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Abstract
We prove Marchaud Inequalities for a class of Erdés Weights. The
main feature of these weights is that they are of faster than polynomial
growth at infinity. We also survey some other classical properties of our
modulus of continuity.

1 Introduction and Statement of Results

An Erdés Weight is of the form: W (x) := exp [-Q(z)], where @ : R — R is
even, z@'(z) is increasing and

Q>z",r>0, x> x.
That is, @ is of faster than polynomial growth at infinity [5,6,7]. In particular,
Wisa (&) 1= exp (= expy (—[2]%)) a > 1 1
and
Wa,B(x) := exp (— exp [log (4 + wz)]B) B >1, A large enough (2)

are examples of Erdés Weights. Here, exp;, = exp (exp (...exp ())) denotes the
kth iterated exponential. In [1,2], we considered the subject of weighted poly-
nomial approximation for Erdés Weights, W, and estimated the quantity,

En[flwyp = (f - P)WHLP(R) (3)

where, f : R — R is a suitable real valued function, II,, denotes the class
of polynomials of degree < n, n > 1 and 0 < p < oco. In this paper, we con-
tinue this investigation by presenting some interesting properties of our weighted
modulus of continuity.

We first however, need some notation and backround.
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1.1 Notation and Backround
1.1.1 a,

Given W an Erd6s Weight, set for u > 0, a, to be the Mhaskar—-Rakhmanov—
Saff number defined as the positive root of,
_ 2 ! ath, (aut)
T Jo V1-—t2

For example, for W(z) = Wi, o (), an = a, (Qk,q) satisfies,

dt. (4)

k1
ap, = |log,_; | logn — 3 Zlogj n +0(1) (5)

j=2

where log; = log (log ... (log ())) denotes the jth iterated logarithm.The impor-
tance of a,, lies in the fact that for P € II,,, n > 1, the quantity (PW) “lives”
mostly on [—an, a,][8].

1.1.2 Moduli and K-Functionals

To prove Jackson and Converse theorems for Erdés Weights, we need a suitable
weighted modulus of continuity. This was first introduced in [4], in a similar
context and suitably modified in [1,3]. For h > 0 and r > 1, let

i@ =t (o+5) -1 (o 3)

@ =3 (1) (e (5-a)n)

j=0

and

denote respectively, the first and rth order symmetric differences of a real valued
f i R — R. Further, set:

(1)

Q@
T (z) := e eR (6)
satisfying T (z) — oo as z — o0.
(2)
o (t) ::inf{au:%gt} t>0. (7)
(3) )
U, () := 1—(';—') +T(ay) ", zeR n>1. (8)




(4)

=

q»t(w)::‘l_ﬂ YT (o), zeR t>0. 9)

o (1)

Then we define for 0 < p < oo, t > 0 and r > 1 our weighted modulus of
continuity,

wep (FWA) = = sup [WAk @) |, o1 <o 00 (10)

+ peiﬁf,l IF = PYWlL, 1200

and corresponding weighted realisation-functional for W given by:

e} O

n::n(t):inf{k: %kgt} (12)

Koy (100 i= jut {17 = PYWI, oy 0 [P0

where,

[1,2,3,4,6].
We remark that it is shown in [1,2], that if ¢ > 0 is small enough and n is
determined by (12) then,

In << ofn, (13)
n n

1.1.3 Jackson Theorem, and Realization-functional equivalence
For a wide class of Erd6s Weights, £, which satisfy [ in particular],
(a)
Wha, Wap €€,

[recall (1) and (2)],

(b)
ayu® —0, u—00 Ye>0 (14)
<Z—%)—>1,u—>oo,
(c) % @
n(z n
< C1l 24+ — 1
<O () =

for m < n, and the Markov-Bernstein inequality



<y ua
Ly(R) Qn Ly(R)

0 <p<oo, r>1, P ell, and some C; > 0[2,5,7], we note the
following unpublished results of [1,2].

HP(T+1)W@§,

P(T)W‘

(16)

Theorem 1.1] Jackson Theorem]
Let W € &, n > N be given by (12), r > 1 and 0 < p < oo. Then 3 Cy >
0, Cy # C5 (f,t) such that,

Ep[flw, < Cowryp (f, W, ‘;—”) : (17)

Theorem 1.2[ Equivalence of K-functional and modulus]

Let W e & L >0, r>1and 0 < p < oo. Then 3 C5,C4,C5 > 0
independent of f and ¢, such that for small enough t > 0,

wnp (.f: W7 Lt) S CSKnp (f7 W: tr) S C4wr7p (.f: W7 C5t) . (18>

Naturally, it is (18) that allows us to deduce:

Corrolary 1.3.

Let We&, r>1, 0<p<oo. Let t >0 be small enough and n determined
by (12). Then there exists Cs,Cs > 0 independent of ¢ and n such that uni-
formly in f,

Wy,p (f7 w, a_n)
Cy < 227 1/ < (. 19
AT 1

2 Statement of Results.

In this paper we use (18) and (19) to deduce a Marchaud Inequality for our
modulus. Here is our theorem:
Theorem 1.4. [ Marchaud Inequality]

Let W € £ and further suppose that W satisfies (16) and (17). Let ¢ =
min (1,p), 0 < p < oo. Then for some C7,Cs independent of f and ¢ and
t small enough,

% w, , W, u)? 1\\*® :
wrp (F, W, 1) < Crt" V r1p U/ . )%qdu + (10g2 (;)) IFWIIL, )
¢ ur (log, (37))

for all f:R — R for which (10) and (11) are meaningful.

(20)



3 Proof of Theorem 1.4

First let n be large enough and let P be the best approximant to f which exists
and satisfies,

Eulflwy = 0 = PYW I, - (21)
By (11),(17) and (18) we may thus write using (21),
an\4
wT,p (fa W7 ;) (22)
* Qp e *(7r %
< G I - POWlye+ (2)" |iowiw], ]
ap\ 4 ap\"? *(r)qp 2
< oy (250 (3) " [Er0wiw]

for some Cy,C19 > 0.Here we use the inequality (a +b)* < a® +b* a,b >
0, 0 < a < 1. Now choose | =1 (n) such that,

r2i2 > > p2ltt (23)
where n > 2r, and write,
-1
P @) = 3 (Fiy) @) = o) ) + Py @) (24)
k=0 2 2 2

where [z] =the largest integer < z.
Using (16) and (21) gives for 0 < k <1,

q

|- g} ], .
T
< CuWrsip (f: W, (E[jil]])q

for some C1; > 0. Keeping in mind (22) , we may now combine (15), (16) , (24) and
(25) to give,




-1 q
< s ||Do(k+2) (P[*% () Pf‘(,?il] (w)) vE W (27)
k=0 ’ ’ L,(R)
+ |l () \IJ__W‘ ! ] (28)
2l 2l L,(R)
() '
= o kz:;) ( [;k%] > (2 <P[;_’“] )~ P (x)> o Ly (R)

a[;_l] " rq q
() e g
Ed

for some Ci5,C13 and Cy4 > 0.
We may now combine (26) with (22) and express this as an integral with the
help of (14) and (23) as,

r C1 q 7’2_f1
Wrp (f, w, %)q < Cys (%) q l/aTn 6 %du + (logg (%)) ||fW||qu(R)]

1
q

(29)
whereby following the proof carefully, it may be easily seen that C5 and Ci4 are
independent of f and ¢. Now let £ > 0 be small enough and determine n by
(12) . First observe that using (13) and (14), we deduce that there exists con-
stants C17 and C1g > 0 independent of ¢ and n such that,

logn <c

log (1) =

Cis < (30)

so that using (13),(19) and (28), (27) becomes,

1

. Cao w, f,W,u q 1 rq q
wrp (f, W, 1) < C1o ()" [/1 W‘m + <log2 (E)) WL, -
N 2 \ut

Taking gth roots gives the result.O]
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