{\left[\frac{x}{2^{k+1}} \right]}^* (x) - P_{\left[\frac{x}{2^{k+1}} \right]} (x) \right) W \right\|_{L_p(\mathbb{R})}^q
\]

(25)

\[
\leq \left\| (f - P_{\left[\frac{x}{2^{k+1}} \right]}^* (x) \mu \right\|_{L_p(\mathbb{R})}^q + \left\| \left(P_{\left[\frac{x}{2^{k+1}} \right]}^* (x) - f \right) W \right\|_{L_p(\mathbb{R})}^q
\]

\[
\leq C_{11} w_{r+1,p} \left(f, W, \frac{a_n}{n} \right)^q
\]

for some \(C_{11} > 0. \) Keeping in mind (22), we may now combine (15), (16), (24) and (25) to give,

\[
\left\| P_n^* \Psi \right\|_{L_p(\mathbb{R})}^q \leq C_{12} \left[\left\| \sum_{k=0}^{l-1} \left(P_{\left[\frac{x}{2^{k+1}} \right]}^* (x) - P_{\left[\frac{x}{2^{k+1}} \right]}^* (x) \right) W \right\|_{L_p(\mathbb{R})}^q
\]

(26)

\[+ \left\| P_{\left[\frac{x}{2^{l+1}} \right]}^* (x) \Psi \right\|_{L_p(\mathbb{R})}^q \]

\]
\[C_{13} \left[\sum_{k=0}^{n-1} (k+2)^r \left(P_\frac{r}{2}^{(r)} \left(x \right) - P_{\frac{r}{2}+1}^{(r)} \left(x \right) \right) \right]_{L_p(\mathbb{R})}^q + \left\| I^q P_\frac{r}{2}^{(r)} \left(x \right) \right\|_{L_p(\mathbb{R})}^q \]

\[C_{14} \left[\sum_{k=0}^{n-1} \frac{a_1(x+1)}{k+2} \left(k+2 \right)^r \left(P_\frac{r}{2}^{(r)} \left(x \right) - P_{\frac{r}{2}+1}^{(r)} \left(x \right) \right) \right]_{L_p(\mathbb{R})}^q + \left\| \frac{d^r}{d x^r} \right\|_{L_p(\mathbb{R})}^q \]

for some \(C_{12}, C_{13} \) and \(C_{14} > 0 \).

We may now combine (26) with (22) and express this as an integral with the help of (14) and (23) as.

\[w_{r,p} \left(f, W, \frac{a_n}{n} \right) \leq C_{15} \left(\frac{a_n}{n} \right)^r \left[\int_{\mathbb{R}} \frac{w_{r+1,p} \left(f, W, u \right)^q}{u^q \left(\log \left(\frac{u}{n} \right) \right)^{\frac{2}{r}}} du + \left(\log \left(\frac{n}{p} \right) \right)^{\frac{2}{r}} \left\| f W \right\|_{L_p(\mathbb{R})}^q \right] \]

whereby following the proof carefully, it may be easily seen that \(C_{15} \) and \(C_{16} \) are independent of \(f \) and \(t \). Now let \(t > 0 \) be small enough and determine \(n \) by (12). First observe that using (13) and (14), we deduce that there exists constants \(C_{17} \) and \(C_{18} > 0 \) independent of \(t \) and \(n \) such that

\[C_{18} \leq \frac{\log n}{\log \left(\frac{1}{t} \right)} \leq C_{17} \]

so that using (13), (19) and (28), (27) becomes.

\[w_{r,p} \left(f, W, t \right)^q \leq C_{19} \left(t \right)^r q \left[\int_{\mathbb{R}} w_{r+1,p} \left(f, W, u \right)^q du + \left(\log \left(\frac{1}{t} \right) \right)^q \left\| f W \right\|_{L_p(\mathbb{R})}^q \right] \]

Taking \(q \)th roots gives the result. \(\square \)

4 Acknowledgements

The author would like to thank D. S Lubsinsky for his many hours of guidance and advice during the course of this research.

References

[1] Damelin, S. B and Lubinsky, D. S., Jackson theorems for Erdős weights in \(L_p \) (0 \(\leq p \leq \infty \)), in preparation.
[2] Damelin, S. B., Jackson and realisation theorems for Erdős weights in $L_p (0 < p \leq \infty)$, in preparation.

[3] Ditzian, Z and Lubinsky, D. S., Jackson and smoothness theorems for Freud weights in $L_p (0 < p \leq \infty)$, manuscript.

