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Abstract
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1 Introduction

Let n ≥ 1 be an integer and denote by Vn the n dimensional vector space Fn
2

of binary vectors of length n, i.e., those vectors with n entries consisting of
0s and 1s and where arithmetic is performed mod 2. Given a positive integer
k ≤ n, what is the maximum number of vectors we can choose from Vn that
are linearly independent k at a time? Before proceeding further, let us pause
for a moment to fully appreciate what this question means. It is not hard to
see that no matter how we choose our vectors, as long as we avoid the null
vector

−→
0 , the chosen vectors will be linearly independent one at a time and

in fact, if n ≥ 2, two at a time as well because our arithmetic is performed
mod 2. So the answer to our question for k = 1, 2 is 2n − 1. What about
k ≥ 3? A nonempty subset of any linearly independent set is by definition itself
linearly independent, so in this paper we are interested in studying supersets of
maximal lineary independent sets. More precisely, we study closed formulae for
the maximum number of vectors linearly independent k at a time. We also
present several interesting applications of our main result to the construction
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of hypercubes and orthogonal arrays, pseudo (t, m, s)-nets and linear codes. In
order to proceed, we find it necessary to introduce some needed notation. In
what follows n and k are integers with 1 ≤ k ≤ n.

Definition 1 We will say that a nonempty set A ⊆ Vn is k-independent,
if every nonempty subset of A that has at most k elements is linearly indepen-
dent. The family of all k-independent subsets of Vn will be denoted by Vn(k).
Our earlier discussion shows that Vn(1) =

{
A ⊆ Vn :

−→
0 /∈ A

}
, for n ≥ 1, and

Vn(2) = Vn(1), for n ≥ 2. Also, it is clear from Definition 1 that Vn(k1) ⊇
Vn(k2), whenever k1 ≤ k2 ≤ n; i.e., for n ≥ 2, we have

Vn(1) = Vn(2) ⊇ ... ⊇ Vn(n).

Note that the least family in this hierarchy, Vn(n), includes all linearly indepen-
dent subsets of Vn.

In this paper, we are interested in maximum possible sizes of elements of Vn(k),
and, to this end, let us define

Ind (n, k) := max {|A| : A ∈ Vn (k)} .

We have that Ind (n, 1) = 2n − 1 if n ≥ 1, Ind (n, 2) = Ind (n, 1) if n ≥ 2, and
for every n ≥ 3

2n − 1 ≥ Ind (n, 3) ≥ ... ≥ Ind(n, n) ≥ n + 1. (1.1)

(By using the n unit vectors along with the all-ones vector, it is easy to see that
Ind(n, n) ≥ n+1.) In Theorem 2 below we give formulae for Ind (n, 3), and for
Ind (n, k), where k = n − m, for some m with 0 ≤ m ≤ n/3.

Our main result can be stated as follows.

Theorem 2 The following formulae hold:

(a)
Ind (n, 3) = 2n−1, for n ≥ 3. (1.2)

(b)
Ind (n, n − m) = n + 1, for n ≥ 3m + 2, m ≥ 0. (1.3)

(c)
Ind (n, n − m) = n + 2, for n = 3m + i, i = 0, 1, m ≥ 2. (1.4)

Remark 3 We note that it is indeed easy to construct sets of vectors sat-
isfying Theorem 2. For the case n = 3m + 2 from (1.3), one can construct the
required n+1 vectors by simply using the n unit vectors of length n along with
the all ones vector of length n to give the required n + 1 vectors.

In the cases from (1.4) where n = 3m and n = 3m + 1, we start with
the set of n unit vectors of length n. In the n = 3m case, we add the two

2



vectors (1, ..., 1, 0, , ..., 0) and (0, ..., 0, 1, ..., 1) where we use 2m ones in each
case, along with m zeros. The resulting set will then be n−m independent. In
the n = 3m+1 case, we add the two vectors (1, ..., 1, 0, ..., 0) and (0, ..., 0, 1, ..., 1)
where we now use 2m + 1 ones, and the rest zeros. In this case the set will also
be n − m independent.

Remark 4 In [13], Tallini has studied a problem, slightly different to ours,
namely counting the maximum number of vectors of length n over Fq, where q
is a prime, which are linearly independent k at a time but not k + 1 at a time.
Let us denote this number by Indq(n, k). Clearly, Ind2(n, k) ≤ Ind(n, k). We
also refer the interested reader to the detailed survey of Hirschfeld, see [3], for
further bounds on Indq(n, k) for any prime q.

The remainder of this paper is organized as follows. In Section 2 we present
the proof of Theorem 2, and in Section 3 we present some applications of Theo-
rem 2 to the construction of hypercubes and orthogonal arrays, pseudo (t, m, s)-
nets and linear codes.

2 The Proof of Theorem 2

In this section, we present the proof of Theorem 2. Throughout n and k are
integers with 2 ≤ k ≤ n. For any X ⊆ Vn, the notation

∑
X will denote∑

x∈X x, if X �= ∅, and
−→
0 otherwise. Let us also define for A ⊆ Vn and an

integer l

Al :=
{∑

X : X ⊆ A and |X | = l
}

;

i.e. A0 =
{−→

0
}
, Al = ∅ if l < 0 or l > |A|, and if 1 ≤ l ≤ |A|, Al consists of

all vectors of the form a1 + ... + al, where a1, ..., al ∈ A are all distinct. Finally,
for any set of integers U , let

AU =
⋃
l∈U

Al.

In what follows, U will typically be an interval with respect to the natural
ordering of the integers.

2.1 The Proof of Theorem 2(b)

In this subsection, we present the proof of Theorem 2(b). Throughout, span(A)
denotes the linear subspace generated by A ⊆ Vn.

Lemma 5 Let A ⊆ Vn. Then the following statements hold:

(a) span(A) = A[0,|A|].

(b) A is k-independent if and only if
−→
0 /∈ A[1,k].

(c) If A is a maximal k-independent subset of Vn, then A contains a basis of
Vn.
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Proof As (a) and (b) are self evident, it suffices to show (c). Consider a
maximal linearly independent B ⊆ A. Then it follows that span (B) = Vn, and
thus that B is a basis of Vn, because we have

Vn ⊆ A[0,k) ⊆ span (A) ⊆ span (B) ⊆ Vn,

where the first inclusion follows from the maximality of A, and the third one
from the maximality of B. �

Note that since the property of being k-independent is preserved under isomor-
phisms, Lemma 5(c) says that in the study of Ind(n, k) one can restrict one’s
attention to supersets of the canonical basis.

In what follows, we will use the symbol Δ to denote the set-theoretic oper-
ation of symmetric difference; i.e. for sets X and Y ,

XΔY := (X − Y ) ∪ (Y − X) = (X ∪ Y ) − (Y ∩ X) .

Note that, due to the mod 2 arithmetic, for any X, Y ⊆ Vn, we have
∑

X +
∑

Y =
∑

(XΔY ) . (2.1)

Lemma 6 Let A ⊆ Vn and suppose that k ≤ |A|. Then the following
statements are equivalent:

(i) A is k-independent.

(ii) For every X, Y ⊆ A, with 1 ≤ |XΔY | ≤ k, we have
∑

X �= ∑
Y .

(iii) Suppose that integers r and l are given with 0 ≤ r < l ≤ |A| and satisfying
in addition (1) l + r ≤ k or (2) l + r ≥ 2 |A| − k. Then

Ar ∩ Al = ∅.

Proof We first show (i) ⇒ (ii): We proceed by way of contradiction.
Suppose that X and Y are as above but

∑
X =

∑
Y . Then by (2.1), we have

−→
0 =

∑
X +

∑
Y =

∑
(XΔY ) ∈ A|XΔY | ⊆ A[1,k].

But this, by Lemma 5b, contradicts (i).
(ii) ⇒ (iii): Let X, Y ⊆ A, |X | = r < l = |Y |, where r and l satisfy the
hypothesis of (iii). Part (iii) will follow if we can show that

∑
X �= ∑

Y . To
see this, we employ (ii). Clearly, |XΔY | ≥ 1, so it is enough to show that
|XΔY | = |X − Y | + |Y − X | ≤ k. This is clear if l + r = |X | + |Y | ≤ k.
Moreover if l + r ≥ 2 |A| − k then

|X − Y | + |Y − X | ≤ |A − Y | + |A − X | =
= |A| − |Y | + |A| − |X | = 2 |A| − (|X | + |Y |) ≤ k.
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Thus (iii) holds.
(iii) ⇒ (i): Let 1 ≤ l ≤ k. By assumption we have

{−→
0

}
∩ Al = A0 ∩ Al = ∅.

But then (i) follows from Lemma 5(b). Lemma 6(iii) is proved. �

We now record three corollaries of Lemma 6. The first one, a basic fact
from linear algebra, allows us to introduce the notion of weight. The other two,
interesting in themselves, are needed in the proof of Theorem 2.

Corollary 7 If A ⊆ Vn is linearly independent, then for every p ∈ span (A),
there is a unique P ⊆ A so that p =

∑
P . In particular, the sets A0, . . . , A|A|

are pairwise disjoint.

Proof This follows from Lemma 6(ii) with k = |A|. �

The unique P ⊆ A as above will be called the A-support of p, denoted by
suppA (p). The cardinality of suppA (p) will be called the A-weight of p, denoted
by |p|A. Observe that, by (2.1), we have suppA (p + q) = suppA (p)ΔsuppA (q)
and, in particular,

|p + q|A = |p|A + |q|A − 2 |suppA (p) ∩ suppA (q)| . (2.2)

Corollary 8 Suppose B ⊆ W ⊆ Vn for some k-independent set W and B
with span(B) = Vn. Then, for each r = 1, . . . , |W − B|,

(W − B)r ⊆ B(k−r,|B|]. (2.3)

Proof By Lemma 5(a), we know that Vn = B[0,|B|]. Suppose first that
r > k. Then

B(k−r,|B|] = B[0,|B|] = Vn.

Thus we may assume without loss of generality that r ≤ k. (2.3) will follow if
we can show that for every integer l with 0 ≤ l ≤ k − r we have

(W − B)r ∩ Bl = ∅. (2.4)

If l �= r, (2.4) follows from Lemma 6(iii). Indeed, l + r ≤ k and so

(W − B)r ∩ Bl ⊆ W r ∩ W l = ∅.
If l = r ≤ k − r, then 2r ≤ k and we have

(W − B)r ∩ Br = ∅
by Lemma 6(ii), since if X ⊆ W − B, Y ⊆ B, and |X | = |Y | = r ≥ 1, then
1 ≤ |XΔY | ≤ 2r ≤ k. This completes the proof. �

Corollary 9 Suppose W contains a basis B of Vn. Then W is k-independent
if and only if for each r = 1, . . . , |W − B|,

(W − B)r ⊆ B(k−r,|B|].
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Proof Necessity: This is Corollary 8.
Sufficiency: Suppose to the contrary that X is a nonempty subset of W with
|X | ≤ k and

∑
X =

−→
0 . Let X1 = X∩ B and X2 = X−B. Then

∑
X1 =

∑
X2

and since |X2| ≥ 1 (B is linearly independent), we have
∑

X1 =
∑

X2 ∈ (W − B)|X2| ⊆ B(k−|X2|,|B|]

(the last inclusion follows from the right hand side of the equivalence being
proved). In particular, using Corollary 7, we have |X1| > k−|X2| and therefore
|X | = |X1| + |X2| > k, which is a contradiction. We have proved Corollary 9.
�

We need one final preparatory lemma in order to present the proof of Theo-
rem 2(b). Recall that if B ⊆ Vn is linearly independent, and p ∈ span(B), then
|p|B and suppB (p) denote, respectively, B-weight and the B-support of p.

Lemma 10 Suppose B ⊆ Vn is linearly independent, and p, q ∈ B[|B|−m,|B|]

for some m ≤ |B|. Then |p + q|B ≤ 2m.

Proof Let p,q ∈ B[|B|−m,|B|], P = suppB (p) and Q = suppB (q). We then
have

|p + q|B = |PΔQ| ≤ (|B| − |P |) + (|B| − |Q|)
= 2 |B| − (|P | + |Q|) ≤ 2 |B| − 2 (|B| − m) = 2m

as required. �

We are ready for the

Proof of Theorem 2(b) We first establish that Ind(n, n − m) ≤ n + 1.
Suppose that n ≥ 3m + 2 and W is a maximal (n − m)-independent subset of
Vn. By maximality, W contains a basis B of Vn (cf. Lemma 5(c)). On the
other hand by Corollary 8 (with r = 1), we have (W − B) ⊆ B[n−m,|B|]. Thus
to complete the proof, it is enough to show that

∣∣∣W ∩ B[n−m,|B|]
∣∣∣ < 2. (2.5)

Suppose p, q ∈ W∩B[n−m,|B|]. Let A = suppB (p + q). By Lemma 10, |A| ≤ 2m.
Therefore, either p = q, or else A ∪ {p, q} is a linearly dependent subset of W
with no more than 2m + 2 elements. However, the latter cannot happen since
W is (n − m)-independent, and

2m + 2 = (3m + 2) − m ≤ n − m.

This proves (2.5) and so Ind(n, n−m) ≤ n+1. To prove Ind(n, n−m) ≥ n+1,
let B be a basis for Vn. By Corollary 7, W := B ∪ {∑ B} is n-independent and
thus (n − m)-independent. This completes the proof of Theorem 2(b). �
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2.2 The Proof of Theorem 2(c)

In this subsection we present the proof of Theorem 2(c). In what follows, we
present two further auxiliary results which we require for our proof.

Lemma 11 Suppose B ⊆ Vn is linearly independent and p and q are ele-
ments of span (B) with |p|B = r ≤ s = |q|B. Then

|p + q|B = 2j + (s − r), (2.6)

for some j with 0 ≤ j ≤ min {r, |B| − s}.
In particular:

(a) If r = s = 2m + i, then

p + q ∈ B2m if and only if |P ∩ Q| = m + i. (2.7)

(b) If r = 2m and s = 2m + 1, then

p + q ∈ B if and only if |P ∩ Q| = 2m. (2.8)

Proof Let P = suppB(p) and Q = suppB(q). Then by (2.2)

|p + q|B = |PΔQ| = r + s − 2 |P ∩ Q| = 2 (r − |P ∩ Q|) + (s − r) .

Moreover, max {0, r + s − |B|} ≤ |P ∩ Q| ≤ r, which implies that 0≤ r −
|P ∩ Q| ≤ min {r, |B| − s}. This establishes the result. The statements (2.7)
and (2.8) follow from (2.6) where j = r − |P ∩ Q|. �

Lemma 12 Suppose that n = 3m + i, m ≥ 2, and i = 0, 1. Let W ⊆ Vn

be (n − m)-independent and suppose that B ⊆ W is a basis for Vn. Then the
following statements hold:

(a) If x and y are two distinct elements of W such that 2m + i ≤ |x|B ≤ |y|B,
then:

(I) |x|B = |y|B = 2m + i and |x + y|B = 2m or

(II) |x|B = 2m, |y|B = 2m + 1 and |x + y|B = 2m − 1.

Moreover, (II) is possible only if i = 0.

(b) If x and y are as in (a), then |suppB (y) − suppB (x)| = m.

(c)
∣∣W ∩ B[2m+i,|B|]∣∣ ≤ 2.

Proof We first prove Lemma 12(a). Let x and y be as in the hypothesis.
We can write |x|B = 2m + ix and |y|B = 2m + iy, for some ix, iy ≤ m + i such
that

i ≤ ix ≤ iy. (2.9)
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By Lemma 11 we deduce that

|x + y|B = 2j + (iy − ix) (2.10)

for some j ≤ min {|x|B , 3m + i − |y|B} = m + i − iy. In particular, we have

|x + y|B ≤ 2 (m + i − iy) + (iy − ix) = 2 (m + i) − (ix + iy) . (2.11)

On the other hand, using Corollary 8, we have |x + y|B > 2m + i − 2 (since
x + y ∈ (W − B)2) and therefore combining this last observation with (2.11),
we learn that

2m + i − 2 < |x + y|B ≤ 2 (m + i) − (ix + iy) . (2.12)

In particular, we deduce that

ix + iy < i + 2. (2.13)

Suppose first that ix = iy. Then by (2.9) and (2.13), i ≤ ix < i
2 + 1, so

we have ix = iy = i, which together with (2.12) yields (I) (note that by (2.10),
|x + y|B is even). On the other hand, if ix < iy, then (2.9) and (2.13) imply
that i ≤ ix < iy < 2; i.e. i = ix = 0 and iy = 1, which implies (II). We have also
demonstrated that (II) is possible only if i = 0. Lemma 12(a) is thus proved.

We now proceed with the proof of Lemma 12(b). Let X = suppB (x) and
Y = suppB (y). By Lemma 12(a), |X | = 2m + i and

|Y | + |XΔY | = |y|B + |x + y|B = 4m + i.

We deduce that

4m + i = |Y | + |XΔY | = |Y | + |X | + |Y | − 2 |X ∩ Y | =
= 2 |Y | + 2m + i − 2 |X ∩ Y | .

Thus
2m = 2 (|Y | − |X ∩ Y |) = 2 |Y − X | .

This last statement establishes Lemma 12(b).

Finally, we prove Lemma 12(c). We proceed by way of contradiction. Sup-
pose, to the contrary, that p, q, r are three distinct elements of W ∩B[2m+i,|B|].
It suffices to show that

|r + p + q|B ≤ 1. (2.14)

Indeed, this will yield a contradiction, since, by Corollary 8, |r + p + q|B >
2m + i − 3 ≥ i + 1 ≥ 1 (m ≥ 2). Thus we establish (2.14). Firstly, by
Lemma 10(a), at least two of the three vectors, say p and q are in B2m+i, and
the other one, r, is in B[2m+i,2m+1]. Let P = suppB (p), Q = suppB (q) and
R = suppB (r). By Lemma 12(a)

|PΔQ| = |p + q|B = 2m, (2.15)
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so by Lemma 11(a), |P ∩ Q| = m+i. This implies that S := {P − Q, Q − P, P ∩ Q}
forms a partition of B, in which the first two sets have m elements each. Since
by Lemma 12(a), |R − P | = |R − Q| = m, this means that the first two elements
of S are subsets of R; i.e.

(PΔQ) ⊆ R. (2.16)

Also, by (2.15), since |R| ≤ 2m + 1, R has at most one element in P ∩ Q.
Therefore, using (2.16), we get

|r + p + q|B = |RΔ (PΔQ)| = |R − (PΔQ)| = |R ∩ (P ∩ Q)| ≤ 1.

(The third equality follows from the fact that S covers Vn.) This establishes
(2.14), and completes the proof of Lemma 8. �

We are ready for:

The Proof of Theorem 2(c) We first prove that Ind(n, n − m) ≤ n + 2.
Suppose that W is a maximal (n − m)-independent subset of Vn. By maximal-
ity, W contains a basis B of Vn (cf. Lemma 5(c)). Moreover, by Corollary 8,
(W − B) ⊆ B[2m+i,|B|], so the required inequality follows from Lemma 12.

To prove Ind(n, n−m) ≥ n+2, consider a basis B of Vn, with p, q ∈ B2m+i

such that p + q ∈ B2m. Corollary 9, then, will imply that W = B ∪ {p, q} is
(2m + i)-independent. To see that p and q as above exist, take any partition
{X, Y, Z} of B, with |X | = |Y | = m and |Z| = m + i. Let p =

∑
(X ∪ Z)

and q =
∑

(Y ∪ Z). [For example, working with the canonical basis, we can let
p = (1, . . . , 1, 0, . . . , 0) and q = (0, . . . , 0, 1, . . . , 1), where either block of 1’s is of
length 2m + i.] �

2.3 The Proof of Theorem 2(a)

We complete this section with the proof of Theorem 2(a). We remark that
although this result follows from [13, 4], we provide a full independent proof for
the reader’s convenience.

Proof of Theorem 2(a) Let E denote the set of binary vectors in Vn of
even weight. It is easy to see that E is an additive subgroup of Vn. Thus if
a ∈ Vn is of odd weight, an easy application of Lagrange’s theorem gives that

|E| = |a + E| =
2n

2
= 2n−1.

Thus in Vn, there are 2n−1 vectors of even weight and 2n−1 vectors of odd
weight. Now let

W := {u ∈ Vn : u has odd weight} .

We claim that W is 3-independent. Let a, b and c be in W . If these are not
independent, then c = a + b, but this would make c have even weight (c.f (2.2))
which is an obvious contradiction. This shows that Ind(n, 3) ≥ 2n−1. Now we
show that indeed we have equality. It suffices to show the following:

9



Suppose that G ⊆ Vn contains one more than half of Vn, i.e. |G| = 2n−1 +1.
Then G contains 3 elements which are dependent. To see this, first observe that
G has at least one element of odd weight and one of even weight. Let G = E∪θ
be a partition of G into even and odd weight vectors. Let a be an element of θ
and write |E| = t and |θ| = s so that |G| = |E| + |θ| = t + s = 2n−1 + 1. Now
consider the set

A = {a + e | e ∈ E}.
Because A has the same cardinality as E, |A| = |E| = t. Moreover, each element
of A has odd weight. If some a + e ∈ θ, then a, a + e and e are in G and we are
done. However if no element of A is in θ, then A ∩ θ = ∅ and so we conclude
that

|A ∪ θ| = |A| + |θ| = t + s = 2n−1 + 1.

But A ∪ θ is a subset of all vectors in Vn of odd weight which means that
|A ∪ θ| ≤ 2n−1 which is a contradiction. Thus indeed Ind(n, 3) = 2n−1. �

3 Applications

A classic 1938 result of R. C. Bose in the theory of mutually orthogonal latin
squares (MOLS), see [1], demonstrated an equivalence between complete sets of
MOLS of a given order and affine planes of the same order; also see [6] for fur-
ther related results. This result has inspired much research on generalizations
to other combinatorial objects with applications in areas as diverse as coding
theory, combinatorial designs, numerical integration and random number gen-
eration. We refer the interested reader to the survey [6] and the references cited
therein for a detailed account of this fascinating subject. In this section, we will
give an application of the results of Theorem 2 to the construction of hypercubes
and orthogonal arrays, pseudo (t, m, s)-nets and linear codes.

3.1 Orthogonal Arrays and Hypercubes.

A hypercube of dimension n and order b is an array containing bn cells, based
upon b distinct symbols arranged so that each of the b symbols appears the
same number of times, namely bn/b = bn−1 times. For 2 ≤ k ≤ n, a set of
k such hypercubes is said to be k-orthogonal if upon superpositioning of the k
hypercubes, each of the bk distinct ordered k-tuples appears the same number of
times, i.e bn/bk = bn−k times. Finally a set of r ≥ k such hypercubes is said to
be k-orthogonal if any subset of k hypercubes is k-orthogonal. When k = 2 this
reduces to the usual notion of pairwise or mutually orthogonal latin squares of
order b. See [8], [9] and [10] for further discussion related to sets of orthogonal
hypercubes, and in particular, sets of k-orthogonal hypercubes.

Using our constructions for a set of k independent binary vectors of length
n, we can build sets of k-orthogonal hypercubes of dimension n. Assume that
Ind(n, k) = s, and let a1x1 + · · · + anxn denote a vector of length n in Bn(k),
a set of k-independent vectors of length n. One can then construct a binary
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hypercube C of dimension n by placing the F2 field element a1b1 + · · · + anbn

in the cell of the cube C labelled by (b1, . . . , bn), where each bi ∈ F2. Since
each vector in Bn(k) has at least one nonzero coefficient ai = 1, and since the
equation xi = b has exactly 2n−1 solutions in Fn

2 , it is clear that each such
vector represents a binary hypercube of dimension n. Moreover, given k such
vectors from Bn(k), the corresponding hypercubes will be k-orthogonal. Since
the k vectors are k-independent, this follows from the fact that the k×n matrix
obtained from the coefficients of the k vectors will have rank k. Hence each
element of Fn

2 will be obtained exactly 2n−k times, so that the k hypercubes of
dimension n are indeed k-orthogonal.

We remind the reader that an orthogonal array of size N , s constraints, b
levels, strength k and index λ is an s × N array A with entries from a set of
b distinct elements with the property that any k × N subarray of A contains
all possible k × 1 columns with the same frequency λ. Such an array will be
denoted by OA(N, s, b, k). In Theorem 13 of [8] the following result is given. Let
b ≥ 2, s ≥ k ≥ 2, and t ≥ 0 be integers. Then there exists an orthogonal array
OA(bt+k, s, b, k) of index bt if and only if there exist s, k-orthogonal hypercubes
of dimension t + k and order b.

Hence if n = 3m+2, m ≥ 0, from Theorem 2 we can construct an OA(2n, n+
1, 2, n−m) of index 2m. Similarly if n = 3m+i, i = 0, 1, m ≥ 2, we can construct
an OA(2n, n + 2, 2, n− m) of index 2m.

3.2 Pseudo (t, m, s)-nets

In this subsection we briefly discuss a connection between sets of k-independent
vectors and (t, m, s)-nets and pseudo (t, m, s)-nets. For a fixed integer s ≥ 1,
an elementary interval in base b ≥ 2 is an interval of the form

E =
s∏

i=1

[a(i)bdi, (a(i) + 1)bdi)

with integers di ≥ 0 and integers 0 ≤ a(i) < bdi for 1 ≤ i ≤ s. Given an integer
m with m ≥ t ≥ 0, a (t, m, s)-net in base b is a point set of bm points in [0, 1)s

such that every elementary interval E of volume bt−m contains exactly bt points.
It is well known, see for example [11], that (t, m, s)-nets are useful in numerical
analysis; in particular in the approximation of multi-dimensional integrals.

As shown in [10] and stated again in [8], if k = 2, an orthogonal array
OA(bt+2, s, b, 2) of index bt is equivalent to a (t, t + 2, s)-net in base b. As
indicated in [4] for k ≥ 3, orthogonal arrays are however, not equivalent to
(t, t + k, s)-nets. Orthogonal arrays are in fact equivalent to so called pseudo
nets which are structures with less uniformity in the distribution of the points
than in a (t, m, s)-net. A pseudo net in base b has the same definition as a
(t, m, s)-net in base b except that only a restricted subset of the elementary
intervals is required to contain the proper share of points.
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More specifically, as defined in [4], a point set of bm points in [0, 1)s is
a pseudo (t, m, s)-net in base b if every elementary interval of volume bt−m

satisfying either

(i) all di ∈ {0, 1}, or

(ii) di �= 0 for exactly one i, 1 ≤ i ≤ s

contains exactly bt points of the point set. In addition, a set of bm points in
[0, 1)s is a weak pseudo (t,m,s)-net in base b if every elementary interval of
volume bt−m satisfying (i) contains exactly bt points of the point set.

We have shown that given a set of s = Ind(n, k), k-independent vectors of
length n = t+k, we can construct a set of s, k-orthogonal hypercubes of dimen-
sion t + k and order 2. By [8, Theorem 13] such a collection of hypercubes is
equivalent to an orthogonal array OA(2t+k, s, 2, k) of index 2t. From [4, Corol-
lary 3.3.2], the existence of an OA(2t+k, s, 2, k) is equivalent to the existence of
a pseudo (t, t + k, s)-net in base 2. Hence from [4, Corollary 3.3.9] we have:

Theorem 13 If s = Ind(n, k), then each of the following equivalent objects
can be constructed.

(1) A set of s, k-orthogonal hypercubes of dimension t + k and order 2.

(2) An orthogonal array OA(2t+k, s, 2, k) of index 2t.

(3) A pseudo (t, t + k, s)-net in base 2.

(4) A weak pseudo (t, t + k, s)-net in base 2.

Remark 14: Since our construction of sets of k-independent vectors deals
only with the case b = 2, we have stated Theorem 13 only for the b = 2 case. We
note however that given a set of s′, k-independent vectors of length t + k over
the finite field of b elements where b is any prime power, one will have proved
the existence of each of the above equivalent combinatorial objects in which s
is replaced by s′ and 2 is replaced by b.

3.3 Linear Codes

It is known that a linear code C with a parity check matrix H has minimum
distance dC ≥ s + 1 if and only if any s columns of H are linearly independent;
see Lemma 9.14 of [7]. We can thus construct a binary linear code C with length
Ind(n, k), dimension Ind(n, k) − n, and minimum distance dC ≥ k + 1. Hence
from Theorem 1, part (c), if n = 3m + i, i = 0, 1, m ≥ 2, we can construct
a binary linear code Cn of length n + 2, dimension 2, and minimum distance
dCn ≥ n − m + 1. We note in passing that while the resulting code Cn has a
very small dimension, it has a large minimum distance.
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3.4 An Example

As an illustration, if n = 6 = 3(2) so that m = 2, from Theorem 2, we know
that Ind(6, 4) = 8. Moreover the following set of 8 vectors of length 6 is 4-
independent.

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 1 1 1 0 0
0 0 1 1 1 1

.

From the discussion above we can thus construct a set of 8 binary hypercubes
each of dimension 6, which are 4-orthogonal as well as an orthogonal array
OA(26, 8, 2, 4) of index 22. Moreover, we can also construct a binary linear code
C with parameters [8, 2, dC ≥ 5].
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