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Abstract

We study the asymptotic distribution of general interpolation arrays

for a large class of even exponential weights on the line and (�1; 1). Our

proofs rely on deep properties of logarithmic potentials. We conclude with

some open problems.
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1 Introduction

This article grew out of a recent interesting paper of Szabados [14]. Recently,

there has been quite an intense interest in developing the theory of weighted

Lebesgue constants on the real line and on (�1; 1) for speci�c and general ar-

rays. The above has been applied, in particular, to the theory of weighted

Lagrange and other higher order Hermite-Fej�er processes. We refer the reader

to [1], [2], [4], [8], [19], [20], [21], [23], [24], and the many references therein for

a comprehensive survey of this subject. Our interest in this paper is to study

the asymptotic distribution of general interpolation arrays for a large class of

even exponential weights, w, on the real line and (�1; 1). Our main observation

will be that provided the Lebesgue constant for the array does not grow geo-

metrically fast for large n, points of interpolation cannot distribute themselves

asymptotically too far from the scaled endpoints of the equilibrium measure �

w

for the weight w. Moreover, the discrepancy of this distribution may be calcu-

lated precisely and simultaneously by the rate of decay of w near �1 or near

�1. We refer the reader to Remark 1.2 below for a further discussion of this

idea and to recent work of [5], [6], [10] and the references cited therein.

One of our main results, Theorem 1.4 below, will cover Freud type weights

such as

w

�

(x) := exp (�jxj

�

) ; � > 1; x 2 R; (1.1)
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Erd}os type weights such as

w

k;�

(x) := exp

�

� exp

k

�

jxj

�

��

; � > 0; k � 1; x 2 R; (1.2)

and Pollaczek weights of the form

w

0;


(x) := exp

�

�(1� x

2

)

�


�

; 
 > 0; (1.3)

and

w

k;


(x) := exp

�

� exp

k

(1� x

2

)

�


�

; 
 > 0; k � 1; x 2 (�1; 1): (1.4)

Here and throughout, exp

k

denotes the k-th iterated exponential. Freud weights

are characterised by their smooth polynomial decay at in�nity and Erd}os weights

by their faster than smooth polynomial decay at in�nity. Generalised Pollaczek

weights decay strongly near �1 as exponentials and are of faster decay than

classical Jacobi weights. They violate the well known Szeg}o condition for or-

thogonal polynomials [9, Chapter 5, p. 208].

In the opposite direction, for a given exponential weight w and a speci�c or

general array of interpolation points, one may ask for upper and lower bounds

for the corresponding Lebesgue constant. These questions are dealt with in [1],

[2], [19], [23], and [24].

To set the scene for our investigations, let I be a real interval of positive

length and let

w : I �! (0;1)

be a continuous weight. If I is unbounded, assume further that

lim

jxj!1

jxjw(x) = 0; x 2 I:

We set

Q := � logw;

and call w admissible and Q the external �eld associated with w.

Now let

�

n

:= fx

1;n

< x

2;n

< ::: < x

n+1;n

; n � 1g

be a triangular array of n + 1 points in I and for each n � 1, we de�ne the

Lebesgue constant associated with an admissible varying weight w

n

and a tri-

angular array �

n

by

�(w

n

; �

n

) = �

n

:=
















w

n

n+1

X

k=1

jl

k;n

j

w

n

(x

k;n

)
















I

:
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Here k:k denotes the sup norm and

l

k;n

(x) :=

n+1

Y

i=1

i6=k

x� x

i;n

x

k;n

� x

i;n

; k = 1; :::; n+ 1; x 2 I

are the fundamental polynomials in �

n

, the class of algebraic polynomials of

degree at most n, satisfying

l

k;n

(x

j;n

) =

�

1; j = k;

0; j 6= k:

The number �

n

arises in a natural way in the theory of weighted interpolation,

see [1], [2], [19], [20], [21], [23], [24], and the references cited therein.

The equilibrium measure (see [18] and [22]) in the presence of an admissible

external �eld

Q : I �! R

is the unique Borel probability measure �

w

with compact support on I satisfying

for a unique constant F

w

,

M

w

(x) := U

�

w

(x) +Q(x)� F

w

= 0; x 2 supp(�

w

); (1.5)

and

M

w

(x) � 0; x 2 I: (1.6)

Here, U

�

w

denotes the logarithmic potential of �

w

, i.e.,

U

�

w

(x) :=

Z

I

log

1

jx� tj

d�

w

(t); x 2 C :

Following is our �rst result:

THEOREM 1.1. Let w be an admissible weight and for each n � 1, let �

n

be a triangular array of n+1 points in I and �

n

the associated Lebesgue constant

for the varying weight w

n

and the array �

n

. Then uniformly for i = 1; :::; n+1,

M

w

(x

i;n

) �

log�

n

n

: (1.7)

In particular, if

lim sup

n!1

�

1=n

n

� 1; (1.8)

then

lim

n!1

M

w

(x

i;n

) = 0: (1.9)

REMARK 1.2:
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(a) Using (1.5) and the non-negativity of the Lebesgue constant, it is immedi-

ate that (1.7) holds for interpolation points in supp(�

w

). Thus the essence

of formula (1.7) is that it gives us information on the asymptotic location of

interpolation points outside supp(�

w

). Such information is useful in many

aspects of weighted polynomial approximation; see [1], [2], [15], [16], [17],

[19], [20], [21], [22], [23], [24], and the references cited therein.

(b) Given an admissible weight w and following an idea of [10, p. 2], we shall

say that the pair (I; w) has an asymptotic interpolation measure if there

exists a compactly supported Borel measure � on I such that (1.8) implies

�

(

�

n

) :=

1

n+ 1

n+1

X

k=1

�

x

k;n+1

! �; n!1 (1.10)

weak star. The main purpose of this paper is to show that for a class of

strongly admissible weights, see (1.1)-(1.4) and De�nition 1.3 below, it is

possible to estimate the speed of convergence in (1.9), and hence describe

the discrepancy in (1.10), for � = �

w

, precisely and simultaneously by the

rate of decay of w near �1 or near �1.

To state our main result, we require some additional notation. To this end,

let us agree that henceforth C will denote a positive constant depending on

w which may take on di�erent values at di�erent times, I+ will denote either

(0;1) if I is R and (0; 1) if I is (�1; 1). Moreover, for any two sequences b

n

and

c

n

of non zero real numbers, we shall write b

n

= O(c

n

) if there exists a positive

constant C, independent of n, such that

b

n

� Cc

n

; n!1;

and b

n

� c

n

if

b

n

= O(c

n

) and c

n

= O(b

n

):

Similar notation will be used for functions and sequences of functions.

Our class of admissible weights w will then be assumed to be strongly admis-

sible in the sense of the following de�nition which is taken from a combination

of [13, Theorem 1.1], [12, De�nition 1.1], and [14, De�nition 1.1].

1.1 Class of strongly admissible weights

We start with

DEFINITION 1.3. Let w be admissible and even.

(a) Assume that Q

00

is continuous in I+ and Q

00

, Q

0

� 0 in I+.

(b) The function

T (x) := 1 +

xQ

00

(x)

Q

0

(x)

; x 2 I+
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satis�es for large enough x or x close enough to �1

T (x) �

xQ

0

(x)

Q(x)

:

Moreover T satis�es either:

(b1) There exist A > 1 and B > 1 such that

A � T (x) � B; x 2 I + :

(b2) T is increasing in I+ with lim

x!0+

T (x) > 1. If I = R,

lim

jxj!1

T (x) =1;

and if I = (�1; 1), for x close enough to �1,

T (x) �

A

1� x

2

;

for some A > 2.

Then w shall be called a strongly admissible weight.

Canonical examples are the weights listed in (1:1)� (1:4).

We shall prove:

THEOREM 1.4. Let w be a strongly admissible weight and for each n � 1,

let �

n

be a triangular array of n+1 points in I and �

n

the associated Lebesgue

constant for the weight w and the array �

n

. Let �a

n

; n � 1 denote the endpoints

of supp(�

w

1=n

) given by

n =

2

�

Z

1

0

a

n

tQ

0

(a

n

t)

p

1� t

2

dt:

Suppose in addition that

lim sup

n!1

log�

n

n(T (a

n

))

1=2

< 1: (1.11)

Then there exists N

0

, such that for n � N

0

,

max fjx

j;n

j : 1 � j � n+ 1g � Ca

n

�

1 +

log�

n

nT (a

n

)

�

2=3

: (1.12)

We now show how Theorem 1.4 may be applied with the weights given by

(1.1)-(1.4). In doing so, we will describe for these weights, the growth of the

sequences a

n

and T (a

n

). For general results in this direction, we refer the reader

to [11], [12], [13], and [14]. We remark that it is possible, using recent results

in [11], to weaken our admissiblity assumptions to allow for weights where Q

(2)

need not exist and rather Q

0

satis�es a local Lipchitz 1=2 condition.
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COROLLARY 1.5a: Freud weights. Let w

�

be given by (1.1) and for each

n � 1, let �

n

be a triangular array of points in R and �

n

the associated Lebesgue

constant. Then there exists N

0

such that for n � N

0

,

max fjx

j;n

j : 1 � j � ng � Cn

1=�

�

1 +

log�

n

n

�

2=3

: (1.13)

COROLLARY 1.5b: Erd}os weights. Let w

k;�

be given by (1.2) and for each

n � 1, let �

n

be a triangular array of points in R and �

n

the associated Lebesgue

constant. Then there exists N

0

such that for n � N

0

,

max fjx

j;n

j : 1 � j � ng (1.14)

� C(log

k

n)

1=�

 

1 +

log�

n

n

Q

k

l=1

log

l

n

!

2=3

:

COROLLARY 1.5c: Pollaczek weights. Let w

k;


be given by (1.3) and (1.4)

and for each n � 1, let �

n

be a triangular array of points in (�1; 1) and �

n

the

associated Lebesgue constant. Then there exists N

0

such that for n � N

0

,

max fjx

j;n

j : 1 � j � ng (1.15)

� C

�

1� n

�1

1=2+


�

�

1 +

log�

n

n

2
+3

2
+1

�

2=3

; k = 0;

max fjx

j;n

j : 1 � j � ng (1.16)

� C

�

1� (log

k

n)

�1




�

 

1 +

log�

n

n(log

k

n)

1+1=


Q

k

l=1

log

l

n

!

2=3

; k � 1:

REMARK 1.6:

(a) Given a strongly admissible weight w, Theorem 1.4 gives information on

the asymptotic location of points jx

j;n

j; 1 � j � n in general interpolation

arrays, uniformly for any j, assuming (1.11). Notice that (1.11) is stronger

than (1.8), which is expected if we want discrepancy estimates and not

just (1.10). In particular, (1.11) and (1.12) show that there exists N

0

such

that for n � N

0

, and uniformly for 1 � j � n,

jx

j;n

j � a

n

�

1 + T (a

n

)

�1=3

�

: (1.17)

Thus, at least in the case when supp(�

w

1=n

) consists of one interval and

w is strongly admissible, interpolation points whose Lebesgue constants

satisfy (1.11) cannot accumulate too far from the endpoints of the support.

Moreover, if we know more about the Lebesgue constant in advance, then

we are able to improve (1.17) considerably. Indeed, it is the factor T (a

n

)

in the right hand side of (1.12) that allows the distribution of interpolation

points to be described precisely and simultaneously by the rate of decay

of w near �1 or near �1.
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(b) For general arrays, V�ertesi in [23] and [24] has shown that log�

n

admits

a lower bound of log logn always. On the other hand, in [19], [1], and

[2], Szabados and Damelin have shown that for some speci�c arrays, this

lower bound is achieved and for others, we obtain an upper bound of logn

for log�

n

. Albeit in all cases (1.11) is satis�ed although the choice of the

points in these latter papers admit better estimates than (1.12) because of

their special properties. We refer the reader to those papers for a deeper

perspective.

(c) Theorem 1.4 for w given by (1.1) appears as [20, Proposition 1] without

the important assumption (1.11). In light of (1.8) and [10, Lemma 5.1],

the author believes that a condition such as (1.11) is necessary even in

this special case.

The remainder of this paper is devoted to the proofs of Theorem 1.1, Theorem

1.4 and Corollaries 1.5(a-c).

2 Proofs

The Proof of Theorem 1.1: For the proof of Theorem 1.1, we rely on an impor-

tant idea which �rst appeared in [19, Lemma 1]. Let us set

P

k;n

=

l

k;n

w

n

(x

k;n

)

; 1 � k � n+ 1:

Notice that P

k;n

2 �

n

for every k. Then we recall, see [18, Theorem 3.5.1 and

Corollary 3.5.3], that given any x 2 I ,

jP

k;n

w

n

(x)j � exp(�nM

w

(x)) kP

k;n

w

n

k

S

w

: (2.1)

For notational simplicity, let us write P

k

:= P

n;k

. The �rst step in the proof is

to choose Q

n

2 �

n

so that

kQ

n

w

n

k

�

= jjQ

n

w

n

jj

S

w

=
















n

X

k=1

jP

k

jw

n
















�

: (2.2)

This is done as follows: First pick x

0

2 I for which
















n

X

k=1

jP

k

jw

n
















I

=

n

X

k=1

jP

k

j(x

0

)w

n

(x

0

): (2.3)

Then set for any y 2 I ,

Q

n

(y) :=

n

X

k=1

P

k

(y)sgn(P

k

(x

0

)): (2.4)
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Notice that using (2.1), (2.3), and (2.4) we have

jQ

n

w

n

(y)j �
















n

X

k=1

jP

k

jw

n
















I

=

n

X

k=1

jP

k

j(x

0

)w

n

(x

0

) = jQ

n

w

n

(x

0

)j � jjQ

n

w

n

jj

I

= jjQ

n

w

n

jj

S

w

:

Thus it follows that (2.2) indeed holds for the polynomial Q

n

. Now let us

apply (2.2) above with y = x

j;n

. Then (2.1) and the de�nition of the Lebesgue

constant easily yields

1 = jQ

n

w

n

(x

j;n

)j � exp(�nM

w

(x

j;n

))kQ

n

w

n

k

I

= exp(�nM

w

(x

j;n

))�

n

:

Rearranging gives (1.7). 2

In order to apply Theorem 1.1 for a given strongly admissible weight w, we

scale the weight and obtain a sequence of weights w(a

n

; ), n � 1. We then set

w

n

:= w(a

n

; ; )

1=n

; n � 1. Using a combination of (2.1), [12, Lemma 5.1] and

[16, Theorem 6.1.6], it follows that (1.5), (1.6) and (2.1) become:

LEMMA 2.1. Let w be strongly admissible. De�ne for n � 1:

�

w;n

(x) :=

2

�

2

Z

1

0

p

1� x

2

p

1� t

2

a

n

tQ

0

(a

n

t)� a

n

xQ

0

(a

n

x)

n(t

2

� x

2

)

dt; x 2 [�1; 1]:

U

�

w;n

w;n

(x) :=

Z

1

�1

log

1

jx� tj

�

w;n

(t)dt; x 2 C : (2.5)

F

w;n

:=

log 1=2

n

�

2

n�

Z

1

0

Q(a

n

t)

p

1� t

2

: (2.6)

Then

�

w;n

(x) > 0; x 2 (�1; 1);

Z

1

�1

�

w;n

(t)dt = 1; (2.7)

M

w;n

(x) = U

�

w;n

w;n

(x) +

Q(a

n

x)

n

� F

w;n

= 0; x 2 [�1; 1]; (2.8)

and

M

w;n

(x) > 0; jxj 2 J

n

; (2.9)

where

J

n

:=

�

(1; 1=a

n

); if I = [�1; 1];

(1;1); if I = R:
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LEMMA 2.2. Let w be strongly admissible. Then for every polynomial

P

n

2 �

n

, n � 1,

jP

n

wj(x) � exp (�nM

w;n

(x=a

n

)) kP

n

wk

[�a

n

;a

n

]

; jxj 2 K

n

; (2.10)

where

K

n

:=

�

(a

n

; 1); if I = [�1; 1];

(a

n

;1); if I = R:

Using Lemmas 2.1 and 2.2, we now prove the following sup norm inequality

which is of independent interest.

LEMMA 2.3. Let w be a strongly admissible weight. Then there exists

� > 1 depending only on w such that for every polynomial P

n

2 �

n

; n > C,

jPwj(x) �

(

exp

�

�nC(jxj=a

n

� 1)

3=2

T (a

n

)

�

kPwk

[�a

n

;a

n

]

; a

n

< jxj � a

�n

;

exp

�

�C

n

T (a

n

)

1=2

�

kPwk

[�a

n

;a

n

]

; jxj > a

�n

:

(2.11)

For the range a

n

< jxj � a

�n

, Lemma 2.3 includes estimates for the scaled

di�erence

jU

�

w;n

w;n

(x) +

Q(a

n

x)

n

� F

w;n

j

for jxj=a

n

close to 1 or equivalently for jxj close to the endpoints of the scaled

support. Indeed, we have (cf. the method of [13, Lemma 5.2c]) that given any

� > 1, we have uniformly for u 2 [v=�; �v]; v 2 I

+

,

�

�

�

�

a

u

a

v

� 1

�

�

�

�

�

�

�

�

u

v

� 1

�

�

�

1

T (a

u

)

: (2.12)

Proof. Suppose �rst that w is Freud weight. Then in this case T � 1. By [13,

Lemma 7.1], there exists "

0

> 0 such that for every 0 < " < "

0

,

M

w;n

(1 + ") � "

3=2

: (2.13)

Choose D > 0 in the right hand inequality of (2.12) which recall is independent

of u and v there and �x it. Now set � := "

0

=D + 1 > 1. Then applying (2.12)

gives for a

n

< jxj � a

�

n

,

jxj=a

n

� 1 � "

0

:

Setting " = jxj=a

n

� 1 in (2.13) which we may and applying (2.10), gives the

Lemma in this case. Suppose next that w is a Generalised Pollaczek weight. By

[12, Theorem 5.3], there exists "

0

> 0 such that for every 0 < " < "

0

=T (a

n

),

M

w;n

(1 + ") � "

3=2

T (a

n

) + "

2

T (a

n

)

3=2

: (2.14)
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Choose D

1

> 0 in the right hand inequality of (2.12) as before and set � :=

"

0

=D

1

+ 1 > 1. Then applying (2.12) gives for a

n

< jxj � a

�

n

,

jxj=a

n

� 1 � "

0

=T (a

n

):

Setting " = jxj=a

n

� 1 in (2.14) which we may, recalling that a

�n

< 1 and

applying (2.10) gives the Lemma in this case as well. Finally we consider the

case when w is a Erd}os weight. This follows almost exactly as the previous case

using the results of [14]. For jxj > a

�

n

, Lemma 2.3 follows from [12, The proof

of Theorem 1.7], [13, The proof of Theorem 1.8], and [14, The proof of Theorem

1.7]. Thus the lemma is proved. 2

We are now ready to provide the remaining details in:

The Proof of Theorem 1.4. Suppose �rst that jx

j;n

j � a

n

. Then clearly

jx

j;n

j � a

n

�

1 +

log �

n

nT (a

n

)

�

2=3

: (2.15)

Next let � > 1 be as in Lemma 2.3 and suppose that a

n

< jx

j;n

j � a

�n

. Observe

�rst that (2.12) and the results of [23] and [24] easily imply the crude estimate

a

n

� jx

j;n

j � a

n

�

1 +

C log�

n

T (a

n

) log logn

�

:

To improve this, let us now apply Lemma 2.3 with Q

n

as de�ned in the proof

of Theorem 1.2. This then gives

1 � exp

�

�n(jx

j;n

j=a

n

� 1)

3=2

�

�

n

;

and so rearranging we obtain (2.15), which is more natural and in many cases

better. Finally suppose that jx

j;n

j > a

�n

. Then applying Lemma 2.3 and the

argument of the previous case, we obtain

1 � exp

�

�n=T (a

n

)

1=2

�

�

n

;

which contradicts (1.11). So again (2.15) holds. (1.12) then follows. 2

The Proof of Corollaries 1.5(a-c): These follow using [19, Theorem 1], [1,

Theorems 1.2 and 1.4], and [2, Theorems 2.1 and 2.4]. Observe that in each of

the eight cases proved, (1.11) holds. 2

3 Conclusions

We close with some conclusions and possible extensions for future research.

Firstly, as mentioned earlier, V�ertesi in [23] and [24] has shown that given a

strongly admissible weight and any triangular array

logn = O(�

n

); n!1:
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Corresponding upper bounds for such general triangular schemes is still an open

and interesting problem. One immediate application would be to Theorem 1.4.

Suppose next that supp(�

w

1=n

) consists of more than one interval, such as for

example if w is analytic on a �nite interval but not necessarily convex or if

supp(�

w

1=n

) consists of one interval but with non symmetric endpoints, such as

for example if w is non-even and convex, see [11] and [6], then hardly anything

is known for both lower and upper bounds of �

n

even for speci�c arrays such

as in Corollaries 1.5(a-c). Natural analogues of Theorem 1.4 in these settings

would also be of great interest and Theorem 1.1, we believe, is a natural starting

point for such investigations.
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