
Another look at an old paper of Geza Freud
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Abstract. For a class of smooth, even exponential weights w with

varying rates of decay on the real line and (�1; 1), we adapt an old

method of Geza Freud to investigate the dependence of the greatest zero

of the orthogonal polynomials p

n

(w

2

) on the associated recurrence coe�-

cients, �

n

(w

2

). Applications are given to mean and uniform convergence

of weighted orthonormal expansions.

x1. Introduction

Denote by I the real line or (�1; 1) and let w be a non negative weight

on I with x

n

w(x) 2 L

1

; n = 0; 1; :::. The idea of this paper arose from an old

paper of Geza Freud [7] who studied the dependence of the greatest zero of

p

n

(w

2

), the nth orthonormal polynomial for w

2

, on the associated recurrence

coe�cients. More precisely, given w as above, we recall, see [8], that p

n

(w

2

)

admits the representation

p

n

(w

2

; x) := 

n

x

n

+ � � � ; 

n

:= 

n

(w

2

) > 0

and satis�es

Z

I

p

n

(w

2

; x)p

n

(w

2

; x)w

2

(x)dx = �

m;n

m;n � 0:

We denote by

x

n;n

(w

2

) < x

n�1;n

(w

2

) � � � < x

2;n

(w

2

) < x

1;n

(w

2

)

the n simple zeros of p

n

(w

2

) in I and write the three term recurrence of p

n

(w

2

)

in the form

xp

n

(w

2

; x) = �

n+1

p

n+1

(w

2

; x) + �

n

p

n�1

(w

2

; x); n � 0:

Approximation Theory X 1

Charles K. Chui, Larry L. Schumaker, and Joachim Stoeckler (eds.), pp. 1{3.

Copyright o

c

2001 by Vanderbilt University Press, Nashville, TN.

ISBN 0-8265-xxxx-x.

All rights of reproduction in any form reserved.



2 S. B. Damelin

Here, p

�1

(w

2

) = 0, p

0

(w

2

) =

�R

w(x) dx

�

�1=2

and

�

n

(w

2

) = 

n�1

=

n

> 0

are the associated recurrence coe�cients. In this paper, our class of admissible

weights, (see De�nition 1.1 below), will include as prime examples Freud type

weights such as

w

�

(x) := exp (�jxj

�

) ; � > 1; x 2 (�1;1); (1:1)

Erd}os type weights such as

w

k;�

(x) := exp

�

�exp

k

�

jxj

�

��

; � > 0; k � 1; x 2 (�1;1); (1:2)

and generalized Pollaczek weights of the form

w

0;

(x) := exp

�

�(1� x

2

)

�

�

;  > 0 (1:3)

and

w

k;

(x) := exp

�

�exp

k

(1� x

2

)

�

�

;  > 0; k � 1; x 2 (�1; 1): (1:4)

Here and throughout, exp

k

denotes the kth iterated exponential. Freud

weights are characterized by their smooth polynomial decay at in�nity and

Erd}os weights by their faster than smooth polynomial decay at in�nity. Gen-

eralized Pollaczek weights decay strongly near �1 as exponentials and are of

faster decay than classical Jacobi weights. They violate the well known Szeg}o

condition for orthogonal polynomials, [8, Chapter 5, pg 208]. For such later

admissible weights w, the asymptotic behavior of the recurrence coe�cients

is expressed in terms of the scaled endpoints of the equilibrium measure for

exp(�2Q), a

n

= (a

n

)

1

n=1

, where a

u

= a

u

(exp(�2Q)) is the positive root of

the equation

u =

2

�

Z

1

0

a

u

tQ

0

(a

u

t)

p

1� t

2

dt:

If I

+

, denotes the interval (0;1) or (0; 1), then the number a

u

is, as a real

valued function of u, uniquely de�ned, strictly increasing in I

+

and it is well

known, see [12], that

lim

n!1

�

n

a

n

= 1=2

and

lim

n!1

�

n+1

�

n

= 1:

To state our main results, we require some additional notation. To this end,

let us agree that henceforth C will denote a positive constant which may take

on di�erent values at di�erent times, Moreover, for any two sequences b

n

and
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c

n

of non zero real numbers, we shall write b

n

= O(c

n

) if there exists a positive

constant C, independent of n, such that

b

n

� Cc

n

; n!1

and b

n

� c

n

if

b

n

= O(c

n

); and c

n

= O(b

n

):

Similar notation will be used for functions and sequences of functions.

Our class of weights w will then be assumed to be admissible in the sense

of the following de�nition, see [11].

De�nition 1.1 Let w = exp(�Q) with

Q : I ! (0;1)

even.

(a) Assume that Q

00

is continuous in I+ and Q

00

, Q

0

� 0 in I+.

(b) The function

T (x) := 1 +

xQ

00

(x)

Q

0

(x)

; x 2 I+

satis�es for large enough x or x close enough to �1

T (x) �

xQ

0

(x)

Q(x)

:

Moreover T satis�es either:

(b1) There exist A > 1 and B > 1 such that

A � T (x) � B; x 2 I + :

(b2) T is increasing in I+ with lim

x!0+

T (x) > 1. If I = (�1;1),

lim

jxj!1

T (x) =1

and if I = (�1; 1), for x close enough to �1,

T (x) �

A

1� x

2

for some A > 2.

(b3) For every " > 0,

T (y)

T (x)

= O

�

Q(y)

Q(x)

�

"
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for y � x, x; y 2 I, y large enough or close enough to 1.

Then w shall be called an admissible weight.

Canonical examples of admissible weights are those listed in (1:1)� (1:4).

We shall prove:

Theorem 1.2 Let w be an admissible weight. If

�

n+1

�

n

= 1 + O

�

1

(nT (a

n

))

2=3

�

; n!1 (1:5)

then there exists a subsequence n = n

j

of natural numbers such that

�

n

a

n

=

1

2

�

1 +O

�

1

(nT (a

n

))

2=3

��

; j !1: (1:6)

The following important remark su�ces:

Remark 1.3

(a) Firstly it is well known that the sequences a

n

and T (a

n

) satisfy uni-

formly for n � C:

(A) Freud:

1

C

n

1=B

� a

n

� Cn

1=A

(B) Erd�os: For every " > 0,

a

n

= O(n

"

); T (a

n

) = O(n

"

):

(C) Generalized Pollaczek: For every " > 0,

1� " � a

n

� 1; T (a

n

) = O(n

2�"

):

(D)

�

�

�

�

a

n+1

a

n

� 1

�

�

�

�

�

1

nT (a

n

)

Thus (1.6) immediately implies (1.5) for every su�ciently large n. It is the

other direction which is new and non trivial for admissible weights w. We

refer the reader to two applications of our result, (see Theorems 1.4 and 1.6

below).

(b) Fortunately the hypotheses on the recurrence coe�cients given by

(1.5) and (1.6) are not always vacuous ones. On the other hand results on
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second order terms for admissible weights are di�cult to prove and rather

scarce. At the time of writing the following hold for large n:

(A) Let w = exp(�Q) where Q is an even polynomial of �xed degree.

Then see [5],

�

n

a

n

=

1

2

�

1 + O

�

1

n

2

��

:

(B) Let w = W exp(�Q) where Q is an even polynomial of �xed degree

with non negative coe�cients and W (x) = jxj

�

for some real � > �1. Then

see [3] and [13],

�

n

a

n

=

1

2

�

1 + O

�

1

n

��

:

Note that when � 6= 0, w is not always admissible.

(C) Let w = w

�

given by (1.1). Then see [10]

�

n

a

n

=

1

2

�

1 + O

�

1

n

��

(D) Let m � 1 and w = w

2m;1

given by (1.2). Then see [3],

�

n

a

n

=

1

2

�

1 + O

�

T (a

n

)

n

��

:

As a consequence of Theorem 1.2, we now state:

Theorem 1.4 Let w be an admissible Freud weight and assume that the

recurrence coe�cients �

n

satisfy

�

n+1

�

n

= 1 + O

�

1

n

�

; n!1: (1:7)

Then there exists N

0

and a in�nite set of natural numbers 
 such that uni-

formly for 1 � n � N

0

and n � N

0

; n 2 
,

sup

x2(�1;1)

�

�

p

n+1

(w

2

; x)� p

n

(w

2

; x)

�

�

w(x)�

�

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

+ n

�2=3

�

�1=4

� a

�1=2

n

: (1:8)

Remark 1.5 In [9, Theorem 1.1], (1:8) is established for every n � 1

assuming in addition to (1.7) the assumption that

�

n

a

n

=

1

2

�

1 + O

�

1

n

2=3

��

; n!1: (1:9)
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For the Hermite weight it appears in earlier papers of Askey and Waigner, see

[1] and Muckenhoupt, see [14] and [15]. The importance of (1.8) lies in the

fact that for jxj close to a

n

, it improves the well known bound (see [11]):

sup

x2(�1;1)

�

�

p

n

(w

2

; x)

�

�

w(x)

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

+ n

�2=3

�

1=4

� a

�1=2

n

(1:10)

by a factor of 1=4 as it should. Its main application is to orthogonal expan-

sions. More precisely, given an admissible Freud weight, w, we may form an

orthonormal expansion

f(x)!

1

X

j=0

b

j

p

j

(x); b

j

:=

Z

(�1;1)

fp

j

w; j � 0

for any measurable function f : (�1;1)! (�1;1) for which

Z

(�1;1)

jf(x)x

j

jw(x)dx <1; j = 1; 2; 3:::

To obtain su�cient conditions for weighted mean convergence, it is well known

that one needs bounds such as in Theorem 1.4 and bounds for the weighted

Hilbert transform H[f:]. Here we recall that

H[f ](x) := lim

"!0

+

Z

jx�tj�"

f(t)

x� t

dt

and provided b < 1� 1=p; B > �1=p; b � B,1 < p <1,

jjH[f ]u

b

jj

L

p

((�1;1))

� Cjjfu

B

jj

L

p

((�1;1))

where u

b

(x) := (1 + jxj)

b

and C is independent of f . Applying Theorem 1.2

and the methods of [14], [15] and [9], we obtain:

Theorem 1.6 Let w be admissible, 1 < p < 1, b; B 2 (�1;1) and

assume that

b < 1� 1=p; B > �1=p; b � B

and (1:5) holds. Then there exists a subsequence n = n

j

of natural numbers

such that for j � C

jjs

n

[f ]wu

b

jj

L

p

((�1;1))

� Cjjfwu

B

jj

L

p

((�1;1))

(1:11)

which implies that

lim

j!1

jj(s

n

[f ]� f)wu

b

jj

L

p

((�1;1))

= 0:

The remainder of this paper is devoted to the proofs of Theorem 1.2,

Theorem 1.4 and a short section on uniform convergence of orthonormal ex-

pansions in light of recent work of the author and K. Diethelm, see [4].
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x2. Proofs of Theorems 1.2 and 1.4

In this section, we prove Theorems 1.2 and 1.4.

We begin with:

The Proof of Theorem 1.2 Let n � C, and de�ne

m = m(n) = [n

1=3

(T (a

n

))

1=3

]

where [x] denotes the greatest integer � x. It follows using the method of [2,

Lemma 2.1b] that uniformly for r = 1; :::;m and n � 1,

T (a

n+r

) � T (a

n

):

Armed with this identity, we apply (1.5) repeatedly and deduce that there

exists N = N(m) such that for n � N ,

�

n+r

�

�

1�

D

(nT (a

n

))

2=3

�

�

n

; r = 1; 2; :::;m: (2:1)

Here D > 0 does not depend on n or m so we �x it. Now set

" = "(n) =

D

(nT (a

n

))

2=3

:

A careful adaption of the proof of [7, Theorem 6] then shows that

x

1;n

(w) � 2(1� ")�

n

cos

�

m+ 1

� 2(1� "n)�

n

(1� C=m

2

)

� 2

�

1�

C

(nT (a

n

))

2=3

�

�

n

�

1�

C

(nT (a

n

))

2=3

�

: (2:2)

Now recall that

�

�

�

�

x

1;n

a

n

� 1

�

�

�

�

= O

�

1

n

2=3

T (a

n

)

2=3

�

: (2:3)

Thus (2.2) and (2.3) give:

�

n

a

n

�

1

2

�

1 + O

�

1

(nT (a

n

))

2=3

��

; n � C: (2:4)

Another careful inspection of [7, Theorem 7], reveals that we have

lim

n!1

x

1;n

max

k�n

�

k

� 2:
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Thus we may apply this with (2.3) and obtain:

max

k�n

�

k

a

n

�

1

2

�

1�

1=C

(nT (a

n

))

2=3

�

: (2:5)

Choosing an increasing sequence n

r

with

max

k�n

r

�

k

= �

n

r

(2:6)

and applying (2.4)-(2.6), we obtain the theorem.

We now present the:

Proof of Theorem 1.4We sketch the important ideas of the proof. The

remaining technical details are very similar to [9, Theorem 1.1] and so we refer

to reader to that paper for these.

Step 1: We reduce the proof to one important case.

(a) By symmetry we may assume that x � 0.

(b) It su�ces to prove (1.8) for n su�ciently large.

(c) Using in�nite �nite inequalities and well known approximation argu-

ments, see [9, The Proof of Theorem 1.1], it su�ces to prove (1.8) for

0 � x � a

n

�

1�

C

1

n

2=3

�

for some C

1

> 0.

(d) For 0 � x � a

n=2

,

�

�

�

�

1�

jxj

a

n

�

�

�

�

+ n

�2=3

� 1

so the result follows easily from (1.10).

Step 2 Without loss of generality we may thus assume that

a

n=2

� x � a

n

�

1�

C

1

n

2=3

�

:

for some C

1

> 0 which will be chosen later. De�ne for y � 0

�

n

(y) :=

1

�

2

n

n�1

X

k=0

(�

2

k+1

� �

2

k

)p

2

k

(y):

The Dombrowski-Fricke identity, see [6], gives for 0 � y � 2min f�

n

; �

n+1

g,

jp

n+1

(y)� p

n�1

(y)jw(x) �

�

2�

n+1

(y)w

2

(y)

	

1=2

+

�

2�

n

(y)w

2

(y)

	

1=2

: (2:7)
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Applying Theorem 1.2, we deduce that there exists D > 0 and an in�nite set

of natural numbers 
 such that (2.7) holds for all

0 � y � a

n

�

1�Dn

�2=3

�

; n 2 
:

Choose C

1

= D in the above and assume as we may that (2.7) holds for x and

n 2 
.

Step 3 Estimation of �

n

(x); n 2 
: We write

�

n

(x) :=

1

�

2

n

8

<

:

[n=4]

X

k=0

+

n�1

X

k=[n=4]+1

9

=

;

(�

2

k+1

� �

2

k

)p

2

k

(y)

= �

n;1

(x) + �

n;2

(x):

Now applying (1.7), we have that

�

n;2

(x)w

2

(x) � C

1

n

w

2

(x)�

n

(x)

�1

where � is the Christo�el function for w

2

. But for this range of x, it is well

known that

�

n

(x)

�1

w

2

(x) �

n

a

n

s

�

�

�

�

1�

jxj

a

n

�

�

�

�

+ n

�2=3

:

Thus

�

n;2

(x)w

2

(x) � Ca

�1

n

s

�

�

�

�

1�

jxj

a

n

�

�

�

�

+ n

�2=3

:

Moreover, using in�nite-�nite range inequalities, see [9, Theorem 1.1], yields

that

�

n;1

(x)w

2

(x) = O (exp(�Cn)) :

Combining the above estimates for both �

n;1

and �

n;2

then yield the theorem.

x3. Uniform convergence of weighted orthonormal expansions for Freud weights

We close with a brief discussion on the extension of Theorem 1.6 to p =1.

De�ne for continuous f : (�1;1)! (�1;1)

L

1;w

:=

�

f : lim

jxj!1

fw(x) = 0

�

and

L

0

1;w

:=

�

f 2 L

1;w

: kfwk

L

1

(I)

+ kf

0

wk

L

1

(I)

<1

	

:

Then it follows from [4, Theorem 1.1] that H[�;w

2

] is a bounded map from

L

0

1;w

to L

1;w

. Moreover, it is also well known that

S

n

[f ] = �

n

fp

n

(x)H[fp

n�1

](x)� p

n�1

H[fp

n

]g :

Using these two tools above, the author is able to study uniform convergence

of orthogonal expansions for Freud weights and prove analogous results to

Theorem 1.6. These results will appear in a forthcoming paper.
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