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Abstract

In this short article, we explore some methods, results and open prob-

lems dealing with weighted Marcinkiewicz-Zygmund inequalities as well

as the numerical approximation of integrals for exponential weights on

the real line and on finite intervals of the line. The problems posed are

based primarily on ongoing work of the author and his collaborators and

were presented at the November 2001 Oberwolfach workshop: ’Numerical

integration and Complexity.’
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1 Introduction

This short article deals with the subject of weighted Marcinkiewicz-Zygmund
inequalities as well as the numerical approximation of integrals with decaying
or singular kernels for exponential weights on the real line or finite intervals of
the line. The problems and methods posed, are based primarily, on ongoing
and recent work of the author and his collaborators and were presented at the
November 2001 Oberwolfach workshop: ’Numerical integration and Complex-
ity.’ We hope that this article, together with other comprehensive although less
recent surveys on this subject, (see [29], [30], [42], [46] and the references cited
therein), will help to advertise this area of research which continues to attract
much interest.

To set the scene for our investigations, let I := (c, d) with −∞ ≤ c < 0 <
d ≤ ∞ and

χn :=
{

x1,n, x2,n, . . . , xn,n

}

, n ≥ 1
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a triangular array of points on I. By a weight w on I, we will mean a positive
function on I with xnw(x) ∈ L1(I), n = 0, 1, ....

It is folklore that the Gauss quadrature formula for w takes the form

n
∑

j=1

λj,nP (xj,n) =

∫

I

(Pw)(x)dx (1.1)

for P ∈ Π2n−1, the linear space of algebraic polynomials of degree ≤ 2n−1, n ≥
1. Here λj,n, 1 ≤ j ≤ n are the Cotes numbers associated with w, see [19].

More precisely, in this paper we will be interested in a class of admissible

exponential weights w on I for which the following are archetypal examples:

• symmetric exponential weights on the line of polynomial decay:

wα(x) := exp (−|x|α) , α > 1, x ∈ (−∞,∞);

• non-symmetric exponential weights on the line with varying rates of poly-
nomial and faster than polynomial decay:

wk,l,α,β(x) := exp(−Qk,l,α,β(x))

with

Qk,l,α,β(x) :=

{

expl (x
α) − expl(0), x ∈ [0,∞),

expk

(

|x|β
)

− expk(0), x ∈ (−∞, 0)

where l, k ≥ 1 and α, β > 1;

• non-symmetric exponential weights on (−1, 1) with varying rates of decay
near ±1:

wk,l,α,β(x) := exp(−Qk,l,α,β(x))

with

Qk,l,α,β(x) :=

{

expl(1 − x2)−α − expl(1), x ∈ [0, 1),
expk(1 − x2)−β − expk(1), x ∈ (−1, 0)

where l, k ≥ 1 and α, β > 1.

Here and throughout, expk and logk denote kth iterated exponentials and log-
arithms respectively.

The weights wα are called even Freud weights (the Hermite weight is just
w2) in the literature and wk,k,α,β and wk,k,α,β are called even Erdös and even
generalized Pollaczek weights respectively. See [3], [11], [37], [25] and the ref-
erences cited therein. Throughout Π will denote the linear space of algebraic
polynomials and C will be an absolute positive constant independent of t, x, n,
f and P which will take on different values at different times.

The connection between convergence of Lagrange interpolation and conver-
gence of Gauss quadrature is well known, see [19]. Let f : R → R be in the
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L2(w) closure of Π. Let Ln[f, χn] := Ln[f ] be the Lagrange interpolation poly-
nomial of degree n − 1 to f with respect to χn. Then, if χn consists of the
n simple zeroes of the unique orthonormal polynomials pn(w2) with respect to
the weight w2, we have Shohat’s extension to infinite intervals, of Erdös and
Turan’s classical result on L2 convergence of Lagrange interpolation, see [19],
[14] and the references cited therein.

Fact

lim
n→∞

∫

I

(f − Ln[f, χn])2(x)w(x)dx = 0

iff for every P ∈ Π

lim
n→∞

n
∑

j=1

λj,n(f − P )2(xj,n) =

∫

I

(f − P )2(x)w(x)dx.

In studying weighted mean convergence of Lagrange interpolation for 1 <
p < ∞, p 6= 2 and other arrays χn on I, one needs extensions of Shohat’s result
and forward ( and converse) quadrature sum inequalities called Marcinkiewicz-

Zygmund inequalities which are weaker than (1.1). These take the form:

∫

I

(|Pw|(x))pdx ≤ (≥)C (1.2)

n
∑

j=1

λj,nw−2(xj,n)|(Pw)(xj,n)|p, P ∈ Πn−1.

1.1 Forward Quadrature

Suppose that we have a forward quadrature estimate of the form:

n
∑

j=1

λj,nw−2(xj,n)V (xj,n)|(Pw)(xj,n)|p ≤ C

∫

I

(|Pw|(x))pV (x)dx (1.3)

for some smooth decaying function V near c and d and an array χn. For example
suppose that I = R,

V (x) = (1 + x2)−1/p, x ∈ R

and let us assume that f : R → R is continuous and satisfies that for every ε > 0
there exists x0 ∈ R so that

|fwV −1|(x) ≤ ε, |x| > x0. (1.4)

For wα and wk,k,α,β , (1.4) is enough to guarantee that f is in the L∞(wV −1)
closure of Π, see [10]. Now let q := p

p−1 and observe by duality that we have

||Ln[f ]w||p = sup{g: ||gw||q=1}

∫

R

Ln[f ](x)g(x)w2(x)dx. (1.5)
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For such g, let

Sn[g] =

n−1
∑

j=0

cjpj(w
2)(x), cj =

∫

R

(gpj(w
2)w2)(x)dx

be the (n − 1)th partial sum of the orthonormal expansion of g. Then, as
g − Sn[g] is orthogonal to Πn−1, we may apply (1.1), (1.2) (with p = 1), the
mean boundedness of Sn from Lp to Lp with suitable weights and a general
method as outlined in [14], [10],[39], [40], [41] and the references cited therein,
to show that given any ε > 0,

∣

∣

∣

∣

∫

R

(Ln[f ]gw2)(x)dx

∣

∣

∣

∣

≤ Cε||V ||p ≤ ε. (1.6)

Since f is in the L∞(wV −1) closure of Π and Ln[P ] = P for all P ∈ Πn−1, (1.5)
and (1.6), show that given any ε > 0, we have for every continuous f : R → R

satisfying (1.4),
limsupn→∞||(Ln[f ] − f)w||p ≤ ε. (1.7)

Letting ε → 0+, gives weighted mean convergence of Ln[f ] to f .

1.2 Converse Quadrature

Suppose that we have a converse quadrature estimate of the form:

||Pw||p ≤ C







n
∑

j=1

λj,nw−2(xj,n)|Pw|p(xj,n)







1/p

(1.8)

for P ∈ Πn−1 and an array χn. Then with I, V and f as above and using (1.8)
and (1.4), one may deduce, see [20], [9], [15], [26], [27] and the references cited
therein, that for every ε > 0

||Ln[f ]w||p ≤ C







n
∑

j=1

λj,nw−2(xj,n)|fw|p(xj,n)







1/p

(1.9)

≤ ε







n
∑

j=1

λj,nw−2(xj,n)V p(xj,n)







1/p

.

Suppose now that
λj,nw−2

|xj,n−xj−1,n| is bounded uniformly from above and below by

positive constants uniformly in j and n. This is true for wα, wk,l,α,β and wk,l,α,β ,

see [25] and [15]. Then as V (t)
V (xj,n) is bounded uniformly for t ∈ [xj−1,n, xj,n] and

for 0 ≤ j ≤ n, the last term in (1.9) is bounded by ε
(∫

R
V p(x)dx

)1/p
for all n.

Again we may deduce weighted mean convergence. We mention that in practice,
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the choice of V is not arbitrary and depends heavily on the rate of decrease of
w, see for example [10], [14] and [28].

Remark 1

Historically, forward and converse quadrature sum estimates were first con-
sidered by Marcinkiewicz and Zygmund in [51] for convergence of trigonometric
polynomials interpolating a trigonometric 2π periodic function at equidistant
nodes in [0, 2π). Thereafter they were applied by Askey, Nevai (and his stu-
dents), Xu and Mastrioanni for Jacobi, generalized Jacobi weights on (−1, 1)
and the Hermite weight on R and by Mastrioanni, Russo, Totik and Erdélyi for
doubling weights on finite intervals, see [1], [18], [35], [36], [39], [40], [41], [48],
[49] and the references cited therein. We also mention related work of Mhaskar,
Narkowich and Ward [38], on spheres in R

d+1, d ≥ 1, work of Lubinsky for gen-
eral arrays on finite intervals, see [31] and that of Damelin and Rakhmanov for
weighted polynomials of the form Pnwn, see [16]. Recently, see [3], [4], [10], [9],
[11], [12], [13], [14], [15], [26], [27], [28], [32], [33] and the references cited therein,
Lubinsky, Damelin and their collaborators have concentrated on proving (1.3),
(1.8) for the even weights wα, wk,k,α,β and wk,k,α,β with applications to mean
and uniform convergence of Lagrange and Hermite-Fejér of higher order. The
main motivation in studying these classes of weights, in these contexts, is so that
in the infinite case one can approximate functions that may become unbounded
at ±∞ or in the finite case, functions which may have exponential singularities
at ±1.

Remark 2

We remark that the use of Marcinkiewicz-Zygmund inequalities, as we have
used them in Lp(1 < p < ∞), do not yield rates of convergence in general for
the weights wα, wk,k,α,β and wk,k,α,β . For p = ∞, one can estimate ||Ln[f ]w||p
differently for certain arrays and prove estimates of the form

||Ln[f ]w||∞ ≤ Cg(n)||fw||∞ (1.10)

for suitable g : (0,∞) → R and for all f satisfying (1.4) with a suitable damping
factor V . This yields rates of convergence. For example if w = wα and χn

consists of the zeroes of pn(w2) together with two additional points near the
largest zeroes of pn(w2), see for example [44] and [3], then g(n) in (1.10) may
be taken as log n and this estimate is essentially best possible for all such f .
If we allow a smaller subclass of f than that of [7], it is possible to apply the
method of (1.6) and recent results of [5] to remove the factor log n from (1.10)
completely. See [8].

If χn consists of the zeroes of pn(w2) where w = wα, then we know now
from [17], that in order to obtain estimates such as (1.10) in Lp, one needs
to approximate by Ln[f∗] where f∗ is f truncated near the largest zeroes of
pn(w2).
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1.3 Open Problem 1

The tools required to establish forward and converse quadrature estimates for
weights such as wα, wk,l,α,β and wk,l,α,β rely on Markov-Bernstein inequali-
ties, large Sieve methods and orthogonal expansions, (see [39],[40], [41], [14],
[10], [33] and the references cited therein), duality and Konig’s method and its
improvements, (see [20], [15], [9], [26], [32] and the references cited therein),
Caleson measures, (see [25], [50] and the references cited therein) and estimates
for pn(w2), its zeroes and λj,n,(see [25] and the references cited therein).

Consider the following class of admissible weights for which wα, wk,l,α,β and
wk,l,α,β are prime examples:

Let w : I → (0,∞) satisfy the following conditions below:

• Q := log(1/w) is continuously differentiable and satisfies Q(0) = 0;

• Q′ is nondecreasing in I with

lim
x→c+

Q(x) = lim
x→d−

Q(x) = ∞;

• The function

T (x) :=
xQ′(x)

Q(x)
, x 6= 0

is quasi-increasing in (0, d) (i.e. T (x) ≤ CT (y), 0 < x ≤ y < d) and
similarly quasi decreasing in (c, 0) with

T (x) ≥ λ > 1, x ∈ I\0;

• There exists ε0 ∈ (0, 1) such that for y ∈ I\{0}

T (y) ∼ T

(

y

[

1 −
ε0

T (y)

])

;

• For every ε > 0, there exists δ > 0 such that for every x ∈ I\{0},

∫ x+ δx
T (x)

x− δx
T (x)

|Q′(s) − Q′(x)|

|s − x|3/2
ds ≤ ε|Q′(x)|

√

T (x)

|x|
.

For these later admissible weights, sharp bounds and asymptotics for pn(w2)
and its zeroes were worked out in [25]. Note that we allow w to have different
rates of smooth decrease to the left and right of 0 and that Q′′ need not exist,
instead we require a a local Lipschitz condition on Q′. Admissible weights have
since been applied for weighted Hilbert transforms under weaker hypotheses in
[2].

In view of the remarks made above, it is now possible to raise the following
open problem:
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Formulate and prove analogues of (1.3) and (1.8) for admissible weights as
well as density criteria such as those in (1.4) and use these tools to study mean
and uniform convergence of Lagrange interpolation and orthogonal expansions.
Also investigate methods to obtain rates of convergence. Some results related
to this problem have been proved in [8] and [24].

1.4 Product integration rules and weighted Hilbert trans-

forms

Let w be admissible and suppose we are given an unspecified smooth function
f : R → R, with fw decaying at some given smooth rate at c and d. We wish
to numerically approximate

I[k, f ] :=

∫

I

f(t)k(t)dt (1.11)

where k is a specified kernel which typically decays near c and d. For example, if
w = wα, we may assume that fw decays at ±∞ as (1+ |x|)−α for some positive
α and then k would satisfy for some 0 < p < ∞ and real ∆ = ∆(p, α)

||(kw−1)(x)(1 + |x|)∆||p < ∞.

Alternatively, for the same f , we may set

I[k, f ](x) :=

∫

I

(fw)(t)k(t, x)dt, x ∈ I (1.12)

where k(t, x) := (x − t)−1 and the integral is understood as a Cauchy principal
valued integral. Note that I[k, f ](x) is just the weighted Hilbert transform of
f .

Now given an array χn, form the rules

I∗n[k, f ](x) :=

n
∑

j=1

wj,n(x)f(xj,n) (1.13)

where the weights wj,n are chosen so that In reproduces polynomials P ∈
Πn−1, n ≥ 1. In [27], [6] and [7], conditions for pointwise convergence of
I∗n[f, k](x) to I[f, k](x) for even Freud weights such as wα were established
for arrays χn consisting of the zeroes of pn(w2) and arrays consisting of the
zeroes of pn(w2) plus two additional points which dampen the growth of the
Lebesgue constant of Ln[.] near the largest zeroes of pn(w2). Such arrays have
also proved useful in studying mean and uniform convergence of Lagrange and
higher Hermite Fejér interpolation, see [10], [3], [4], [26], [9], [11], [13], [28], [32],
[44] and the references cited therein.
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1.5 Open Problem 2

The tools required to establish error bounds and convergence for the above
integration rules for admissible weights rely on Markov-Bernstein inequalities,
bounds on weighted Hilbert transforms, bounds on functions of the second kind,
Markov-Stieltjes inequalities, Peano kernel theory and estimates for pn(w2), its
zeroes and λj,n. See [6], [7], [2], [8], [27] and the references cited therein, for a
detailed account of how these methods are applied for wα, wk,k,α,β and wk,k,α,β .
In view of the discussion above, it is now possible to raise the following open
problem: Formulate and prove necessary and sufficient conditions for mean and
pointwise convergence of integration rules such as those given by (1.11) for
admissible weights. Some results related to this problem have been proved in
[8] and [24].
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