
Weighted Polynomials on Discrete Sets

S. B. Damelin

20 June, 2002

Abstract

For a real interval I of positive length, we prove a necessary and suffi-
cient condition which ensures that the continuous Lp(0 < p ≤ ∞) norm of
a weighted polynomial, Pnwn, deg Pn ≤ n, n ≥ 1 is in an nth root sense,
controlled by its corresponding discrete Hőlder norm on a very general
class of discrete subsets of I. As a by product of our main result, we es-
tablish Nikoĺskii inequalities and theorems dealing with zero distribution,
zero location and sup and Lp infinite-finite range inequalities.
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1 Introduction and Statement of Results

Let I be a real interval of positive length. A weighted polynomial of degree at
most n ≥ 1 on I is an expression of the form Pnwn where Pn is an algebraic
polynomial of degree at most n ≥ 1 and

w : I → [0,∞) (1.1)

is a positive, non identically zero continuous weight on I. Throughout, Q :=
−logw will be the external field induced by the weight w. If I is unbounded, we
suppose further that

lim
|x|→∞

|x|w1−η(x) = 0, x ∈ I (1.2)

for some 0 < η < 1. In this paper, we obtain a necessary and sufficient con-
dition which ensures that the continuous Lp(0 < p ≤ ∞) norm of a weighted
polynomial, Pnwn, deg Pn ≤ n, n ≥ 1 is in an nth root sense, controlled by its
corresponding discrete Hőlder norm on a very general class of discrete subsets of
I. As a consequence, we generalize a theorem of Kuijlaars and Van Assche, [9,
Theorem 7.2] and deduce sharp Nikoĺskii inequalities as well as theorems dealing
with zero distribution, zero location and infinite-finite range inequalities. The
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problem of studying asymptotics of weighted polynomials in discrete Lp norms
was initiated by Rakhmanov in [10] and has recently been investigated further
by Dragnev and Saff in [6], Kuijlaars and Van Assche in [9] and Beckermann in
[1].

1.1 Background

To formulate our main results, we require some needed notation and quantities:
Throughout Πn will denote the class of polynomials of degree at most n ≥ 1,

Π∗
n the class of monic polynomials of degree n, n ≥ 1 and

En := {η1,n < ... < ηn,n}∞n=1

a triangular scheme of points in I. If I is unbounded, we will suppose henceforth
that the points of En have no finite points of accumulation. Define, for each n,
the Hőlder function space:

Lp,H(En) :=
{
f : En −→ R| ‖f‖Lp,H(En) < ∞

}
where,

‖f‖Lp,H(En) :=


sup

x∈En

|f |(x), p = ∞( ∑
x∈En

|f |p(x)

) 1
p

, 0 < p < ∞.

Moreover, for a measurable subset E ⊆ I, denote by Lp(E), the usual continuous
Lp function space for any 0 < p ≤ ∞. Throughout, C will denote a positive
constant independent of n and Pn which may take on different values at different
times.

A crucial tool in our analysis will be the concept of an equilibrium measure.
Given a Borel measure µ on I, its weighted energy is given by

Iw(µ) :=
∫ ∫

log
1

|s− t|
dµ(s)dµ(t)− 2

∫
log w(t)dµ(t).

The equilibrium measure in the presence of the weight w, is the unique Borel
probability measure µw on I minimizing the weighted energy among all proba-
bility measures. Thus

Iw(µw) = min{Iw(µ) : µ ∈ P(I)}

where P(I) denotes the class

P(I) := {µ : µ is a Borel probability measure on I}.
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Discrete sets A triangular scheme En will be called admissible in I, if the
following conditions below hold:

Distribution Condition A

For each compact A ⊆ I, σn(A), n = 1, 2, ... is finite, where

σn(A) :=
1
n

card (A ∩ En)

denotes the normalized counting measure of En. Moreover, suppose there is
a Borel measure σ with support I and total mass > 1 satisfying that for ev-
ery compact K ⊂ I, the restricted measure σ|K has a continuous logarithmic
potential Uσ|K and

lim
n→∞

∫
fdσn =

∫
fdσ

for all continuous f on I with compact support. Such a measure, if it exists,
will be called an admissible constraint.

Separation Condition B

Let λσ
w ≤ σ be the unique probability measure which minimizes the energy

Iw(µ) :=
∫ ∫

log
1

|s− t|
dµ(s)dµ(t)− 2

∫
log w(t)dµ(t) (1.3)

over all Borel probability measures µ where the difference σ − µ is positive on
I and let I0 be a bounded interval with supp(λσ

w) ⊆ I0 ⊆ I. Consider the
polynomial

Rn(x) :=
∏

ηi,n∈I0

(x− ηi,n), x ∈ I

and let σ1 := σ|I0 . Suppose that for q.e. η ∈ I0,

|R′
n(ηk,n)|1/n → exp(−Uσ1(η)) (1.4)

as n →∞ whenever
ηk,n → η, k = k(n).

Here by q.e, we mean with the exception of a set of logarithmic capacity zero.

Condition C to control the discrete Lp norm of Pnwn from far away
points

Assume that for all ε > 0 and 0 < p < ∞

lim sup
n→∞

‖
(
x1+εw(x)

)n ‖1/n
Lp,H(En) < ∞. (1.5)
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We find it instructive to present a short remark dealing with the generality
of our discrete sets defined above with natural examples. This is contained in
Remark A below. None of the statements in Remark A are used in our proofs
and so the reader may read this remark independently of the rest of this paper.

Remark A: Discrete sets.

(a) It is true that the following stronger separation condition implies Condi-
tion B:

Assume that there exists ρ > 0 with

mini|ηi+1,n − ηi,n| ≥
ρ

n
(1.6)

Secondly, Condition B implies that if I is bounded, then an admissible
triangular array in I may be taken as the zeros of any system of orthogonal
polynomials with respect to a weight W > 0 a.e. on I with all moments∫

I

xnW (x)dx, n = 0, 1, ...

finite.

It is also true that Condition B is implied by the relative distance condi-
tion proposed by Rakhmanov in [10, Theorem 2] as well as the separation
condition of Dragnev and Saff in [6, Definition 3.1]. Finally, in ([8], (8.1))
and [1, pg 4], Beckermann and Rakhmanov have suggested another sepa-
ration condition which was used extensively in [1]. More, precisely, if I is
bounded, Condition B is replaced by Condition R1:

lim
n→∞

1
n2

∑
x,y∈En, x 6=y

log
1

|x− y|
= I(σ) < ∞

and if I is unbounded, Condition B is replaced by Condition R2: There
exists an open set V with

Supp(λσ
w) ⊂ V and lim

n→∞

1
n2

∑
x,y∈En, x 6=y

log
1

|x− y|
= I(σ|V ) < ∞.

We remark that it can be shown using general principles in potential
theory that the separation condition of Dragnev and Saff in [6, Theorem
1.8] implies Rakhmanov’s Condition R1 and that the separation condition
(1.8) of [9, Definition 3], does not imply Rakhmanov’s Condition R2. It is
an open question as to the exact relationship between our Condition B and
Conditions R1 and R2. Very general points of this type have recently found
other important applications in interpolation and numerical integration,
see [4] and [5].
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(b) The Lp condition on the admissible triangular arrays En is needed to
control the contribution to our discrete Lp norms from far way points.
Its present form with ε = 0 appears in [1, Theorem 1.3] and suffices for
the Fekete point results proved in the latter paper. A more restrictive
condition to ours can be found in [9, page 208].

1.2 A Weighted Polynomial Inequality

. We shall prove:

Theorem 1.1: A weighted polynomial inequality. Let 0 < p ≤ q ≤
∞ and let En, n ≥ 1 be an admissible triangular array in I with admissible
constraint σ. Then for any sequence of polynomials Pn ∈ Πn

lim
n→∞

( ‖Pnwn‖Lq(I)

‖Pnwn‖Lp,H(En)

)1/n

= 1 (1.7)

iff
µw ≤ σ. (1.8)

Remark B Theorem 1.1 is a basic result and all our other results below
depend on it. The formula (1.8) means that the measure σ − µw is a positive
measure. The sufficiency of (1.8) was first proved by Kuijlaars and Van Assche
in [9, Theorem 7.2] under the conditions that I = (0,∞), p = ∞ and for sets En

that satisfy the stronger separation condition (1.6). The necessity of Theorem
1.1 is new for all the classes of points considered in [10], [6], [9] and [1]. Thus
Theorem 1.1 generalizes [9, Theorem 7.2] in two aspects. Firstly it shows that
(1.8) is in fact necessary and secondly it works for any real interval I, for any
0 < p ≤ ∞ and for a larger and more general class of sets En.

It is instructive at this point to illustrate the usefulness of Theorem 1.1 by
means of an example.

1.3 Example 1

Let natural numbers N and n be given and let En be any sequence of discrete
subsets of N equally spaced points in [−1, 1] with spacing ρ/n for some fixed
ρ > 0. Moreover, suppose that

lim
n→∞

N

n
= λ > 1.

For the given λ set
r :=

√
1− λ−2.

In [11], Rakhmanov has asked the following question: Find the largest set A ⊆
[−1, 1] such that for any sequence of polynomials Pn ∈ Πn,

lim sup
n→∞

( ‖Pn‖L∞(A)

‖Pn‖L∞,H(En)

)1/n

≤ 1. (1.9)
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If n2

N is bounded, then Coppersmith and Rivlin, see [3], proved more than (1.9)
namely:

exp
(

n2

CN

)
≤
( ‖Pn‖L∞[−1,1]

‖Pn‖L∞,H(En)

)
≤ exp

(
Cn2

N

)
.

Under our different assumptions of n and N we ask what can be said about A?
Indeed, using the necessity of Theorem 1.1, it is well known that the equilibrium
measure for the interval [−1, 1] given by

dµ(x) =
1

π
√

1− x2
dx, x ∈ (−1, 1),

clearly violates (1.8) with σ, the uniform distribution, given by

dσ(x) = λdx, x ∈ (−1, 1).

Thus (1.7) cannot hold with A = [−1, 1].

1.4 Sharp Nikoĺskii inequality

As a consequence of the proof of Theorem 1.1 we will deduce an important
Nikoĺskii inequality, (see Theorem 2.1 below), which in its sharp form is new
even under the weaker conditions of [9, Lemma 8.3(b)].

Nikoĺskii Inequality Assume the hypotheses of Theorem 1.1.

(a) Then uniformly for any polynomial Pn ∈ Πn and n ≥ 1,

1 ≤
( ‖Pnwn‖Lp,H(En)

‖Pnwn‖L∞,H(En)

)
≤ Cn1/p, 0 < p < ∞.

(b) Moreover, there exists δ > 0 such that uniformly for every polynomial
Pn ∈ Πn and n ≥ 1

1− exp(−δn) ≤
(‖Pnwn‖Lp,H(En)

‖Pnwn‖Lq,H(En)

)
≤ Cn1/p−1/q, 0 < p < q < ∞.

1.5 Where does the nth root discrete Lp norm of a weighted
extremal polynomial live?

In what follows we now describe the size of the largest set A ∈ I where (1.7)
holds without (1.8). We first consider infinite-finite range inequalities for
weighted discrete polynomials. Their analogues for the continuous case can be
found in [12, Theorem 3.6.1].
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1.6 Sup norm: Infinite-finite range inequalities

Theorem 1.2 Assume the hypotheses of Theorem 1.1 and for each k > 0,
define

Sk :=
{

x ∈ I : Uλσ
w(x) + Q(x)− Fσ

w ≤ k
}

(1.10)

where Fσ
w is the unique constant satisfying the variational inequalities:

Uλσ
w(x)− log w(x) ≤ Fσ

w , x ∈ supp(λσ
w) (1.11)

and
Uλσ

w(x)− log w(x) ≥ Fσ
w , x ∈ supp(σ − λσ

w). (1.12)

(a) Then for every ε > 0, there exists N0 such that for every n ≥ N0 and for
every polynomial Pn ∈ Πn

|Pnwn|(x) ≤ ‖Pnwn‖L∞,H(En) × (1.13)

× exp
(
−n
(
Uλσ

w(x) + Q(x)− Fσ
w − ε

))
, x ∈ I\Sε.

(b) In particular, we have for every sequence of polynomials Pn ∈ Πn

lim sup
n→∞

(
‖Pnwn‖

L∞(I\S0)

‖Pnwn‖L∞,H(En)

)1/n

≤ 1. (1.14)

Theorem 1.2 says that the nth root sup norm of a weighted discrete polyno-
mial essentially lives in the set I\S0. The next result says that the size of this
set is essentially best possible:

Theorem 1.3 Assume the hypotheses of Theorem 1.1. For any 0 < p ≤ ∞,
let P ∗

n,p ∈ Π∗
n be an extremal polynomial with respect to En and w satisfying

‖P ∗
n,pw

n‖Lp,H(En) = inf
Pn∈Π∗n

‖Pnwn‖Lp,H(En). (1.15)

Suppose there exists a set A ⊆ I satisfying

I\S0 ⊂ A ⊆ I

for which

lim sup
n→∞

( ‖P ∗
nwn‖L∞(A)

‖P ∗
nwn‖L∞,H(En)

)1/n

≤ 1. (1.16)

Then
cap(A\(I\S0)) = 0 (1.17)

where cap denotes logarithmic capacity.

Example 2 If we return to Example 1 above with σ the uniform distribution
and w ≡ 1, it is known, see [10], that I\S0 = [−r, r] where

r :=
√

1− λ−2.

Thus [−r, r] is the largest set in the sense of (1.17) for which (1.7) holds.
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1.7 Lp norm: Infinite-finite range inequalities

We now turn to the question of where the nth root Lp norm of a weighted
discrete polynomial lives. Let us set for this purpose:

S := supp(λσ
w) ∩ supp(σ − λσ

w).

Then as we will show below, the nth root Lp norm of a discrete weighted poly-
nomial is supported on the set S, the free part of the measure λσ

w.

Theorem 1.4 Assume the hypotheses of Theorem 1.1 with 0 < p ≤ ∞.

(a) Then for every sequence of polynomials Pn ∈ Πn

lim sup
n→∞

( ‖Pnwn‖Lp(S)

‖Pnwn‖Lp,H(En)

)1/n

≤ 1. (1.18)

(b) Let P ∗
n,p ∈ Π∗

n be an extremal polynomial with respect to En and w given
by (1.15). Moreover suppose that for p = ∞, S has positive logarithmic
capacity and for 0 < p < ∞, S is the union of a finite number of finite
non degenerate intervals. Then

lim
n→∞

( ‖P ∗
n,pw

n‖Lp(S)

‖P ∗
n,pw

n‖Lp,H(En)

)1/n

= 1. (1.19)

(c) Finally, suppose that for 0 < p < ∞, we only require S to have positive
logarithmic capacity, then

lim inf
n→∞

( ‖P ∗
n,pw

n‖Lp(N)

‖P ∗
n,pw

n‖Lp,H(En)

)1/n

≥ 1 (1.20)

where N is a neighborhood of the larger set S0 given by (1.10). We remind
the reader that in view of (1.11) and (1.12)

S ⊆ supp(λσ
w) ⊆ S0.

1.8 Zero distribution of weighted discrete extremal poly-
nomials.

The following theorem for an admissible triangular array, is the analogue of [1,
Theorem 1.3], which is in turn the analogue of [12, Theorem 3.3.1] for sets of
positive logarithmic capacity.

Theorem 1.5 Let 0 < p ≤ ∞ and assume the hypotheses of Theorem 1.1.
Let νn(P ∗

n) be the normalized counting measure of the zeros of P ∗
n,p.

Then the following are true:
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(a) For any sequence of polynomials Pn ∈ Π∗
n

lim inf
n→∞

‖Pnwn‖1/n
Lp,H(En) ≥ exp(−Fσ

w). (1.21)

Moreover,
lim

n→∞
‖P ∗

n,pw
n‖1/n

Lp,H(En) = exp(−Fσ
w). (1.22)

(b) For every sequence of polynomials Pn ∈ Π∗
n with

lim
n→∞

‖Pnwn‖1/n
Lp,H(En) = exp(−Fσ

w) (1.23)

we have
νn(Pn) ∗→ λσ

w. (1.24)

In particular,
νn(P ∗

n,p)
∗→ λσ

w. (1.25)

1.9 Location of zeros of weighted discrete extremal poly-
nomials.

The following theorem for an admissible triangular array is the analogue of [14,
Theorem 2.2.1] and [12, Theorem 3.3.4] for sets of positive logarithmic capacity.
See also [1, Remark 1.5 d].

Theorem 1.6 Let 0 < p ≤ ∞ and assume the hypotheses of Theorem 1.1.
Then the zeros of P ∗

n,p only accumulate in the convex hull of S∗w and the number
of zeros of P ∗

n,p lying in compact subsets of I\S∗w is bounded uniformly in n.

The remainder of this paper is devoted to the proofs of Theorems 1.1-1.6.

2 The Proof of Theorems 1.1 and 1.2

In this section, we proceed with the proof of Theorems 1.1 and 1.2. This will
be achieved through several intermediate steps.

We first present the:

2.1 Proof of the Sufficiency of Theorem 1.1: p = q = ∞

Suppose first that (1.8) holds. We begin by showing that we have

lim
n→∞

( ‖Pnwn‖L∞(I)

‖Pnwn‖L∞,H(En)

)1/n

= 1. (2.1)

We claim that we may assume without loss of generality that Pn ∈ Π∗
n and

has n real uniformly bounded zeros separated by the points of En. To see this,
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suppose that (2.1) holds under these hypotheses. We may further assume, using
[12, Theorem 3.2.1] if necessary that I is bounded. Now let P#

n ∈ Πn satisfy

‖P#
n wn‖L∞(I)

‖P#
n wn‖L∞,H(En)

= sup
{ ‖Pnwn‖L∞(I)

‖Pnwn‖L∞,H(En)
| Pn ∈ Πn

}
. (2.2)

By a suitable renormalization of P#
n , and using [12, Theorem 3.2.1], we may

assume that there exists x0 ∈ supp(µw) for which

|P#
n wn|(x0) = ‖P#

n wn‖L∞(I) = ‖P#
n wn‖L∞(supp(µw)) = 1. (2.3)

Now if x0 ∈ En, then there is nothing to prove. Thus we may assume without
loss of generality that x0 6∈ En and P#

n minimizes the norm

‖Pnwn‖L∞,H(En)

over all polynomials Pn ∈ Πn satisfying |Pnwn|(x0) = 1.

We proceed to analyze the zeros of P#
n and to this end we consider an

equivalent problem for monic polynomials.

We set for a given n

Ẽn : =
{
x ∈ I | x−1 + x0 ∈ En

}
,

w̃(x) : = x−1w(x−1 + x0), x ∈ Ẽn

and

Q#
n (x) :=

xnP#
n (x−1 + x0)

P#
n (x0)

, x ∈ I.

Note that as I is bounded, 0 6∈ Ẽn. Thus it is easy to see that Q#
n ∈ Π#

n and
minimizes ‖Qnw̃n‖L∞(Ẽn) amongst all monic polynomials of precise degree n.

Moreover, it is well known that Q#
n has n simple zeros in the convex hull of Ẽn

and its zeros are separated by the points of Ẽn.
Thus P#

n has at least n−1 real simple zeros in the convex hull of En separated
by the points of En. Suppose first that P#

n has degree n for every n and all its
zeros are uniformly bounded. Then by a suitable renormalization of P#

n and
applying (2.2), we have our claim. Thus we may assume henceforth, that either
P#

n has degree n−1 with all its zeros uniformly bounded or that P#
n has degree

n for every n and there is one zero of P#
n denoted by εn with

1/εn → 0, n →∞.

This is possible as recall that we assumed without loss of generality that I was
bounded.

Suppose first that P#
n is of degree n−1 with all its zeros uniformly bounded.

Then we may choose a bounded sequence {An} such that for each n, |An| ≥
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2 sup |I| and the zeros of (x − An)P#
n are separated by the points of En. Now

put
P̂n(x) := Cn(x−An)P ∗

n(x), x ∈ I

for a suitable sequence {Cn} chosen so that P̂n is monic for every n. Then
observing that the function

x −→ 1
|x−An|

is uniformly bounded on I for every n, we see that (2.1) holds for P̂n and so it
holds for P#

n . Thus our claim again follows from (2.2).
Suppose next that P#

n has degree n for every n and there is one zero εn of
P#

n with
1/εn → 0, n →∞.

Then we may define the sequences {An} and {Cn} such as before except this
time we set

P̂n(x) := Cn
(x−An)
1− x/εn

P ∗
n(x), x ∈ I

and observe that the function

x −→ x− x/εn

|x−An|

is again uniformly bounded on I. This completes the proof of the claim.

We are now in a position to prove (2.1). Choose Pn ∈ Πn and without
loss of generality we may assume that Pn is monic and has n simple uniformly
bounded zeros separated by the points of En. Let νn(Pn) = νn be the normalized
zero counting measure of Pn. As En is admissible, we may assume, (by taking
subsequences if necessary), that the measures νn converge weak* to a probability
measure ν where ν has compact support in I and ν ≤ σ. Now we write

‖Pnwn‖L∞(I) ≤ ‖Pn exp(nUν)‖L∞(I)‖ exp(−nUν)wn‖L∞(I)

and observe first that the weak* convergence above, [12, Theorem 3.2.1] and
the continuity of Uν guarantee that

lim sup
n→∞

‖Pn exp(nUν)‖1/n
L∞(I) = 1.

Thus to prove (2.1), it is enough to show that

lim inf
n→∞

‖Pnwn‖1/n
L∞,H(En) ≥ ‖ exp(−Uν)w‖L∞(I).

We break down the proof into several steps.
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Step I: We first show that given any ζ > 0, there exists a point y0 ∈
supp(σ − ν) satisfying (1.4) for which∣∣ exp(−Uν)w

∣∣(y0) > ‖ exp(−Uν)w‖L∞(I) − ζ.

We first claim that Uµw−ν is subharmonic in

C\
(
supp(σ − ν) ∩ supp(µw)

)
.

To see this, observe first that µw ≤ ν outside supp(σ−ν)∩ supp(µw). Thus the
positive part of the signed measure µw−ν is supported in supp(σ−ν)∩supp(µw)
and thus gives rise to a subharmonic function in C\

(
supp

(
σ − ν) ∩ supp(µw)

)
.

The negative part of the measure on the other hand always gives rise to a
subharmonic function in C, see ([12], Chapter 0, Theorem 5.6). Thus we have
our claim. Now the maximum principle for subharmonic functions implies that
Uµw−ν attains its maximum on supp(σ − ν) ∩ supp(µw). Recalling that

log w(x)− Uν(x)

 = Uµw−ν(x)− Fw, x ∈ supp(µw)

≤ Uµw−ν(x)− Fw, x ∈ I

immediately shows that w exp(−Uν) attains its maximum on supp(σ − ν) ∩
supp(µw) and so there exists y∗0 ∈ supp(σ − ν) ∩ supp(µw) for which

w(y∗0) exp
(
− Uν(y∗0)

)
= ‖ exp(−Uν)w‖L∞(I).

Now we use the continuity of w exp(−Uν) to deduce that there exists a neigh-
borhood V of y∗0 with

cap
(
supp(σ − ν) ∩ V

)
> 0

and such that for all y ∈ V∣∣ exp(−Uν)w
∣∣(y) > ‖ exp(−Uν)w‖L∞(I) − ζ.

Finally, recalling that (1.4) holds q.e., we apply the identity, (see [6], Theorem
2.6)

supp(µw) ⊆ supp(λσ
w)

and choose y0 to satisfy (1.4) as well.

Step II: For the given point y0, we now establish the identity

lim inf
n→∞

‖Pnwn‖1/n
L∞,H(En) ≥ w(y0) exp(−Uν

(
y0)
)
.

Then combining the above equation with the argument above and letting ζ → 0
establishes (2.1).

To this end, for a given sufficiently large n ≥ n0, put ∆1/n := (y0−1/n, y0 +
1/n). We may choose n so large that |∆1/n| < 1/2. Now choose 0 < δ < 1/n
and similarly define ∆δ. We write Pn = TnSn where Tn is a monic polynomial
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whose zeros coincide with those of Pn in ∆1/n and Sn is a monic polynomial
whose zeros coincide with the zeros of Pn in I\∆1/n.

First let ν1 denote the restriction of the measure ν to I\∆1/n. Then applying
the continuity of Uν1 and the weak* convergence of νn yields

lim
n→∞

|Sn|1/n(x) ≥ exp
(
− Uν(y0)

)
.

We now estimate the polynomial Tn.

Recall first that y0 ∈ supp(σ−ν). Let ln denote the number of zeros of Tn in
∆δ and mn the number of points in En ∩∆δ. It follows that as n is sufficiently
large, νn(Tn)(∆δ) < σn(∆δ) and thus mn is much larger than ln. Since the
intervals (

η±i−1,n + η±i,n

2
,
η±i,n + η±i+1,n

2

)
, i = 0, 1, 2, ...

contain exactly one point of En, there exists at least one such interval which
contains no zeros of Pn and whose centre is in ∆δ. Let us denote this centre by
ηj,n and its adjacent points by ηj−1,n and ηj+1,n respectively. Recalling that
the zeros of Pn separate the points of En and using the fact that |∆1/n| < 1/2
yields the following estimate on Tn:

|Tn(ηj,n)|1/n ≥
(
|ηj,n − ηj−1,n||ηj,n − ηj+1,n|

4

)1/n

×

×

 ∏
η±i,n∈∆1/n

η±i,n 6=ηj,n

|ηj,n − η±i,n|


1/n

≥ (1/4)1/n

 ∏
η±i,n∈∆1/n

η±i,n 6=ηj,n

|ηj,n − η±i,n|


2/n

.

Observe that
ηj,m → y0, m →∞.

Thus applying (1.4)and the dominated convergence theorem gives

lim inf
n→∞

|Tn(ηj,n)|1/n ≥ 1.

Combining our arguments above yields

lim inf
n→∞

‖Pnwn‖1/n
L∞,H(En) ≥ exp

(
− Uν(y0)

)
w(y0)

as required. This completes the proof of Theorem 1.1 for p = q = ∞. We
provide the remaining details for the proof of Theorem 1.1 later in Section 2.4.
2
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2.2 The Proof of Theorem 1.2

We now present:

Proof of Theorem 1.2 For the given weight w, let us recall, [12, Theorem
1.1.3], that there exists a unique constant Fw such that{

Uµw(x)− log w(x) = Fw, x ∈ supp(µw)
Uµw(x)− log w(x) ≥ Fw, x ∈ I.

We set:
w0(x) := min

(
w(x), exp(Uλσ

w(x)− Fσ
w)
)
, x ∈ I. (2.4)

It is straightforward to check that w0 satisfies both (1.1) and (1.2). Moreover,
the uniqueness of the equilibrium measure µw and Fσ

w together with (1.11) and
(1.12) easily give that:

(a)

w0(x) :=
{

exp(Uλσ
w(x)− Fσ

w), x ∈ supp(λσ
w)

w(x), otherwise
. (2.5)

(b)
w0(x) = w(x), x ∈ I\S0

w0(x) ≤ w(x), x ∈ I.
(2.6)

(c)
µw0 = λσ

w. (2.7)

(d)
Fw0 = Fσ

w . (2.8)

We claim that (1.7) holds with p = q = ∞ with w0. Firstly (1.3) and (2.7)
show that (1.8) holds with w0. Thus it remains to show (1.4). To see this, let
I0 be a bounded interval with supp(λσ

w0
) ⊆ I0 ⊂ I. Set

Rn(x) :=
∏

η±i,n∈I0

(x− η±i,n), x ∈ I

and let σ1 := σ|I0 . Then (1.4) follows from (2.7) and the identity, (see [6],
Theorem 2.6),

supp(µw) ⊆ supp(λσ
w)

since
supp(λσ

w) = supp(µw0) ⊆ supp(λσ
w0

) ⊆ I0.

Thus we may apply (1.7) with w0 together with (2.5), (2.6) and [12, Theorem
3.2.1] to obtain (1.13). 2
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2.3 Nikoĺski Inequality

In this section, we prove a Nikoĺski inequality which in this sharp form is new
even under the weaker conditions of [9, Lemma 8.3(b)]. We have:

Theorem 2.1-Nikoĺskii Inequality Assume the hypotheses of Theorem
1.1.

(a) Then uniformly for any polynomial Pn ∈ Πn and n ≥ 1,

1 ≤
( ‖Pnwn‖Lp,H(En)

‖Pnwn‖L∞,H(En)

)
≤ Cn1/p, 0 < p < ∞. (2.9)

(b) Moreover, there exists δ > 0 such that uniformly for every polynomial
Pn ∈ Πn and n ≥ 1

1− exp(−δn) ≤
(‖Pnwn‖Lp,H(En)

‖Pnwn‖Lq,H(En)

)
≤ Cn1/p−1/q, 0 < p < q < ∞.

(2.10)

Proof We define for k > 0, the compact set Sk given by (1.10) and set for
n ≥ 1:

En,k := Sk ∩ En.

We will write
card(En,k)

to mean the cardinality of the set En,k which is well defined.

Let ε > 0. Observe first that there exist positive numbers δ and δ1 so that
for all x ∈ I\Sε,

Uλσ
w(x) + Q(x)− Fσ

w − ε (2.11)
≥ Q(x)− (1 + δ1)log|x|+ δ.

Applying (1.13) with (2.11), we deduce that

||Pnwn||pLp,H(En\Sε) ≤ (2.12)

≤ ||Pnwn||pLp,H(En) exp(−δnp)
∑

x∈En

|x1+δ1w(x)|np

≤ ||Pnwn||pLp,H(En) exp(−δnp)||(x1+δ1w(x))n||pLp,H(En).

Now let us apply (1.5) to (2.12). We have shown the following: For every ε > 0,
there exists a δ > 0 and N0 such that for n ≥ N0 and for every polynomial
Pn ∈ Πn

‖Pnwn‖Lp,H(En\Sε) ≤ ‖Pnwn‖Lp,H(En) exp(−δn).
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From the above, we conclude that for every ε > 0, there exists a δ > 0 and N0

such that for n ≥ N0 and for every polynomial Pn ∈ Πn

1 ≤
( ‖Pnwn‖Lp,H(En)

‖Pnwn‖Lp,H(En,ε)

)
≤ 1

1− exp(−δn)
. (2.13)

Now let 0 < p < q ≤ ∞ and ε > 0. We claim that for every polynomial
Pn ∈ Πn, n ≥ 1,

min
{

1, card(En,ε)1/q−1/p
}
≤
‖Pnwn‖Lp,H(En,ε)

‖Pnwn‖Lq,H(En,ε)
≤ card(En,ε)1/p−1/q. (2.14)

To see this, observe first that (2.14) follows for 0 < p < q < ∞ from Hőlders
inequality. For q = ∞, it again persists by definition of the discrete Holder
norm (for the lower bound) and by a trivial estimation (for the upper bound).

To complete the proof of Theorem 2.1, we need to invoke (2.13), (2.14) and
the fact that

(card(En,ε))1/p−1/q = O
(
n1/p−1/q

)
which we may obtain using distribution condition A. Observe that if q 6= ∞,
then Theorem 2.1 follows easily. If q = ∞, the right most inequality in (2.9)
follows using the same argument as above and the fact that

En,ε ⊆ En

while the left most inequality in (2.9) is true by inspection. We have proved
Theorem 2.1. 2

2.4 The Proof of Theorem 1.1

We now provide the remaining details in the

The Proof of Theorem 1.1 We claim that (2.1) implies

lim
n→∞

( ‖Pnwn‖Lq(I)

‖Pnwn‖Lp,H(En)

)1/n

= 1 (2.15)

as required. To see this, we observe first using (2.9)and (2.10), that it is imme-
diate that

lim
n→∞

(‖Pnwn‖Lp,H(En)

‖Pnwn‖Lq,H(En)

)1/n

= 1.

Next, we recall first that by [12, Theorem 3.6.2], there exists a compact set
B ⊂ I such that

lim
n→∞

( ‖Pnwn‖Lp(I)

‖Pnwn‖Lp(B)

)1/n

= 1.
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Thus we may cover B by a bounded interval J ⊂ I and obtain using the above
and [14, Lemma 2.1.7] that

lim sup
n→∞

‖Pnwn‖1/n
Lp(I) ≤ lim sup

n→∞
‖Pnwn‖1/n

Lp(B)

≤ lim sup
n→∞

‖Pnwn‖1/n
L∞(J)

≤ lim sup
n→∞

‖Pnwn‖1/n
L∞(I).

Similarly using [12, Theorem 3.2.1], we can easily show that

lim inf
n→∞

‖Pnwn‖1/n
Lp(I) ≥ lim inf

n→∞
‖Pnwn‖1/n

L∞(I).

(2.15) then follows easily and we have shown the sufficiency of (1.8).

Next suppose (1.7) holds. Then using a similar argument to the above, we
may conclude that for every sequence of polynomials Pn ∈ Πn

lim
n→∞

( ‖Pnwn‖L∞(I)

‖Pnwn‖L∞,H(En)

)1/n

= 1. (2.16)

Assume that (1.8) does not hold. Firstly, we recall that that there exists a
unique constant Fw satisfying the variational conditions:{

Uµw(x)− log w(x) = Fw, x ∈ supp(µw)
Uµw(x)− log w(x) ≥ Fw, x ∈ I.

We claim that
Fw < Fσ

w . (2.17)

To see this, we first observe that (1.11), (1.12) and the variational conditions
above give

Uλσ
w(x)− Uµw(x) ≤ Fσ

w − Fw, x ∈ supp(λσ
w).

By the principle of Domination ([12], Theorem 3.3.1), we infer that

Uλσ
w(x)− Uµw(x) ≤ Fσ

w − Fw, x ∈ C. (2.18)

Letting |x| → ∞ in (2.18) we learn that

Fσ
w ≥ Fw.

But by assumption, (1.8) does not hold. Thus as λσ
w ≤ σ it follows that

λσ
w 6= µw.

As the measures λσ
w and µw are both supported on the real line, (2.17) follows.

Next, using (4.3) below (which is independent of the proof of Theorem 1.1), we
know that there exists a sequence of polynomials Qn ∈ Π∗

n satisfying

lim sup
n→∞

‖Qnwn‖1/n
L∞,H(En) ≤ exp(−Fσ

w).
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Thus using (2.17), we have

lim sup
n→∞

‖Qnwn‖1/n
L∞,H(En) < exp(−Fw). (2.19)

Then (2.19) and the identity, see [12, Theorem 3.2.1],

‖Qnwn‖L∞(I) = ‖Qnwn‖L∞(supp(µw)) ≥ exp(−nFw)

give

lim inf
n→∞

( ‖Qnwn‖L∞(I)

‖Qnwn‖L∞,H(En)

)1/n

> 1.

This last equation contradicts (2.16) and so (1.8) must hold. This completes
the proof of Theorem 1.1. 2

3 The Proofs of Theorems 1.5 and 1.6

We begin with the

Proof of Theorem 1.5 Firstly define w0 as in (2.4). Then given Pn ∈ Π∗
n

we always have, using (2.6), the relation

lim inf
n→∞

‖Pnwn‖1/n
L∞,H(En) ≥ lim inf

n→∞
‖Pnwn

0 ‖
1/n
L∞,H(En). (3.1)

Thus using (2.1), (2.8) and the identity, see [12, Theorem 3.4.1],

‖Pnwn‖L∞(I) = ‖Pnwn‖L∞(supp(µw)) ≥ exp(−nFw)

we may write (3.1) as

lim inf
n→∞

‖Pnwn‖1/n
L∞,H(En) ≥ lim inf

n→∞
‖Pnwn

0 ‖
1/n
L∞(I)

≥ exp(−Fw0) = exp(−Fσ
w). (3.2)

This last inequality establishes (1.21) for p = ∞ and the lower bound in
(1.22) for p = ∞. We now claim the existence of a sequence of monic polynomials
Qn ∈ Π∗

n satisfying

lim sup
n→∞

‖Qnwn‖1/n
L∞,H(En) ≤ exp(−Fσ

w). (3.3)

Notice that if we can establish (3.3), then the minimality of P ∗
n,∞ yields

lim sup
n→∞

‖P ∗
n,∞wn‖1/n

L∞,H(En) ≤ exp(−Fσ
w). (3.4)
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(3.4) together with (1.21) will then imply (1.22) for p = ∞. Moreover if p 6= ∞,
Theorem 2.1 and the minimality of P ∗

n,p yields

lim sup
n→∞

‖P ∗
n,pw

n‖1/n
Lp,H(En)

≤ lim sup
n→∞

‖Qnwn‖1/n
Lp,H(En)

≤ lim sup
n→∞

‖Qnwn‖1/n
L∞,H(En)

≤ exp(−Fσ
w)

so that again we have (1.22). Also, if (1.23) holds, then we may apply it with
the weight w0 given by (2.4). If we do this and also apply Theorems 1.1 and
2.1 recalling that (1.8) is now satisfied, we obtain that

lim
n→∞

‖Pnwn
0 ‖

1/n
L∞(I) = exp(−Fw0).

But then by [12, Theorem 3.4.1], we must have

ν(Pn) ∗→ µw0 = λσ
w.

(1.25) will then follow from (1.24) using (1.22). Thus everything boils down to
proving (3.3).

Our method of proof makes use of Theorem 1.1, the weight w0 defined in (2.4)
and a delicate construction of the polynomials in question by specifying their
zeros and carefully discretizing the measure λσ

w. Some of our ideas appeared
first in ([10], Lemma 4.1) but we provide full details for the readers convenience.

We choose ε > 0 small enough, set

S−ε :=
{
x ∈ I | Uλσ

w + Q(x) ≥ Fσ
w − ε

}
and consider

I\S−ε =:
{
x ∈ I | Uλσ

w + Q(x) ≤ Fσ
w − ε

}
.

We now break up our argument into several steps.

Step I: We first show that for sufficiently large n,

σn(I\S−ε) < 1.

Observe that I\S−ε is compact with ∂(I\S−ε) = 0. Here ∂ denotes the usual
topological boundary. This is possible by the continuity of Uλσ

w and Q and by
choosing ε small enough. Moreover (1.11) implies that I\S−ε ⊂ supp(λσ

w) and
so consequently,

λσ
w(I\S−ε) < 1. (3.5)
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Next we observe that Condition A implies that the measure σ has no mass
points. Thus, see ([2], Theorem 25.8), we have

lim
n→∞

σn(K) = σ(K)

for every compact K ⊂ I with σ(∂K) = 0. In particular, applying the above
with K = I\S−ε gives

lim
n→∞

σn(I\S−ε) = σ(I\S−ε). (3.6)

Now observe that (1.11) and (1.12) imply easily that σ = λσ
w on I\S−ε and

thus (3.5) together with (3.6) imply that for sufficiently large n

σn(I\S−ε) < 1. (3.7)

This completes the proof of Step 1.

Step II: We construct monic polynomials Pn with n zeros for which:

(a)
En ∩ I\S−ε ⊂ Z(Pn) ⊂ supp(λσ

w) (3.8)

and

(b)
n
(
νn(Pn)

) ∗→ λσ
w, n →∞. (3.9)

Here, Z(Pn) denotes the zero set of Pn.

To do this, we proceed as follows. Choose n1 := n
(
1− σn(I\S−ε)

)
zeros of

Pn in supp(λσ
w)\(I\S−ε) which we denote by xi,n1 , 1 ≤ i ≤ n1 and satisfying

λσ
w

(
[xi,n1 , xi+1,n1 ]

)
= 1/n, 1 ≤ i ≤ n1.

Now as λσ
w has no mass points, for any fixed a ∈ I, the function λσ

w

(
[a, x]

)
is a

continuous function of x and so

νn(Pn)|
supp(λσ

w)\(I\S−ε)

∗→ λσ
w|supp(λσ

w)\(I\S−ε)
. (3.10)

The remaining nσn(I\S−ε) < n zeros of Pn we take from the set En ∩ I\S−ε.
Then finally recalling that σ = λσ

w on I\S−ε and using (3.10) yields (3.8) and
(3.9).

Step III: Completion of the proof of (3.3).

First note that Pn = 0 on En ∩ I\S−ε. Thus using the definition of I\S−ε

and (3.8), we must have

‖Pnwn‖L∞,H(En) ≤ exp(−Fσ
w + ε)n‖Pn exp(nUλσ

w)‖L∞(supp(λσ
w)). (3.11)
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Moreover, by (3.8), (3.9), (2.7) and [12, Theorem 3.4.1] we have

lim
n→∞

‖Pnwn
0 ‖

1/n
L∞(supp(µw0 )) = 1

where w0 was defined by (2.4). But then using (2.5) this implies that

lim
n→∞

∥∥Pn exp(nUλσ
w)
∥∥1/n

L∞(supp(λσ
w))

= 1. (3.12)

Substituting (3.12) into (3.11) and letting ε → 0+ gives (3.3). 2

The Proof of Theorem 1.6 This follows using (1.13), [14, Lemma 1.3.2]
and [12, Theorem 3.3.4]. 2

4 The Proofs of Theorems 1.3 and 1.4

In this section, we present the proofs of Theorem’s 1.3 and 1.4. We begin with
the

Proof of Theorem 1.3 We first claim that the following holds:

lim
n→∞

|P ∗
nwn|1/n(x) = exp

(
− Uλσ

w(x)−Q(x)
)

(4.1)

for q.e. x ∈ I.

To see this, we first observe that λσ
w and the measures {νn(P ∗

n)}, n = 1, 2, ...
are of compact support on I. Thus we may invoke the Lower Envelope theorem,
see ([12], Chapter 1, Theorem 6.9), to deduce that

lim
n→∞

Uνn(P∗n)(x) = Uλσ
w(x) (4.2)

for q.e. x ∈ I. Letting ζk,n, 1 ≤ k ≤ n denote the zeros of P ∗
n , we may write

−(1/n) log |P ∗
n |(x) = 1/n

n∑
k=1

log
1

|x− ζk,n|

=
∫

log
1

|x− t|
dνn(P ∗

n) = Uνn(P∗n)(x)

and then easily deduce (4.1) from (4.2). We proceed by contradiction. Suppose
that

cap(A\(I\S0)) 6= 0.

Fix y ∈ A\(I\S0) so that (4.1) holds. Then by the definition of the set I\S0 we
must have

−Uλσ
w(y)−Q(y) > −Fσ

w . (4.3)
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Combining (4.1) with (4.3) then implies that

lim inf
n→∞

|P ∗
nwn|1/n(y) = exp

(
− Uλσ

w(y)−Q(y)
)

> exp(−Fσ
w). (4.4)

Thus (4.4) and (1.22) imply that

lim inf
n→∞

( ‖P ∗
nwn‖L∞(A)

‖P ∗
nwn‖L∞,H(En)

)1/n

≥ lim inf
n→∞

(
‖P ∗

nwn‖
L∞(A\(I\S0))

‖P ∗
nwn‖L∞,H(En)

)1/n

≥ lim inf
n→∞

(
|P ∗

nwn|(y)
‖P ∗

nwn‖L∞,H(En)

)1/n

> exp(−Fσ
w + Fσ

w) = 1.

This last statement contradicts (1.16) and so we have completed the proof
of the theorem. 2

We now proceed with the

Proof of Theorem 1.4 Firstly, as S is compact, (1.18) follows immediately
using Theorem 1.3 and Theorem 2.1. To see (1.19), we may assume firstly
because of Theorem 2.1 that p = q. Next we observe that (1.11) and (1.12)
imply that

Uλσ
w(x) + Q(x) = Fσ

w (4.5)

for every x ∈ S. Applying the method of Theorem 1.3 above, we may fix y ∈ S
such that

lim
n→∞

|P ∗
n,pw

n|1/n(y) = exp(−Fσ
w). (4.6)

Then (1.22) and (4.6) easily yield,

lim inf
n→∞

( ‖P ∗
n,pw

n‖L∞(S)

‖P ∗
n,pw

n‖Lp,H(En)

)1/n

(4.7)

≥ lim inf
n→∞

( |P ∗
n,pw

n|(y)
‖P ∗

n,pw
n‖Lp,H(En)

)1/n

≥ exp(−Fσ
w + Fσ

w) = 1.
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Now we apply the method of [14, Lemma 2.1.7] and the above to deduce
that

lim inf
n→∞

( ‖P ∗
n,pw

n‖Lp(S)

‖P ∗
n,pw

n‖Lp,H(En)

)1/n

≥ lim inf
n→∞

( ‖P ∗
n,pw

n‖L∞(S)

‖P ∗
n,pw

n‖Lp,H(En)

)1/n

≥ 1. (4.8)

This last inequality establishes (1.19). We note that (4.7) holds if S has positive
logarithmic capacity and that we only require S to be a finite union of finite
non degenerate intervals in the transition from Lp to L∞ in (4.8). Finally to
see (1.20), we first recall, see (2.4) above, that there exists a continuous, not
identically zero weight

w0 : I → [0,∞)

satisfying (1.2) and the following:

w0(x) = w(x), x ∈ S0.

w0(x) ≤ w(x), x ∈ I.

µw0 = λσ
w.

Fw0 = Fσ
w .

Indeed, w0 is given by the formula

w0(x) := min
{

w(x), exp
(
Uλσ

w(x)− Fσ
w

)}
, x ∈ I.

Observe first that w = w0 on S. Define:

S∗∗w := {x ∈ I : Uµw(x) + Q(x) ≤ Fw} .

Then using the definition of w0, we observe that if N is a given neighborhood of
S0, then N is the same neighborhood for S∗∗w0

. Thus we may apply, [12, Theorem
3.6.1] to deduce that

lim inf
n→∞

‖P ∗
n,pw

n‖1/n
Lp(N) ≥ lim inf

n→∞
‖P ∗

n,pw
n
0 ‖

1/n
Lp(N)

≥ lim inf
n→∞

‖P ∗
n,pw

n
0 ‖

1/n
Lp(I)

≥ lim inf
n→∞

‖P ∗
n,pw

n
0 ‖

1/n
L∞(I)

≥ lim inf
n→∞

‖P ∗
n,pw

n‖1/n
L∞(S).

Recalling that (4.7) holds if S has positive logarithmic capacity and applying
the above inequality yields the result. 2
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