On the maximum modulus of weighted polynomials in the plane, a theorem of Rakhmanov, Mhaskar and Saff revisited.

S. B. Damelin

12 November 2002

Abstract

Let $\Sigma \subseteq \mathbb{C}$ be a closed set of positive capacity at each point in Σ and $w: \Sigma \rightarrow[0, \infty)$ a continuous, weight with $|z| w(z) \rightarrow 0,|z| \rightarrow \infty, z \in$ Σ if Σ is unbounded. Assume further that the set where w is positive is of positive capacity. A classical theorem, obtained independently by Rakhmanov and Mhaskar and Saff says that if S_{w} denotes the support of the equilibrium measure for w, then $\left\|P_{n} w^{n}\right\|_{\Sigma}=\left\|P_{n} w^{n}\right\|_{S_{w}}$ for any polynomial P_{n} with $\operatorname{deg} P_{n} \leq n$. This does not rule out the possibility that $\left|P_{n} \boldsymbol{w}^{n}\right|$ may attain a maximum outside S_{w}. We prove that if in addition, Σ is regular with respect to the Dirichlet problem on \mathbb{C} and if it coincides with its outer boundary, then all points where $\left|P_{n} w^{n}\right|$ attain their maxima must lie in S_{w}. The case when $\Sigma \subseteq \mathbb{R}$ consists of a finite union of finite or infinite intervals is due to Lorentz, von Golitschek and Makovoz. Counter examples are given to show that our requirements on Σ cannot in general be relaxed.

AMS(MOS) Classification: Primary 42C15, 42C05, Secondary 65 D05
Keywords: Logarithmic Potential, Maximum Modulus, Polynomial.

1 Introduction and Statement of Main Result.

The purpose of this note, is to extend a theorem of Lorentz, von Golitschek and Makovoz, see [3, Proposition 1.4.1] dealing with the characterization of sets in the complex plane where weighted polynomials attain their maximum values. To set the scene for our investigation, let $\Sigma \subseteq \mathbb{C}$ be a closed set and $w: \Sigma \rightarrow[0, \infty)$ a continuous weight. If Σ is unbounded, assume further that $|z| w(z) \rightarrow 0,|z| \rightarrow \infty, z \in \Sigma$. We will also henceforth suppose that Σ is of positive capacity at each point in Σ, i.e., for every point $z_{0} \in \Sigma$, the set $\left\{z \in \Sigma:\left|z-z_{0}\right|<\delta\right\}$ has positive capacity for any $\delta>0$ and that the set where w is positive, has positive capacity. We set $Q:=-\log w$ and call w strongly
admissible and Q the external field associated with w. The equilibrium measure, see [5], in the presence of an admissible external field,

$$
Q: \Sigma \longrightarrow \mathbb{R}
$$

is the unique Borel probability measure μ_{w} with compact support on Σ satisfying for a unique constant F_{w},

$$
\begin{equation*}
M_{w}(z):=U^{\mu_{w}}(z)+Q(z)-F_{w} \leq 0, z \in S_{w}:=\operatorname{supp}\left(\mu_{w}\right) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{w}(z) \geq 0, \text { q.e. } z \in \Sigma . \tag{1.2}
\end{equation*}
$$

Here, $U^{\mu_{w}}$ denotes the logarithmic potential of μ_{w}, i.e.,

$$
U^{\mu_{w}}(z):=\int_{\Sigma} \log \frac{1}{|z-t|} d \mu_{w}(t), z \in \mathbb{C}
$$

and q.e. $z \in \Sigma$ means that (1.2) holds everywhere on Σ with the exception of a set of logarithmic capacity zero. A classical theorem, obtained independently by Rakhmanov and Mhaskar and Saff, [5, Corollary 3.2.6] is well known:

Proposition 1.1 Let w be strongly admissible. Then

$$
\left\|P_{n} w^{n}\right\|_{\Sigma}=\left\|P_{n} w^{n}\right\|_{S_{w}}
$$

for every polynomial P_{n} with $\operatorname{deg} P_{n} \leq n$.
Proposition 1.1 says that the sup norm of a weighted polynomial lives in the set S_{w}. It does not however rule out the possibility that a weighted polynomial may take a maximum outside S_{w}. In this note, we show that if we assume some additional structure on the underlying set Σ, namely if we assume that it is regular with respect to the Dirichlet problem on \mathbb{C} and that it coincides with its outer boundary, then all points where $\left|P_{n} w^{n}\right|$ attain their maxima are contained in the set S_{w}. We also show by way of counter examples, that our additional assumptions on the set Σ cannot in general be removed. Throughout let Π_{n} denote the class of polynomials of degree at most $n, n \geq 1$.

For our main result, we need two important definitions:
(a) The outer domain Ω of Σ is the unbounded component of the complement $\overline{\mathbb{C}} \backslash \Sigma$. The outer boundary of Σ is defined to be $\partial \Omega$, the boundary of Ω. For example we shall need in Remark 1.3(b) below the fact (see [5, Corollary 4.5]), that if $w \equiv 1, S_{w}$ is contained in the outer boundary of Σ.
(b) We shall say that a point $z \in \Sigma$ is regular with respect to the Dirichlet problem (or for short regular) on \mathbb{C} if the Green's function for Σ, (see [5, pg 108]), is continuous at z. If every point in Σ is regular, then Σ is regular. For example, if Σ is simply connected or a finite union of finite or infinite real intervals, then Σ is regular.

Using the above two concepts, we shall henceforth adopt the following convention. Σ will be called strongly regular if it is regular and if the outer boundary of Σ coincides with Σ.

It is easy to see, in view of (a) and (b), that if Σ is simply connected with empty interior then Σ is strongly regular. Moreover if Σ is a finite union of finite or infinite intervals, then Σ is also strongly regular. Examples of sets in the plane which are strongly regular are line segments and simple closed contours. If Σ is strongly regular and w is strongly admissible, then it follows from [5 , Theorems 1.4.4 and 1.5.1(iv')] that $U^{\mu_{w}}$ is continuous everywhere in \mathbb{C} and hence that (1.2) holds everywhere on Σ.

Following is our main result:
Theorem 1.2 Let w be strongly admissible and let $m \in \mathbb{N}$.
(a) Then for every collection of polynomials $\left\{P_{n, k}\right\}_{k=1}^{m} \in \Pi_{n}, n \geq 1$

$$
\begin{equation*}
\left\|\sum_{k=1}^{m}\left|P_{n, k}\right| w^{n}\right\|_{\Sigma}=\left\|\sum_{k=1}^{m}\left|P_{n, k}\right| w^{n}\right\|_{S_{w}} . \tag{1.3}
\end{equation*}
$$

(b) Assume in addition that Σ is strongly regular. Then if $x_{0} \in \Sigma$ is a point where $\left\|\sum_{k=1}^{m}\left|P_{n, k}\right| w^{n}\right\|_{\Sigma}$ is attained, then $x_{0} \in S_{w}$.

Remark 1.3(a)
(a) Theorem 1.2 (a) for $m=1$ is [5, Corollary 3.2.6] which was obtained independently by Rakhmanov and Mhaskar and Saff.
(b) For $m \geq 1$ and under the assumption that w is convex, positive and $\Sigma=(c, d)$ with $-\infty \leq c<0<d \leq \infty$, Theorem 1.2(b) follows from [2, Theorem 2.6]. When $m=1$ and Σ is a finite union of finite or infinite real intervals, Theorem 1.2(b) has been shown earlier in [3, Proposition 4.1.1]. Our proof of Theorem 1.2(b) uses methods of logarithmic potential theory which were developed in [1, Lemma 2.2]. As is shown in Remark 1.3(b) below, it essentially cannot be improved further.

Remark 1.3(b) In this remark we explain why the strong regularity assumptions of Theorem 1.2(b) cannot be dropped in general. Indeed, let us take in Theorem 1.2(b), $w \equiv 1$. Then using [5, Corollary 4.5], we know that S_{w} is contained in the outer boundary of Σ. If this outer boundary was not Σ itself, one could choose P_{n} to be constant and then the maximum of $P_{n} w^{n}$ is attained everywhere, not just on S_{w}. For a particular $w \not \equiv 1$, Saff and Totik in [5, pg 157] construct an annulus with positive interior for which Theorem 1.2(b) fails.

2 Proof of Main Result

In this section, we give the proof of Theorem 1.2.
Proof of Theorem 1.2 We will need the inequality, see [5, Theorem 3.5.1 and Corollary 3.5.3],

$$
\begin{equation*}
\left|P_{n} w^{n}(z)\right| \leq \exp \left(-n M_{w}(z)\right)\left\|P_{n} w^{n}\right\|_{S_{w}}, z \in \Sigma, P_{n} \in \Pi_{n}, n \geq 1 \tag{2.1}
\end{equation*}
$$

Let $\left\{P_{n, k}\right\}_{k=1}^{m} \in \Pi_{n}$ be given. We will assume that $m=n$ for the general case follows in exactly the same way. Let us also choose $x_{0} \in \Sigma$ for which

$$
\left\|\sum_{k=1}^{n}\left|P_{n, k}\right| w^{n}\right\|_{\Sigma}=\sum_{k=1}^{n}\left|P_{n, k}\right|\left(x_{0}\right) w^{n}\left(x_{0}\right) .
$$

Now choose $Q_{n} \in \Pi_{n}$ such that

$$
\begin{align*}
& \left\|Q_{n} w^{n}\right\|_{\Sigma}=\left\|Q_{n} w^{n}\right\|_{S_{w}}=\left\|\sum_{k=1}^{n}\left|P_{n, k}\right| w^{n}\right\|_{\Sigma}= \tag{2.2}\\
& =\sum_{k=1}^{n}\left|P_{n, k}\right|\left(x_{0}\right) w^{n}\left(x_{0}\right)=\left|Q_{n}\left(x_{0}\right) w^{n}\left(x_{0}\right)\right| .
\end{align*}
$$

This is done by considering

$$
Q_{n}(x)=\sum_{k=1}^{n} \varepsilon_{k} P_{n, k}(x), \varepsilon_{k}=\operatorname{sign} P_{n, k}\left(x_{0}\right)
$$

and using (2.1). See [6, Lemma 1]. Theorem 1.2(a) then follows.
The difficult task is to now show that $x_{0} \in S_{w}$. Indeed, using (1.1), (1.2), (2.1) and (2.2) it follows that

$$
x_{0} \in S_{w}^{*}:=\left\{z \in \Sigma: M_{w}(z)=0\right\} .
$$

If w is convex, positive and $\Sigma=(c, d)$ with $-\infty \leq c<0<d \leq \infty$ it follows from [2, Theorem 2.6] that $S_{w}^{*}=S_{w}$ and Theorem $1.2(\mathrm{~b})$ would then follow. In general, however it is not true that $S_{w}^{*}=S_{w}$. We now show that indeed $x_{0} \in S_{w}$ and in doing so we establish Theorem 1.2(b). Actually we will prove the following:

Let $\mu:=\mu_{w}$ and suppose that

$$
\begin{align*}
& U^{\mu}\left(x_{0}\right)+\frac{1}{n} \log \left|Q_{n}\left(x_{0}\right)\right| \tag{2.3}\\
& \geq \max _{z \in S_{w}}\left(U^{\mu}(z)+\frac{1}{n} \log \left|Q_{n}(z)\right|\right)
\end{align*}
$$

Then $x_{0} \in S_{w}$. To see this, consider the function

$$
U^{\mu}+\frac{1}{n} \log \left|Q_{n}\right| .
$$

Firstly U^{μ} is harmonic outside S_{w} and therefore $U^{\mu}+\frac{1}{n} \log \left|Q_{n}\right|$ is subharmonic outside S_{w}. It is also subharmonic at ∞. To see this, simply observe that

$$
U^{\mu}+\frac{1}{n} \log \left|Q_{n}\right|=U^{\mu-\nu_{n}}
$$

where ν_{n} is the normalized counting measure of Q_{n} with mass $\left\|\nu_{n}\right\| \leq\|\mu\|=1$. See also [1, Lemma 2.2].

By the maximum principle for subharmonic functions, see [5, Theorem 1.2.4], $U^{\mu}+\frac{1}{n} \log \left|Q_{n}\right|$ attains its maximum on S_{w}. If the maximum is attained at a point outside S_{w}, then necessarily $U^{\mu}(z)+\frac{1}{n} \log \left|Q_{n}\right|(z)$ is constant for every $z \in \mathbb{C}$. If this is the case, we may let $|z| \rightarrow \infty$ and conclude that

$$
U^{\mu}(z)=-\frac{1}{n} \log \left|Q_{n}\right|(z), \forall z \in \mathbb{C} .
$$

This is clearly impossible as U^{μ} is continuous everywhere on \mathbb{C}. Thus if (2.3) holds for x_{0}, then $x_{0} \in S_{w}$. Thus everything boils down to showing (2.3).

Indeed, using (1.5) and (1.6), we first see that

$$
\begin{aligned}
& \max _{z \in S_{w}}\left(U^{\mu}(z)+Q(z)\right)=F_{w} \\
& \leq U^{\mu}(z)+Q(z), z \in \Sigma .
\end{aligned}
$$

Thus applying the above and (2.2) we see that

$$
\begin{aligned}
& U^{\mu}\left(x_{0}\right)+\frac{1}{n} \log \left|Q_{n}\left(x_{0}\right)\right| \\
& =\frac{1}{n} \log \left|Q_{n}\left(x_{0}\right) w^{n}\left(x_{0}\right)\right|+U^{\mu}\left(x_{0}\right)+Q\left(x_{0}\right) \\
& \geq \max _{z \in S_{w}} \frac{1}{n} \log \left|Q_{n}(z) w^{n}(z)\right|+\max _{z \in S_{w}}\left(U^{\mu}(z)+Q(z)\right) \\
& \geq \max _{z \in S_{w}}\left[\frac{1}{n} \log \left|Q_{n}(z) w^{n}(z)\right|+U^{\mu}(z)+Q(z)\right] \\
& =\max _{z \in S_{w}}\left[U^{\mu}(z)+\frac{1}{n} \log \left|Q_{n}(z)\right|\right] .
\end{aligned}
$$

Thus (2.3) holds and we have proved Theorem 1.2(b).

References

[1] S. B. Damelin and A. Kuijlaars, The support of the extremal measure for monomial external fields on $[-1,1]$., Trans.Amer.Math. Soc. 351 (1999), 4561-4584.
[2] E. Levin and D. S. Lubinsky, Orthogonal Polynomials for Exponential Weights, Springer Verlag, 1996.
[3] G. Lorentz. M. von Golitschek and Y. Makovoz, Constructive Approximation, Advanced Problems, Springer Verlag, 2001.
[4] H. N Mhaskar and E. B. Saff, Where does the sup norm of a weighted polynomial live?, Const. Approx. (1985) 1: pp 71-91.
[5] E. B. Saff and V. Totik, Logarithmic Potentials with External Fields., Springer-Verlag, Heidelberg (1997).
[6] J. Szabados, Weighted Lagrange and Hermite-Fejér interpolation on the real line, J. of Inequalities and Applications., 1(1997), pp 99-123.

Department of Mathematics and Computer Science, Georgia Southern University, Post Office Box 8093, Statesboro, GA 30460, U.S.A.

Email address: damelin@gsu.cs.gasou.edu

