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1 Introduction

1.1 Discrete Riesz Energy Problems

The problem of uniformly distributing points on spheres (more generally, on
compact sets in Rn) is an interesting and difficult problem. It is folklore, that
such problems were discussed already by Carl Friedrich Gauss in his famous
Disqvistiones arithmaticae, although it is most likely that similar problems
appeared in mathematical writings even before that time.

For d ≥ 1, let Sd denote the d-dimensional unit sphere in Rd+1, given by

x2
1 + · · ·+ x2

d+1 = 1. (1)

For d = 1, the problem is reduced to uniformly distributing N points on
a circle, and equidistant points provide an obvious answer. For d ≥ 2, the
problem becomes much more difficult; in fact, there are numerous criteria for
uniformity, resulting in different optimal configurations on the sphere. Many
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constructions of “well-distributed” point sets have been given in the literature.
These include constructions of generalized spiral points, low-discrepancy point
sets in the unit cube, which can be transformed via standard parametrizations,
constructions given by integer solutions of the equation x2

1 + · · ·+ x2
d+1 = N

projected onto the sphere, rotations of certain subgroups applied to points on
the sphere, finite field constructions of point sets based on finite field solutions
of (1), and associated combinatorial designs. See [2, 6, 8, 9, 7, 10, 11, 12] and
the references cited therein.

In this paper, we are interested in studying certain arrangements of N
points on a class of d-dimensional compact sets A embedded in Rn. We assume
that these points interact through a power law (Riesz) potential V = r−s,
where s > 0 and r is the Euclidean distance in Rn.

For a compact set A ⊂ Rn, s > 0, and a set ωN = {x1, . . . , xN} of distinct
points on A, the discrete Riesz s-energy associated with ωN is given by

Es(A,ωN ) :=
∑

1≤i<j≤N

|xi − xj |−s. (2)

Let ω∗N := {x∗1, . . . , x∗N} ⊂ A be a configuration, for which Es(A,ωN )
attains its minimal value; that is,

Es(A,N) := min
ωN⊂A

Es(A,ωN ) = Es(A,ω∗N ). (3)

We shall call such minimizing configurations s-extremal configurations. It is
well-known that, in general, s-extremal configurations are not always unique.
For example, in the case of Sd, they are invariant under rotations. A natural
physical interpretation of minimal energy problem on the sphere is the electron
problem, which asks for distributions of electrons in stable equilibrium.

Natural questions that arise in studying the discrete Riesz energy are:

(1) What is the asymptotic behavior of Es(A,N), as N →∞?
(2) How are s-extremal configurations distributed on A for large N?

It is well-known that answers to these questions essentially depend on the
relation between s and the Hausdorff dimension dH(A) of A. We demonstrate
this fact with the following two classical examples. Throughout the paper, we
denote by C, C1, . . . positive constants, and by c, c1, . . . sufficiently small
positive constants (different each time, in general), that may depend on d, s,
A but independent of N . We refer the reader to [8, 9] and the references cited
therein for more details.

Example 1. The interval [−1, 1], dH([−1, 1]) = 1: It is known that s = 1 is
the critical value in the sense that s-extremal configurations are distributed
on [−1, 1] differently for s < 1 and s ≥ 1. Indeed, for 0 < s < 1, the limiting
distribution of s-extremal configurations has an arcsine-type density and, for
s ≥ 1, the limiting distribution is the uniform distribution on [−1, 1]. Con-
cerning the minimal energies, they again behave differently for s < 1, s = 1,
and s > 1. With es := [

√
πΓ(1 + s/2)] / [cos(πs/2)Γ((1 + s)/2)],
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Es([−1, 1], N) ∼

 (1/2)N2es , s < 1,
(1/2)N2 lnN, s = 1,
(1/2)sζ(s)e(s)N1+s, s > 1,

where ζ(s) stands for the Riemann zeta function.

Example 2. The unit sphere Sd, dH(Sd) = d: Here again, there are three cases
to consider: s < d, s = d, and s > d. In all cases, see [6], the limiting distri-
bution of s-extremal configurations is given by the normalized area measure
σd on Sd, which is natural due to rotation invariance, but the asymptotic
behavior of Es(Sd, N) is quite different. With τs,d(N) denoting N2 if s < d,
N2 lnN if s = d, and N1+s/d if s > d, the limit limN→∞ Es(Sd, N)/τs,d(N)
exists and is known in the first two cases (see [6, 10]).

The dependence of the distribution of s-extremal configurations over A
and the asymptotics for minimal discrete s-energy on s can be explained
using potential theory. Indeed, for a probability Borel measure ν on A, its
s-energy integral is defined to be

Is(A, ν) :=
∫

A×A

|x− y|−sdν(x)dν(y), (4)

which can be finite or infinite. For a set ωN = {x1, . . . , xN} ⊂ A, let

νωN :=
1
N

N∑
j=1

δxj (5)

denote the normalized counting measure of ωN (so that νωN (A) = 1). Then
the discrete Riesz s-energy (2), associated with ωN , can be written as

Es(A,ωN ) =
N2

2

∫
x6=y

|x− y|−sdνωN (x)dνωN (y). (6)

where the integral represents a discrete analog of the s-energy integral (4).
If s < dH(A), then it is well-known that the energy integral (4) is mini-

mized uniquely by the equilibrium measure νA
s . On the other hand, the nor-

malized counting measure νω∗N of an s-extremal configuration minimizes the
discrete energy integral in (6) over all sets ωN on A. Thus, one can reasonably
expect that, for N large, νω∗N is “close” to νA

s and, therefore, the minimal
discrete s-energy Es(A,N) is close to (1/2)N2Is(A, νA

s ).
If s ≥ dH(A), then the energy integral (4) diverges for every measure

ν. Thus, Es(A,N) must grow faster than N2. Concerning the distribution of
s-extremal points over A, the interactions are strong enough to force points
to stay away from each other as far as possible since the closest neighbors
are now dominating. So, s-extremal points distribute themselves over A in an
equally spaced manner.
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In Section 2, we describe some recent results of the authors obtained in
[8, 9] concerning separation, mesh norm, and point energies of s-extremal
Riesz configurations on a wide class of compact sets in Rn, and refer the
reader to some latest results of other authors in this area. In particular, we
give new separation estimates for the Riesz points on the unit sphere Sd for
the case 0 < s < d− 1 and confirm scar defects conjecture ([3, 8, 9]) based on
numerical experiments.

1.2 Numerical Integration and ggg-Functionals

Numerical integration and discrepancy estimates are important problems in
applied mathematics and many applications, when one needs to approximate∫
B fdζ, where B ⊂ Rn, n ≥ 3, is a bounded domain or manifold, dζ : Rn → R

is a Borel measure with compact support in B, and f belongs to a suitable
class of real valued functions on B, by a finite sum using values of f at a
discrete set of nodes ωN . Such problems arise naturally in many areas of
growing interest such as mathematical finance, physical geodesy, meteorol-
ogy, and diverse mathematical areas such as approximation theory, spherical
t-designs, discrepancy, combinatorics, Monte-Carlo and Quasi-Monte-Carlo
methods, finite fields, information based complexity theory, and statistical
learning theory.

In this paper, we consider the case when B = Sd and the measure dζ is
the normalized area measure σd.

For a set of nodes ωN = {x1,N , . . . , xN,N} ⊂ Sd, a natural measure for the
quality of its distribution on the sphere is the spherical cap discrepancy

D(ωN ) = sup
C⊆Sd

∣∣∣∣∣
N∑

k=1

[νωN − σd] (C)

∣∣∣∣∣ ,

where the supremum ranges over all spherical caps C ⊆ Sd and νωN is the
normalized counting measure (5) of ωN . The discrepancy simply measures the
maximal deviation between νωN and the normalized area measure σd over all
spherical caps or, in other words, the worst error in numerical integration of
indicator functions of spherical caps using the set of nodes ωN .

For a continuous function f : Sd → R, we denote by

R(f, ωN ) :=
∫
Sd

f(x)dσd(x)− 1
N

N∑
k=1

f(xk) =
∫
Sd

f(x)d [σd − νωN ]

the error in numerical integration on the sphere Sd using nodes in ωN .
Clearly, to have R(f, ωN ) → 0, as N →∞, for any continuous function f

on Sd, the points in ωN should be distributed over Sd nicely in the sense that
D(ωN ) → 0, as N →∞.

In Section 3, we briefly discuss spherical cap discrepancy and error esti-
mates for numerical integration on Sd, and refer the interested reader to [6, 7]
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and the references cited therein for a comprehensive account of this vast and
interesting subject. The methods used in [6, 7] are motivated by the discus-
sion on s-energy and s-extremal Riesz points presented in Section 2. A crucial
observation was the possibility of use of g-functionals, generalizing classical
Riesz and logarithmic functionals, to estimate the second order terms in the
expansions of g-energies, which yield errors in numerical integration valid for
a large class of smooth functions on the sphere.

2 Point Energies, Separation, and Mesh Norm for
Optimal Riesz Points on ddd-Rectifiable Sets

In this section, we focus on the results obtained by the authors in [8, 9], which
are dealing with properties of s-extremal Riesz configurations on compact sets
in Rn, and refer an interested reader to the references and [6, 8, 8, 7, 10] for
results of other authors.

2.1 The case s > ds > ds > d

We define a class Ad of d-dimensional compact sets A ⊂ Rn for which, in the
case s ≥ d, the asymptotic behavior of Es(A,N), separation and mesh norm
estimates, and the limiting distribution of ω∗N (in terms of weak-star conver-
gence of normalized counting measures) over A have been recently obtained.

Definition 1. We say that a set A belongs to the class Ad if, for some n ≥ d,
A ⊂ Rn and

(1)Hd(A) > 0 and
(2)A is a finite union of bi-Lipschitz images of compact sets in Rd, that is

A =
m⋃

i=1

φi (Ki) ,

where each Ki ⊂ Rd is compact and φi : Ki → Rn is bi-Lipschitz on Ki,
i = 1, . . . ,m.

Here and throughout the paper, Hd(·) denotes the d-dimensional Hausdorff
measure in Rn.

For a collection ωN = {x1, . . . , xN} of distinct points on a set A ⊂ Rn, let

δ(A,ωN ) := min
i 6=j

|xi − xj |, ρ(A,ωN ) := max
x∈A

min
1≤j≤N

|x− xj |.

The quantity δ(A,ωN ) is called the separation radius and gives the minimal
distance between points in ωN , while the mesh norm ρ(A,ωN ) means the
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maximal radius of a “cap” E(x, r) (see (7)) on A, which does not contain
points from ωN . We also define the point energies of the points in ωN by

Ej,s(A,ωN ) :=
∑
i 6=j

|xj − xi|−s, j = 1, . . . , N.

The following two results were established in [8].

Theorem 1. Let A ∈ Ad and s > d. Then, for all 1 ≤ j ≤ N ,

Ej,s(A,ω∗N ) ≤ CNs/d.

Corollary 1. For A ∈ Ad, s > d, and any s-extremal configuration ω∗N on A,

δ(A,ω∗N ) ≥ cN−1/d.

We note that this is the best possible lower estimate on the separation
radius. Under some additional restrictions on a set A ∈ Ad, this estimate was
obtained earlier in [10]. Concerning the mesh norm ρ(A,ω∗n) of s-extremal
configurations, the following result was proved in [9].

Theorem 2. Let A ∈ Ad, s > d, and let ω∗N be an s-extremal configuration
on A. Then

ρ(A,ω∗N ) ≤ CN−1/d.

Regarding point energies for s-extremal Riesz configurations, we define
a subset Ãd of Ad (see [9]), for which we have obtained a lower estimate
matching the upper one in Theorem 1.

Let, for x ∈ A and r > 0,

E(x, r) := {y ∈ A : |y − x| < r} . (7)

Definition 2. We say that a set A ∈ Ãd if

(1)A ∈ Ad and
(2) there is a constant c > 0 such that, for any x ∈ A and r > 0 small enough,

diam(E(x, r)) ≥ cr. (8)

Along with trivial examples, such as a set consisting of a finite number
connected components (not singletons), the diameter condition holds for many
sets with infinitely many connected components. Say, Cantor sets (known to
be totally disconnected) with positive Hausdorff measure are in the class Ãd.
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Theorem 3. Let A ∈ Ãd and s > d. Then

c ≤ N1/dδ(A,ω∗N ) ≤ C (9)

and, therefore, for any 1 ≤ j ≤ N ,

Ej,s(A,ω∗N ) ≥ cNs/d. (10)

Combining Theorems 1 and 3 yields

Corollary 2. For s > d and any s-extremal configuration ω∗N on A ∈ Ãd,

c ≤ max1≤j≤N Ej,s(A,ω∗N )
min1≤j≤N Ej,s(A,ω∗N )

≤ C. (11)

Thus, for A ∈ Ãd and s > d, all point energies in an s-extremal configu-
ration are asymptotically of the same order, as N →∞.

We note that estimates given in Theorems 2, 3, and Corollary 2 were
obtained in [8], but with the diameter condition (8) replaced by the more
restrictive measure condition Hd(E(x, r)) ≥ crd.

Most likely, (11) is the best possible assertion in the sense that the point
energies are not, in general, asymptotically equal, as N →∞. (Compare with
the case of the unit sphere Sd and 0 < s < d− 1 in Theorem 4(c) below.)

Simple examples show that the estimates (9), (10), and (11) are not valid,
in general, for a set A ∈ Ad without an additional condition on its geometry.
Indeed, as a counterexample, for x ∈ Rd+1 with |x| > 1, let A = Sd ∪ {x}.

2.2 The case 0 < s < d − 10 < s < d − 10 < s < d − 1 for SdSdSd

In doing quadrature, it is important to know some specific properties of low
discrepancy configurations, such as the separation radius, mesh ratio, and
point energies. In [8], the authors established lower estimates on the separation
radius for s-extremal Riesz configurations on Sd for 0 < s < d− 1 and proved
the asymptotic equivalence of the point energies, as N →∞.

Theorem 4. Let ω∗N be an s-extremal configuration on Sd. Then

(a) for d ≥ 2 and s < d− 1, δ(Sd, ω∗N ) ≥ cN−1/(s+1);
(b) for d ≥ 3 and s ≤ d− 2, δ(Sd, ω∗N ) ≥ cN−1/(s+2), which is sharp in s for

s = d− 2;
(c) for any 0 < s < d− 1,

lim
N→∞

max1≤j≤N Ej,s(Sd, ω∗N )
min1≤j≤N Ej,s(Sd, ω∗N )

= 1.
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We remark that numerical computations for a sphere (see [3]) show that,
for any s > 0, the point energies are nearly equal for almost all points that
are of so-called “hexagonal” type. However, some (“pentagonal”) points have
elevated energies and some (“heptagonal”) points have low energies. The tran-
sition from points that are “hexagonal” to those that are “pentagonal” or
“heptagonal” induce scar defects, which are conjectured to vanish, as N →∞.
Theorem 4(c) provides strong evidence for this conjecture for 0 < s < d − 1.
We refer the reader to a recent paper [11], where sharp separations results
for s-extremal configurations are obtained in the case d − 1 < s < d. The
separation radius for the case s = d − 1 was studied by Dahlberg in [4] and
the cases d− 1 < s < d by Kuijlaars et al in [11].

3 Discrepancy and Errors of Numerical Integration on
Spheres.

The following discrepancy and numerical integration results were established
in [6]. See also [7].

Definition 3. Let, for δ0 > 0, g(t) : [−1−δ0, 1) → R be a continuous function.
We say that g(t) is “admissible” if it satisfies the following conditions:

(a) g(t) is strictly increasing with limt→1− g(t) = ∞.
(b) If g(t−δ) is given by its ultraspherical expansion

∑∞
n=0 an(δ)P (d)

n (t), valid
for t ∈ [−1, 1], then we assume that, for all n ≥ 1 and 0 < δ ≤ δ0,
an(δ) > 0.

(c) The integral
1∫

−1

g(t)(1− t2)(d/2)−1dt

converges.

Here P
(d)
n are the ultraspherical polynomials corresponding to the d-dimensional

sphere normalized by P
(d)
n (1) = 1.

One immediately checks that the following choices of admissible functions
g(t) yield the classical energy functionals: g0

L(t) := −2−1 log[2(1 − t)] for the
logarithmic energy and gs

R(t) := 2−s/2(1−t)−s/2, s > 0, for the Riesz s-energy.
For a set ωN = {x1, . . . , xN} ⊂ Sd, similarly to (2) and (3), we define

Eg(Sd, ωN ) :=
N∑

1≤i<j≤N

g(< xi, xj >),

where < · > denotes inner product in Rd+1, and

Eg(Sd, N) := min
ωN⊂Sd

Eg(Sd, ωN ).
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A point set ω∗N , for which the minimal energy Eg(Sd, N) is attained, is called
a minimal g-energy point set. It was shown in [6] that, for any admissible
function g(t), the energy integral

Ig(Sd, ν) :=
∫

Sd×Sd

g(< x, y >)dν(x)dν(y)

is minimized by the normalized area measure σd amoungst all Borel prob-
ability measures ν on Sd. Using arguments similar to those in Examples 1
and 2, one expects that the normalized counting measure νω∗N of ω∗N gives a
discrete approximation to the normalized area measure σd in the sense that
the integral of any continuous function f on Sd against σd is approximated
by the (N−1)-weighted discrete sum of values of f at the points in ω∗N .

Theorem 5. Let g(t) be admissible, d ≥ 2, ωN be a collection of N points on
Sd, f be a polynomial of degree at most n ≥ 1 on Rd+1, and 0 < δ ≤ δ0. Then

(a) |R(f, ωN )| ≤ ‖f‖2
(

2N−2Eg(Sd, ωN )− a0(δ) + N−1g(1− δ)
min1≤k≤n [ak(δ)/Z(d, k)]

)1/2

with Z(d, k) counting the linearly independent spherical harmonics of de-
gree k on Sd. Moreover, if q = q(d) is the smallest integer satisfying
2q ≥ d + 3, then there exists a positive constant C, independent of N
and ωN , such that uniformly on m ≥ 1 and 0 < δ < δ0 there holds

DN (ωN ) ≤ C

{
1
m

+
(

2N−2Eg(Sd, ωN )− a0(δ) + N−1g(1− δ)
min1≤k≤n [ak(δ)/Z(d, k)]

)1/2
}

.

(b)Let f be a continuous function on Sd satisfying

|f(x)− f(y)| ≤ Cf arccos(〈x, y〉), x, y ∈ Sd. (12)

Then, for any n ≥ 1,

|R(f, ωN )| ≤ 12Cf
d

n
+

(
2N−2Eg(Sd, ωN )− a0(δ) + N−1g(1− δ)

min1≤k≤n [ak(δ)/Z(d, k)]

)1/2

.

Remark 1. Theorem 5 shows that second order terms in the expansion of min-
imal energies determine rates in errors of numerical integration over spheres.
Indeed, one hopes that the energy term 2N−2Eg(Sd, ωN ) and the leading term
a0(δ) cancel each other sufficiently to allow for an exact error. An application
of this idea was exploited first in [6] in the case s = d. (See Theorem 6 below.)
See also [1].

We now quantify the error in Theorem 5 for d-extremal configurations on
Sd (which are sets of minimal gd

R-energy).
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Theorem 6. Let f be a continuous function on Sd satisfying (12), and let
ω∗N be a d-extremal configuration. Then

|R(f, ω∗N )| = O
(

Cf + ‖f‖∞
√

log log N√
log N

)
with the implied constant depending only on d. Moreover,

D(ω∗N ) = O
(√

log log N/ log N
)

.

We remark that it is widely believed that the order above may indeed be
improvable to a negative power of N . Thus far, however, it is not clear how
to prove whether this belief is indeed correct.
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