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Abstract. We establish the uniform boundedness of the weighted
Hilbert transform for a general class of symmetric and nonsymmetric
weights on a finite or infinite interval I := (c, d) with c < 0 < d. We
then apply these results to study mean and uniform convergence of
orthonormal expansions on the line.

§1. Introduction and Statement of Results

In this paper we shall study mean and uniform convergence of orthonormal
expansions as well as uniform bounds for the weighted Hilbert transform
for a large class of exponential decaying weights on an interval I := (c, d)
with c < 0 < d. For orthonormal expansions on [−1, 1], there are many
well known results for Chebyshev, Jacobi and generalized Jacobi weights
starting from Riesz, and we do not review these here. Instead, we refer
the reader to [19,20,24,28,32] and the many references cited therein for a
detailed and comprehensive account of this vast and interesting subject.
Our study involves exponentially decaying weights w on I and functions
f which may grow at ±∞ or near the endpoints of I. More precisely,
in Theorems 1.2 and 1.7 below, we study both mean and uniform con-
vergence of orthonormal expansions for a class of symmetric exponential
weights on the line of polynomial decay at infinity, the so called Freud class
which will be defined more precisely in Definition 1.1 below. Our mean
convergence results are motivated by a recent result of Jha and Lubinsky
in [20, Theorem 1.2] and indeed we will show how to improve this latter
result. Our uniform convergence result, see Theorem 1.7, relies on good
uniform bounds for the weighted Hilbert transform, see Theorems 1.6(A-
B). We establish these latter bounds for a general class of symmetric and
nonsymmetric weights on I.
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1.1 Statement of Results

To set the scene for our investigations, let I := (c, d) where c < 0 < d with
c and d finite or infinite. (Note that I need not be symmetric about 0 but
should contain 0). Let w be a nonnegative weight on I with xnw(x) ∈
L1, n = 0, 1, .... The idea of this paper arose, partly, from an interesting
paper of Geza Freud [18] who studied the dependence of the greatest zero
of pn(w2), the nth orthonormal polynomial for w2, on the corresponding
recurrence coefficients. More precisely, given w as above, we recall, see
[19,30], that pn := pn(w2) admits the representation

pn(x) = γnxn + · · · , γn := γn(w2) > 0

and satisfies ∫
I

pn(x)pn(x)w2(x)dx = δm,n, m, n ≥ 0.

We denote by xj,n := xj,n(w2), 1 ≤ j ≤ n, the jth simple zero of pn in I,
and we order these zeroes as

xn,n < xn−1,n · · · < x2,n < x1,n.

If w is even, we write the three term recurrence of pn in the form

xpn(x) = An(w2)pn+1(x) + An−1(w2)pn−1(x), n ≥ 0.

Here, p−1 = 0, p0 =
(∫

w2(x) dx
)−1/2 and

An := An(w2) = γn−1/γn > 0

are the corresponding recurrence coefficients. Given w as above, we may
also form an orthonormal expansion

f(x) →
∞∑

j=0

bjpj(x), bj :=
∫

I

fpjw, j ≥ 0 (1.1)

for any measurable function f : I → (−∞,∞) for which∫
I

|f(x)xj |w(x)dx < ∞, j = 1, 2, 3... (1.2)

Let Sn[.w] := Sn[.], n ≥ 1 denote the nth partial sums of the orthonormal
expansions given by (1.2).
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To state our main results, we require some additional notation. To this
end, let us agree that henceforth C will denote a positive constant inde-
pendent of x, y, n, f and j which may take on different values at different
times. Moreover, for any two sequences bn and cn of nonzero real numbers,
we shall write bn = O(cn) if there exists a positive constant C, independent
of n, such that

bn ≤ Ccn, n →∞

and bn ∼ cn if
bn = O(cn) and cn = O(bn).

Henceforth, for functions and sequences of functions, O and ∼ will be
uniform in x, y, n, f and j.

We begin with the definition of a large class of admissible weights, see
Definitions 1.1 (A-C) below. For clarity of exposition, explicit and easily
absorbed examples of admissible weights are presented immediately after
Definitions 1.1(A-C).

Definition 1.1A. A function g : (0, d) → (0,∞) is said to be quasi-
increasing if

g(x) ≤ Cg(y), 0 < x ≤ y < d.

It is easy to see that any increasing function is quasi-increasing. Similarly,
we may define the notion of quasi-decreasing.

Definition 1.1B. A weight function w : I → (0,∞) will be called admis-
sible if each of the following conditions below is satisfied:

a) Q := log(1/w) is continuously differentiable and satisfies Q(0) = 0;

b) Q′ is nondecreasing in I with

lim
x→c+

Q(x) = lim
x→d−

Q(x) = ∞;

c) The function

T (x) :=
xQ′(x)
Q(x)

, x 6= 0

is quasi-increasing in (0, d) and quasi decreasing in (c, 0) with

T (x) ≥ λ > 1, x ∈ I\0;

d) Given a sufficiently small B > 0 along with positive ε and δ,

log|Q′(x + δ)|
(|Q′(x− ε)|)B

≤ C,
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for all x close enough to c and d.

Definition 1.1B suffices for uniform bounds on the weighted Hilbert trans-
form, see Theorems 1.6(A-B) below. For Theorems 1.2, 1.3, 1.5 and 1.7,
we need some additional smoothness and regularity assumptions on Q′.

Definition 1.1C. An admissible weight w will be called strongly admis-
sible if the following additional assumptions on w hold:

a) There exists ε0 ∈ (0, 1) such that for y ∈ I\{0}

T (y) ∼ T

(
y

[
1− ε0

T (y)

])
;

b) For every ε > 0, there exists δ > 0 such that for every x ∈ I\{0},∫ x+ δx
T (x)

x− δx
T (x)

|Q′(s)−Q′(x)|
|s− x|3/2

ds ≤ ε|Q′(x)|

√
T (x)
|x|

.

1.2 Examples

The following are explicit examples of strongly admissible weights. Here
and throughout, expk denotes the kth iterated exponential.

a) Symmetric exponential weights on the line of polynomial decay:

wα(x) := exp (−|x|α) , α > 1, x ∈ (−∞,∞); (1.3)

b) Nonsymmetric exponential weights on the line with varying rates of
polynomial and faster than polynomial decay:

wk,l,α,β(x) := exp(−Qk,l,α,β(x))

with

Qk,l,α,β(x) :=
{

expl (xα)− expl(0), x ∈ [0,∞),
expk

(
|x|β

)
− expk(0), x ∈ (−∞, 0) (1.4)

where l, k ≥ 1 and α, β > 1;
c) Nonsymmetric exponential weights on (−1, 1) with varying rates of

decay near ±1:

wk,l,α,β(x) := exp(−Qk,l,α,β(x))

with

Qk,l,α,β(x) :=
{

expl(1− x2)−α − expl(1), x ∈ [0, 1),
expk(1− x2)−β − expk(1), x ∈ (−1, 0),

(1.5)

where l, k ≥ 1 and α, β > 1.
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1.3 Remarks

(a) Definitions 1.1(A-C) define a very general class of possibly nonsym-
metric exponential weights of minimal smoothness and with varying rates
of decrease on (c, 0) and [0, d). The weights given by (a) are widely called
”Freud weights” and are characterized by one rate of polynomial decay
at ±∞. In this case T ∼ 1 in Definition 1.1B(c). Because of their cur-
rent popularity, we shall henceforth adopt the name Freud weight in what
follows. However, we also allow nonsymmetric weights of polynomial and
faster than polynomial decay at c and/or d respectively. Notice that our
definition allows w to decrease with one rate on [0, d), and with another on
(c, 0). For a detailed perspective on this class of weights and its applica-
tions to orthogonal polynomials and various weighted approximation prob-
lems of current interest, we refer the reader to [5,6,7,8,9,12,13,15,20,22,23,
24,25,28,29,31] and the many references cited therein.

(b) Definitions 1.1B (a-d) involve smoothness and regularity conditions
on w which suffice for uniform bounds on the weighted Hilbert transform,
see Theorem 1.6(A-B) below. Note that when w decays as a polynomial,
T ∼ 1, whereas otherwise T increases without bound. Definition 1.1B(d)
is needed to control the behavior of Q′ close to c and d when Q′ grows
very quickly. It is trivially satisfied when Q′ grows as a polynomial.

(c) The definition of a strongly admissible weight, see Definition 1.1C,
is necessary in proving Theorems 1.2, 1.3, 1.5 and 1.7. Here, we need
bounds on pn and estimates for the spacing of its zeroes, which in turn
require additional smoothness and regularity assumptions on Q′. Defini-
tion 1.1C(b) is a local lip 1/2 condition on Q′, and appeared first in [22].
Notice that we do not require Q′′ to exist everywhere. Definition 1.1C(d)
first appeared in [5,15], although it is motivated by a much older growth
lemma of E. Borel. We apply it heavily in the proof of Theorem 1.3 below.

We need some additional notation: If w is strongly admissible and even,
it is well known, see [22], that the asymptotic behavior of the recurrence
coefficients An is expressed in terms of the scaled endpoints of the support
of the equilibrium measure for w which is one interval. It is also well
known, see [22,24,29,31] and the references cited therein, that firstly these
scaled endpoints can be explicitly calculated and are given as the positive
roots of the equation

u =
2
π

∫ 1

0

autQ′(aut)√
1− t2

dt,

and secondly that

lim
n→∞

An

an
= 1/2
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and
lim

n→∞

An+1

An
= 1.

Here, the number au is, as a real valued function of u, uniquely defined
and strictly increasing in (−∞,∞) with

lim
u→−∞

au = c, lim
u→∞

au = d.

We refer the interested reader to [11,14,16,31] and the references cited
therein for recent and related analogues of the above circle of ideas for
weights whose equilibrium measure is supported on more than one interval.

1.4 Mean convergence of orthonormal expansions

We are ready to state our first result.

Theorem 1.2. Let I = (−∞,∞), w be a symmetric strongly admissible
Freud weight, and let 1 < p < ∞. Suppose b, B ∈ I satisfy

b < 1− 1/p, B > −1/p, b ≤ B.

In addition suppose that if p < 4/3 then (I):

amax{b,−1/p}−B
n n1/6(4/p−3)CB = O(1),

(II): if p = 4/3 or 4 then b < B, and if p > 4 then

ab−min{B,1−1/p}
n n1/6(1−4/p)CB = O(1).

Suppose also that

An+1

An
= 1 + O

(
1
n

)
, n →∞. (1.6)

Then there exists an infinite subsequence n = nj of natural numbers such
that for j ≥ C and for all f satisfying (1.2)

||Sn[f ]wub||Lp(I) ≤ C||fwuB ||Lp(I). (1.7)

Moreover, if (1.7) holds for some infinite subsequence nj and real b and
B, then necessarily the following hold:

b < 1− 1/p, B > −1/p, b ≤ B.

If p < 4/3 then (I):

amax{b,−1/p}−B
n n1/6(4/p−3)CB = O(1),
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(II): If p = 4/3 or 4 then b < B, and if p > 4 then

ab−min{B,1−1/p}
n n1/6(1−4/p)CB = O(1).

In particular, given δ > 1, we have

lim
j→∞

||(Sn[f ]− f)wub||Lp(I) = 0 (1.8)

for all continuous f with

lim
|x|→∞

|fwuB+δ|(x) = 0.

In [20, Theorem 1.2], Theorem 1.2 is established for every n ≥ 1 assuming
in addition to (1.6) the assumption that

An

an
=

1
2

[
1 + O

(
1

n2/3

)]
, n →∞. (1.9)

For the Hermite weight, [20, Theorem 1.2] essentially appears in earlier
papers of Askey and Waigner, see [1] and Muckenhoupt, see [26] and [27].
Interesting generalizations of the work of Muckenhoupt in [26] and [27]
have also been proved by Mhaskar and Xu in [25]. For a detailed discussion
of the conditions (1.6) and (1.9), we refer the reader to Remark 1.4 below.

In order to establish Theorem 1.2, we use the following theorem of inde-
pendent interest.

Theorem 1.3. Let w be strongly admissible and symmetric. If

An+1

An
= 1 + O

(
1

(nT (an))2/3

)
, n →∞ (1.10)

then there exists a subsequence n = nj of natural numbers such that

An

an
=

1
2

[
1 + O

(
1

(nT (an))2/3

)]
, j →∞. (1.11)

The following remark suffices:

Remark 1.4.

(a) Observe that (1.11) is a strong asymptotic whereas (1.10) is a
ratio asymptotic. Thus applying the well-known identity∣∣∣∣an+1

an
− 1
∣∣∣∣ ∼ 1

nT (an)
,
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see [22], it is clear that (1.11) implies (1.10) for every n ≥ 1. It is the other
direction which is new and nontrivial for strongly admissible weights w.

(b) Fortunately, the hypotheses on the recurrence coefficients given by
(1.6) and (1.10) are not always vacuous ones. We list some related results
on the line, and refer the interested reader to [7,16,21,22,23,28] and the
references cited therein for further references and insights.

(A) Let w = exp(−Q), where Q is an even polynomial of fixed degree.
Then (see [16]),

An

an
=

1
2

[
1 + O

(
1
n2

)]
, n →∞.

(B) Let w = W exp(−Q), where Q is an even polynomial of fixed
degree with nonnegative coefficients and W (x) = |x|ρ for some real ρ
greater than −1. Then (see [7] and [23]),

An

an
=

1
2

[
1 + O

(
1
n

)]
, n →∞.

Note that when ρ 6= 0, w is not always admissible.

(C) Let w = wα be given by (1.3). Then (see [21]),

An

an
=

1
2

[
1 + O

(
1
n

)]
, n →∞.

(D) Let m ≥ 1 and w = Ww1,1,2m,2m given by (1.4). Then (see [7]),

An

an
=

1
2

[
1 + O

(
T (an)

n

)]
, n →∞.

As a consequence of Theorem 1.3, we now state

Theorem 1.5. Let I = (−∞,∞), w be a strongly admissible symmetric
Freud weight and assume that the recurrence coefficients An satisfy (1.6).
Then there exists N0 and a infinite set of natural numbers Ω such that

supx∈I |pn+1(x)− pn−1(x)|w(x)×
{∣∣∣∣1− |x|

an

∣∣∣∣+ n−2/3

}−1/4

∼ a−1/2
n

(1.12)
for all 1 ≤ n ≤ N0 and n ≥ N0, n ∈ Ω.

The importance of (1.12) lies in the fact that for |x| close to an, it improves
the known bound (see [22])

supx∈I |pn(x)|w(x)
{∣∣∣∣1− |x|

an

∣∣∣∣+ n−2/3

}1/4

∼ a−1/2
n (1.13)
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by a factor of 1/4 as it should. Under the additional assumption (1.9),
(1.12) is [20, Theorem 1.1] for n ≥ 1.

We turn our attention to uniform convergence of orthonormal expan-
sions for strongly admissible symmetric Freud weights on (−∞,∞). To
this end, we will need bounds on weighted Hilbert transforms. Define
formally for continuous f : I → (−∞,∞)

H[f ](x) := lim
ε→0+

∫
|x−t|≥ε

f(t)
x− t

dt

where the integral above is understood as a Cauchy-Principal valued in-
tegral. It is known, see [26,27], that if b < 1− 1/p, B > −1/p, b ≤ B and
1 < p < ∞, we have

||H[f ]ub||Lp((−∞,∞)) ≤ C||fuB ||Lp((−∞,∞)), (1.14)

provided the right hand side of (1.14) is finite. Indeed, relations such
as (1.14) are essential in studying convergence of orthonormal expan-
sions. This is mainly due to the following identity which follows from
the Christoffel-Darboux formula for orthonormal polynomials:

Sn[f ] = An {pnH[fpn−1]− pn−1H[fpn]} . (1.15)

For uniform convergence of orthonormal expansions, it thus seems natu-
ral to look for L∞ analogues of (1.14), but until recently, even for finite
intervals, such analogues have been scarce in the literature. We mention
that uniform bounds for weighted Hilbert transforms are also important
for the numerical solution and stability of integral equations on finite and
infinite intervals, see [10] and the references cited therein. To this end, we
now state two theorems which hold for any admissible weight on I. We
refer the reader to [2,3,4,8,9] and the references cited therein for related
results. We recall that for h > 0,

∆1
h(f, I)(x) := f(x + h/2)− f(x− h/2), x± h/2 ∈ I (1.16)

is the first symmetric difference operator of f . Then we have:

Theorem 1.6A. Let f : I → (−∞,∞) be measurable, w be admissible,

B, ε > 0 and suppose ||fw(1 + |Q′|)B ||L∞(I) < ∞ and
‖w∆1

u(f,I)‖L∞(I)

u ∈
L1[0, ε]. Then

‖H[fw]‖L∞(I)

≤ C

[
‖fw(1 + |Q′|)B‖L∞(I) +

∫ ε

0

‖w∆1
u(f, I)‖L∞(I)

u
du

]
.

(1.17)
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Theorem 1.6B. Let f : I → (−∞,∞) be differentiable, w be admissible,
B > 0 and suppose ||fw(1 + |Q′|)B ||L∞(I) < ∞ and ||f ′w||L∞(I) < ∞.
Then

‖H[fw]‖L∞(I) ≤ C
[
‖fw(1 + |Q′|)B‖L∞(I) + ‖f ′w‖L∞(I)

]
. (1.18)

Note the factor (1 + |Q′|)B on the right-hand side of (1.17) and (1.18).
For Q even and of polynomial growth, (the case T ∼ 1), we may take
it to be essentially uB1 for some B1 > 0. Theorems 1.6(A-B) improve
[9, Theorem 1.1] and [4, Theorem 1] in several respects. Firstly they
replace the weighting factor of w2 in [9] by the correct factor w(1+ |Q′|)B .
This later observation is crucial in the formulation of Theorem 1.7 below.
Secondly, Theorems 1.6(A-B) hold simultaneously for a much larger class
of possibly nonsymmetric weights with varying rates of decay on (c, 0) and
[0, d). Using Theorems 1.6(A-B), we are able to announce:

Theorem 1.7. Let I = (−∞,∞), w be a strongly admissible symmetric
Freud weight, B > 0, assume (1.6) and further that

ab−min{B,1}
n n1/6CB = O(1), n ≥ 1

where CB is 1 if B 6= 1 and log n if B = 1. Let f : I → (−∞,∞) be
differentiable and suppose that f(t)(t− x) has fixed sign in [x− ε, x + ε]
for some small and positive ε. Suppose finally that ||fwuB ||L∞(I) < ∞
and ||(fw)′||L∞[x,x+ε] < ∞. Then there exists an infinite subsequence
n = nj of natural numbers such that for all j ≥ C

|Sn[f ]w|(x) ≤ C
[
||fwuB ||L∞(I) + ||(fw)′||L∞[x,x+ε]

]
. (1.19)

If f ′ is also continuous and

lim
|x|→∞

|fQ′wuB+δ|(x) = 0

for some δ > 1, then

lim
j→∞

|(Sn[f ]− f)w|(x) = 0. (1.20)

If we assume (1.9), then (1.20) holds for every n ≥ 1.

Theorem 1.7 provides sufficient conditions for uniform convergence of
orthogonal expansions for strongly admissible Freud weights on the line.
Its proof will appear in a future paper.

The remainder of this paper is devoted to the proofs of Theorem 1.2,
Theorem 1.3, Theorem 1.5 and Theorems 1.6(A-B).
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§2. Proofs of Theorems 1.2, 1.3, 1.5 and 1.6(A-B)

In this section, we prove Theorems 1.2, 1.3, 1.5 and 1.6(A-B).

2.1 The Proof of Theorem 1.3.

Let n ≥ C, and define

m = m(n) = [n1/3(T (an))1/3]

where [x] denotes the greatest integer ≤ x. It follows using Definition 1.1C
(a) and Remark 1.4(a) that uniformly for r = 1, ...,m and n ≥ 1,

T (an+r) ∼ T (an).

Armed with this identity, we apply (1.10) repeatedly and deduce that
there exists N = N(m) and D > 0 such that for n ≥ N ,

An+r ≥
(

1− D

(nT (an))2/3

)
An, r = 1, 2, ...,m. (2.1)

Here D > 0 does not depend on n or m so we fix it. Now set

ε = ε(n) =
D

(nT (an))2/3
.

A careful adaption of the proof of [18, Theorem 6] then shows that

x1,n(w) ≥ 2(1− ε)Ancos
π

m + 1
≥ 2(1− ε)An(1− C/m2)

≥ 2
(

1− D

(nT (an))2/3

)
An

(
1− C

(nT (an))2/3

)
.

(2.2)

Now recall that ∣∣∣∣x1,n

an
− 1
∣∣∣∣ = O

(
1

n2/3T (an)2/3

)
. (2.3)

Thus (2.2) and (2.3) give
An

an
≤ 1

2

[
1 + O

(
1

(nT (an))2/3

)]
, n ≥ C. (2.4)

Another careful inspection of [18, Theorem 7], reveals that we have

lim
n→∞

x1,n

maxk≤nαk
≤ 2.

Thus, we may apply this with (2.3) to obtain
maxk≤n Ak

an
≥ 1

2

(
1− 1/C

(nT (an))2/3

)
. (2.5)

Choosing an increasing sequence nr with

max
k≤nr

Ak = Anr
, (2.6)

and applying (2.4)–(2.6) gives the theorem.
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2.2 Proof of Theorems 1.2 and 1.5.

We sketch the important ideas of the proof. The remaining technical
details are very similar to [20, Theorem 1.1], and so we refer to reader to
that paper for these.

Step 1: We reduce the proof of Theorem 1.5 to one important case.

(a) By symmetry we may assume that x ≥ 0.

(b) It suffices to prove (1.12) for n sufficiently large.

(c) Using infinite finite inequalities it suffices to prove (1.12) for

0 ≤ x ≤ an

(
1− C

n2/3

)
.

(d) For 0 ≤ x ≤ an/2,∣∣∣∣1− |x|
an

∣∣∣∣+ n−2/3 ∼ 1

so (1.12) follows from (1.13).

Step 2: Without loss of generality we may thus assume that

an/2 ≤ x ≤ an

(
1− C1

n2/3

)
for some C1 > 0 which will be chosen later. Let us define for y ≥ 0

τn(y) :=
1

A2
n

n−1∑
k=0

(α2
k+1 − α2

k)p2
k(y).

Then the Dombrowski-Fricke identity, see [17], gives

|pn+1(y)− pn−1(y)|w(x) ≤
{
2τn+1(y)w2(y)

}1/2
+
{
2τn(y)w2(y)

}1/2
,

(2.7)
for

0 ≤ y ≤ 2min {An, An+1} .

Applying Theorem 1.3, we deduce that there exists D > 0 and an infinite
set of natural numbers Ω such that (2.7) holds for all

0 ≤ y ≤ an

(
1−Dn−2/3

)
, n ∈ Ω.
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Choose C1 = D in the above and assume, as we may, that (2.7) holds for
x and n ∈ Ω.

Step 3: Estimation of τn(x) for n ∈ Ω: We write

τn(x) :=
1

A2
n


[n/4]∑
k=0

+
n−1∑

k=[n/4]+1

 (α2
k+1 − α2

k)p2
k(x)

= τn,1(x) + τn,2(x).

Now applying (1.6), we have that

τn,2(x)w2(x) ≤ C
1
n

w2(x)λn(x)−1,

where λn are the Cotes numbers for w2. But for this range of x, it is well
known that

λn(x)−1w2(x) ∼ n

an

√∣∣∣∣1− |x|
an

∣∣∣∣+ n−2/3.

Thus,

τn,2(x)w2(x) ≤ Ca−1
n

√∣∣∣∣1− |x|
an

∣∣∣∣+ n−2/3.

Moreover, using infinite-finite range inequalities yields

τn,1(x)w2(x) = O (exp(−Cn)) .

Combining the above estimates for both τn,1 and τn,2 yields Theorem 1.5.
Theorem 1.2 then follows using [20, Theorem 1.2], Theorem 1.5 and The-
orem 1.3 setting n = nj . The crucial point in the proofs of both Theorem
1.2 and Theorem 1.5 is the removal of the strong asymptotic (1.9), and
this is achieved by means of Theorem 1.3.

2.3 The Proof of Theorems 1.6(A-B).

We begin with Theorem 1.6(A). We may assume that x ∈ [0, d). The
other case is similar. We consider several subcases. We suppose first that
d = ∞, c = −∞, and that x is sufficiently close to d. More precisely, let
us choose a constant D > 0 so close to d so that for D < x < d

1
Q′(x + ε)

< ε.
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(We will in practice always take ε small since clearly if Theorem 1.6(A-B)
holds for such ε, then it holds for larger ε). Fix x and define

A(x) = Aε(x) :=
1

2Q′(x + ε)
.

Note |Q′|(y) = Q′(y) for y close enough to d, and |Q′|(y) = −Q′(y) for y
close enough to c. This follows from the definition of T and Definitions
1.1(B-C). Let us write

H[fw](x) =

(∫
|t|>2x

+
∫ 0

−2x

+
∫ 2x

0

)
f(t)w(t)

t− x
dt

= I1(x) + I2(x) + I3(x).

(2.8)

We first estimate I1(x). Here

|t− x| ≥ |t| − |x| ≥ |t| − |t|/2 = |t|/2

so

|I1(x)| ≤ 2
∫
|t|>2x

|f(t)|w(t)
|t|

dt

≤ C‖fw(1 + |Q′|)B‖L∞(I)

∫
|t|≥2

1
|t|(1 + |Q′|(t)|)B

dt

≤ C‖fw(1 + Q′)B‖L∞(I).

Similarly,

|I2(x)| =
∣∣∣∣∫ 0

−2x

f(t)w(t)
t− x

dt

∣∣∣∣ ≤ ‖fw(1 + |Q′|)B‖L∞(I)

∫ 0

−2x

1
x− t

dt

≤ C‖fw(1 + |Q′|)B‖L∞(I)

∫ 3x

x

du

u

≤ C‖fw(1 + |Q′|)B‖L∞(I).

We proceed with I3(x). Note that by choice of A(x) and using [22,
Lemma 3.2a],

w(y) ∼ w(x)

uniformly for every y ∈ I with |x−y| ≤ 2A(x). (The latter lemma implies
that Q(s) ≥ Q(r), s/r ≥ 1.) We then split I3(x) as follows: Write for
β := β(ε) > 0,

I3(x) =
∫ 2x

0

f(t)w(t)
t− x

dt

=

(∫ x/β

0

+
∫ x−ε

x/β

+
∫ x−A(x)

x−ε

+
∫ x+A(x)

x−A(x)

+
∫ 2x

x+A(x)

)
f(t)w(t)

t− x
dt

= I31(x) + I32(x) + I33(x) + I34(x) + I35(x).
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Then,

|I31(x)| ≤ C‖fw(1 + |Q′|)B‖L∞(I)

∫ x/β

0

(1 + |Q′|(t))−B

x− t
dt

≤ C‖fw(1 + |Q′|)B‖L∞(I)

∫ x/β

0

1
x− t

dt

≤ C‖fw(1 + |Q′|)B‖L∞(I).

Similarly,

|I32(x)| ≤ C‖fw(1 + |Q′|)B‖L∞(I)
logx

(1 + Q′(x/β))B

≤ C‖fw(1 + |Q′|)B‖L∞(I).

Next,

|I33(x)| ≤ C‖fw(1 + |Q′|)B‖L∞(I)

∫ x−A(x)

x−ε

(1 + |Q′|(t))−B

x− t
dt

≤ C‖fw(1 + |Q′|)B‖L∞(I)
log Q′(x + ε)

(1 + Q′(x− ε))B

≤ C‖fw(1 + |Q′|)B‖L∞(I).

Similarly,

|I35(x)| =

∣∣∣∣∣
∫ 2x

x+A(x)

f(t)w(t)
t− x

dt

∣∣∣∣∣
≤ C‖fw(1 + |Q′|)B‖L∞(I)(1 + Q′(x + A(x)))−B

∫ x

A(x)

1
u

du

≤ C‖fw(1 + |Q′|)B‖L∞(I)(1 + Q′(x + A(x)))−B(log Q′(x + ε) + log x)

≤ C‖fw(1 + |Q′|)B‖L∞(I).

Finally we consider I34(x). We write

|I34(x)| =

∣∣∣∣∣
∫ x+A(x)

x−A(x)

f(t)w(t)
t− x

dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ x+A(x)

x−A(x)

f(t)
w(t)− w(x)

t− x
dt

∣∣∣∣∣+ w(x)

∣∣∣∣∣
∫ x+A(x)

x−A(x)

f(t)− f(x)
t− x

dt

∣∣∣∣∣
= |I341(x)|+ |I342(x)|.
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We begin by making the substitution t = u/2 + x into I342(x). Then we
have

|I342(x)| ≤ Cw(x)
∫ 2A(x)

0

∣∣∣∣f(x + u/2)− f(x− u/2)
u

∣∣∣∣ du

≤ C

∫ 2A(x)

0

∥∥∆1
u(f, I)w

∥∥
L∞(I)

1
u

du

≤ C

∫ ε

0

∥∥∆1
u(f, I)w

∥∥
L∞(I)

1
u

du.

Also

|I341(x) =

∣∣∣∣∣
∫ x+A(x)

x−A(x)

f(t)
w(t)− w(x)

t− x
dt

∣∣∣∣∣
≤ C‖fw(1 + |Q′|)B‖L∞(I)

∫ x+A(x)

x−A(x)

w−1(t)|w′(η)|dt

≤ CA(x)w(x−A(x))w−1(x + A(x))Q′(x + A(x))‖fw(1 + |Q′|)B‖L∞(I)

≤ C‖fw(1 + |Q′|)B‖L∞(I).

We observe that if 1 ≤ x < D, then the estimates for I1(x) go through as
before as we only needed the fact that D > 1 to ensure that the integral
converged for t much larger then x. I2(x) follows without change except
that we use the boundedness of |Q′| rather than its sign. For I3(x), x is
bounded and w ∼ 1, so the proof is easier than before. If 0 < x < 1, then
we write

H[f ;w](x) =
∫ ∞

−∞

f(t)w(t)
t− x

dt =
(∫ x−1

−∞
+
∫ x+1

x−1

+
∫ ∞

x+1

)
w(t)f(t)

t− x
dt.

For the first two integrals, t is bounded away from x, and for the third we
proceed as above, but the proof is easier since x is bounded and w ∼ 1.
Suppose now that d and c are finite. Let us first suppose that x is close
to d. Then choose D > 0 such that D ≤ x < d, and write

H[f ;w](x) =

(∫ 0

c

+
∫ d

0

)
w(t)f(t)

t− x
dt.

For the first integral, t−x is bounded away from 0, so bounding this term
gives us the required estimate. For the second integral, split as in I3(x).
(Note that here we choose ε at the start small enough so that x± ε ∈ I).
A very similar and easier argument works if also γ ≤ x ≤ D for some fixed
and positive γ, for here w ∼ 1. If for this γ, 0 ≤ x < γ, then split

H[f ;w](x) =
∫ d

c

f(t)w(t)
t− x

dt =

(∫ x−γ

c

+
∫ x+γ

x−γ

+
∫ d

x+γ

)
w(t)f(t)

t− x
dt.
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Then the estimate goes through very much as above. Finally, suppose
that d is finite and c = −∞. (The other case is similar). Then choose
A > 1, and write

H[f ;w](x) =

(∫ −Ax

−∞
+
∫ 0

−Ax

+
∫ d

0

)
w(t)f(t)

t− x
dt.

This proves Theorem 1.6(A). Theorem 1.6(B) follows by noting that in
the proof of Theorem 1.6(A), for a given x, we may take ε small enough
so that w(x± u/2) ∼ w(x) for all u ≤ ε. This easily yields the result.
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