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ABSTRACT

A method for the automatic supervised detection of multiple mineral
targets in hyperspectral mineral data is presented in this paper. The
method makes use of wavelet analysis, wavelet-based denoising us-
ing thresholding of wavelet detail coefficients, and feature reduction
based on sequential forward selection, which utilises an extension of
receiver operating characteristic curves to fuzzy set membership in
order to measure discriminating capability.

The method is shown to run in time linear to the number of
hyperspectral bands, per pixel. Furthermore, an extension of this
method to linear unmixing is presented, based on minimising the
least-squares error between abundance estimates and actual spectra
by varying a thresholding parameter to eliminate outliers and impos-
ing a sum-to-one constraint on the abundances.

Index Terms— wavelet transforms, target detection, feature ex-
traction

1. INTRODUCTION

Hyperspectral imagery is a recently developed field of remote sens-
ing that yields far richer data than traditional colour or multispectral
imagery. However, this data comes at the price of high dimension-
ality, causing greatly increased difficulty in classification. Further
challenges are encountered when hyperspectral imagery is used in
mineral applications, such as nonlinear mixing effects.

The Hyperspectral Core Imager (HCI) is a device owned by
AngloGold-Ashanti used for obtaining hyperspectral scans of min-
ing cores. Cylindrical mining cores are cut in half, and the flat sur-
face scanned by the HCI to obtain a continuous spectrum ranging
from visible light to the shortwave infra-red for each pixel. Endmem-
ber extraction is used to reduce the dimension of the spectral vector
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associated with each pixel, and the reduced feature set is clustered
using self-organising memory.

Two problems are encountered: firstly, the process is slow, and
it was found that pixels clustered together often had sufficiently dif-
ferent spectral signatures to be considered different minerals. This
implies the need for a system that is both computationally efficient
and accurate. The second problem leads to the idea of target detec-
tion. At present, it is not possible to automatically discover the min-
eral group associated with each cluster. It is necessary for a spectral
geologist to examine the spectral signatures found in each cluster to
identify each mineral [1].

Thus, a problem of target detection can be defined in the follow-
ing sense. Given the hyperspectral data of a core scan, and a num-
ber of target minerals to find within the core, is it possible to detect
instances of the targets in the data in an accurate, quantitative and
computationally efficient manner? Furthermore, can this method be
extended to provide an unmixing of the hyperspectral data into abun-
dances of each target?

2. METHODOLOGY

The target detection method presented is made up of several dis-
tinct stages, and will thus be referred to as the multistage method
in this paper. To outline the method briefly, the hyperspectral data
is subjected to an orthonormal wavelet transform (specifically, a D8
wavelet is used) in the spectral domain, and denoised using wavelet
thresholding. The denoised wavelet coefficients are then reduced to
a small subset of features using the results of a supervised feature
reduction method known as Sequential Forward Selection. This re-
duced feature set is of much lower dimensionality, and an accurate
distance measure can be taken for each target. This distance mea-
sure is measured against a tolerance found automatically by the SFS
method to obtain a quantitative target detection map.

Finding the SFS feature subset and tolerance for each target con-
stitute the preprocessing stage of the multistage method. The pro-
cessing of the hyperspectral data and generation of the target de-
tection map make up the processing stage. A post-processing step



imposes a sum-to-one constraint on the target detection map to gen-
erate an unmixed abundance map that minimises the least-squares
error.

The target detection scheme (pre-processing and processing
stages) is based on that outlined in [2] and [3], although a number of
key modifications should be highlighted. Firstly, both papers tackle
the problem of binary classification, where the two end classes are
well-defined. Secondly, in our scheme the noisy hyperspectral data
is denoised using wavelet thresholding techniques. Finally, the Re-
ceiver Operating Characteristic (ROC) curves are created in a fuzzy
way to facilitate quantitative mapping.

2.1. Pre-Processing

Some pre-processing must take place before the method can be ap-
plied to hyperspectral core images. It is necessary to compute fea-
tures to extract, and the tolerances to use in the distance measure.
This is done through a supervised feature extraction method called
Sequential Forward Selection (SFS). SFS relies on being able to
measure the discriminating capability of a subset of features. In this
application, this is accomplished with ROC curves, as it was in [2],
[3] and [4]. The SFS implementation used is that of [4]. While this
method is suboptimal, an exhaustive search of possible feature sub-
sets would be prohibitively expensive, taking roughly O(nm) time,
where n is the number of features to choose from, andm is the max-
imum size of the feature subset.

A training set of linear mixtures of seven target minerals was
created to train the SFS method. The target minerals chosen for this
study were chlorite, chloritoid, a flat spectrum, pyrophyllite, quartz
and two kinds of sericite. To keep the training set at a reasonable
size, ten hyperspectral samples of each target were mixed pairwise,
and half of the resulting mixtures were chosen as the training ele-
ments. The other half were reserved for a testing set. While the
minerals in a rock are intimately mixed, resulting in nonlinear mix-
tures, it was assumed that linear mixing effects dominate in the fine
spatial resolution of the HCI.

Information was appended to the training set, showing the abun-
dance of each target in the linear mixture. We can alternatively think
of this as fuzzy set membership into each target class. The SFS
method was then run for each target. The classifier in the ROC
method was modified to take the Euclidean distance d of the sub-
set of training element features and compare this to some tolerance
α. The resulting match M was given by

M =

{
0 if d ≥ α
1− d

α
otherwise (1)

The match M is fuzzy, and so sensitivity and specificity across the
training set were defined in a fuzzy manner. Agreements between
the match M and the true value were added to the true positive and
true negative counts, while the area of disagreement was counted as
either a false positive or a false negative, depending on the true value.
By varying α, a ROC curve is obtained. The area under the curve
(AUC) provides a measure of the discriminating capability of the
feature subset. The tolerance giving the point on the curve furthest
from the line of no discrimination (where specificity is equal to 1−
sensitivity) is the tolerance giving the best results.

The SFS method iteratively grows an initially empty feature sub-
set by adding to it the feature that would most increase its AUC, if
any exist. The process is stopped when no more features can be
added to the subset, or the maximum subset size m is reached. The
time complexity of this method is quite high. However, it must be

noted that preprocessing need only be performed once for each train-
ing and target set. As long as the training set is suitably representa-
tive of the data being processed, and we are looking for the same
targets, we can reuse the feature subset and tolerance results for any
number of data sets.

2.2. Processing

To minimise the effects of variation in reflectivity across the hyper-
spectral data set, all the data processed was normalised so that the
spectral vector of each pixel was on the unit hypersphere (that is,
having a norm of one). The data was then subjected to wavelet anal-
ysis, using a dyadic filter bank corresponding to the Daubechies D8
wavelet [5]. The level of decomposition was the maximum recom-
mended by Matlab’s wavelet toolbox. The use of wavelet analysis
in hyperspectral data has been shown to produce better results for a
variety of applications ([6] [7] [8] [2] [3] [9] [10]). For more back-
ground to wavelet techniques and signal processing, see Steven B.
Damelin and Willard Miller, Topics in Applied Mathematics, Com-
puter Vision, Imaging and Wavelets, Birkhauser (Benedetto eds.).
The Universal Thresholding (UT) scheme of [11] was used to de-
noise the wavelet detail coefficients. A hard threshold was applied
using a noise level estimate from the first level of decomposition.

The resulting denoised coefficients were then reduced to the re-
quired feature subset for each target, using the results from the SFS
pre-processing stage. The Euclidean distance between the target fea-
tures and pixel features was taken and a match was found using the
optimal target tolerance and equation (1). This match is then the
quantitative measure of that pixel’s match to the target mineral. By
repeating this process for each target and for every pixel, a quantita-
tive target detection map is obtained.

The time complexity of the multistage method is easily shown.
For each pixel, we consider a reduction from the original n spectral
features to m wavelet features, for t targets. Wavelet analysis and
denoising are performed in O(n) time, since the wavelet is dyadic,
and the threshold is a fixed, easily computed value. Reduction to the
feature subset can be performed inO(m) time, but this must be done
for each target, resulting in a time complexity of O(mt). The match
can then be computed in O(m) time per target, so finally the time
complexity of the method is O(n+mt) per pixel, where m < n. If
m is chosen such that mt < n, we can simplify this complexity to
O(n) per pixel.

2.3. Post-Processing

We now consider an extension to the above multistage method. This
extension aims to turn the quantitative target detection maps into
abundance maps. If we make the assumption that the target detec-
tion matchings are potentially inaccurate, we consider a number of
modifications that can be made at each pixel of the map. Firstly,
if a particular target match is low in comparison to others at that
pixel, we should consider zeroing it off as a false positive. This is
especially the case with flat spectra. Secondly, if a particular target
correlates poorly with neighbouring pixels, we should consider it an
outlier. As the case of small abundance has been taken care of, we
only consider the case of a potentially large abundance at the pixel,
and small abundances at neighbouring pixels for this study. Thirdly,
it may be necessary to multiply the matches of all the targets at a
particular pixel by some value to grow or shrink them. We may wish
to grow them if abundance values have been underestimated, or the
presence of an unknown material has resulted in low matchings. We



may wish to shrink the matches if abundances have been overesti-
mated.

Two constraints to bear in mind are the sum-to-one and nonneg-
ativity constraints, which are required for the abundance ratios to
have physical meaning. While the nonnegativity constraint is auto-
matically satisfied by the matches (which are always between zero
and one), it is necessary to impose the sum-to-one constraint. We
thus define an optimisation problem. Given a match mi for target ti
at a specific pixel with spectral vectorA, andNi defined as the max-
imum value of mi across some defined neighbourhood of the pixel,
we obtain the least-squares (LS) minimisation problem

min
α,β

∥∥∥∥∥A− β
∑
i

aiti

∥∥∥∥∥
2

2

where

ai =

{
0 if mi < α or Ni < α
mi otherwise (2)

subject to

β
∑
i

ai = 1

with i running across all t targets.
It can be shown that α can take on exactly 2t discrete values. We

can then find β directly from the equality constraint. Thus, we can
exhaustively search for optimal values of α and β to minimise the
error and meet the sum-to-one constraint. Since the error must be
computed for each possible tolerance α, the post-processing stage
runs in time O(nt2) for each pixel. While this is more expensive
than the multistage method, this should still acceptable, since typi-
cally t << n.

3. RESULTS

To demonstrate the effect of wavelet-based denoising on hyperspec-
tral mineral data, four signals corresponding to the spectral signa-
tures of three pure minerals (namely, chlorite, pyroxene and vesu-
vianite) were obtained from the website of the United States Geolog-
ical (USG) survey digital spectral laboratory [12]. As this data was
itself noisy, it was subjected to a smoothing filter, to obtain smooth
clean signals representing ideal readings. These ideal readings were
made noisy with Gaussian noise at predefined signal to noise ra-
tios (SNR), and denoised with a variety of methods and parame-
ters. It was found that single-level noise estimation combined with
either hard UT thresholding or the SUREshrink method [13] pro-
duced the best results, summarised in table 1. While the SUREshrink
method produced better results than UT, it must be mentioned that
it is O(n logn), rather than O(n), and its use would increase the
complexity of the multistage method. As can be seen from the table,
in almost all cases wavelet-based denoising leads to large improve-
ments in signal quality. Pyroxene, the one signal not improved by
denoising, was severely undersampled.

soft SURE hard UT
Chlorite (oversampled) 9.9159 8.4540
Chlorite (undersampled) 4.6475 3.1206
Pyroxene 1.1960 -0.5045
Vesuvianite 8.0894 6.1390

Table 1. The SNR increases of two denoising methods averaged
across SNR levels of 20, 30 and 40, per signal

Using the test data set created along with the training data set as
artificially constructed data, a target detection map was obtained for
each of the seven targets. The discrete l2 error of the maps (defined
as the l2 norm of the difference between the map and the known
abundance of the artificial data) was measured for each pixel, and
the mean error and standard deviation were taken across the image
for three possible analysis methods; no analysis, wavelet analysis
and wavelet analysis with denoising. These results are shown in ta-
ble 2. It can be seen in this case that wavelet analysis has lead to
a lower mean error and smaller standard deviation. However, de-
noising has not improved the results. This inconsistency is carried
through to the unmixed data, in table 3. However, it can be seen that
the unmixing process has yielded much lower errors, and extremely
small mean least-squares errors between the actual spectra and the
spectra constructed from the unmixing.

Analysis Type Mean Error Standard Deviation
None 0.3996 0.1702
Wavelet 0.3210 0.1560
Denoising 0.3346 0.1640

Table 2. Mean error and standard deviation of the target detection
multistage method when run on artificial data

Analysis Type Mean Error Standard Deviation Mean LS error
None 0.2778 0.2140 0.0003
Wavelet 0.2199 0.1926 0.0003
Denoising 0.2395 0.2023 0.0003

Table 3. Mean error, standard deviation and mean least-squares error
of the unmixing method when run on artificial data

When the unmixing method is run on a real core image, we do
not know the actual abundances and can thus only measure the LS
error between the unmixed spectra and the actual spectra. These
results are shown in table 4. In this case, we see rather poor per-
formance from the wavelet analysis method (when compared to the
other two methods). While the mean error of the wavelet denoised
data is slightly higher than that of the unanalysed data, we see that,
across the core, the denoised data has a lower standard deviation,
indicative of tighter bounds on the error. Further tests will have to
be conducted before any conclusions can be drawn about the effi-
cacy of the analysis method. From a geological standpoint, we can
see that the results obtained are sensible, as is shown in figure 1.
Quartz (shown in green) appears in discrete pebbles bearing intru-
sion features, while chlorite (in red) and sericite (in blue) are mixed
in places. The other targets are omitted from this diagram.

Analysis Type Mean LS Error Standard Deviation
None 0.0019 0.0312
Wavelet 0.0059 0.0668
Denoising 0.0021 0.0245

Table 4. Mean LS error and standard deviation between spectra re-
constructed from unmixed abundances and real core spectra

4. CONCLUSION

A supervised multistage method for the automatic detection of mul-
tiple target minerals in hyperspectral mineral data was presented in



Fig. 1. A section of unmixed core showing sericite in blue, chlorite
in red and quartz in green.

this paper. The method relies on wavelet analysis and wavelet-based
denoising using thresholds. Fuzzy ROC curves were used to find a
feature subset of maximal discrimination, in order to reduce the high
dimensionality of the wavelet data. The processing step is fully de-
coupled, allowing limitless parallelisation in the spatial domain. A
post-processing step was also presented, which produces abundance
ratios of each target mineral, subject to nonnegativity and sum-to-
one constraints.

It can be seen from the figure that the technique discussed in
this paper produces good results in practice for the HCI. As yet, it is
unclear whether wavelet analysis and denoising generally produces
better results than other established methods. However, our method
results in low least-squares errors. At the time of writing, further
work was being performed to test our method against other target
detection and unmixing methods in the context of this application.
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