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Abstract

We investigate bounds for point energies, separation radius, and mesh norm of certain arrangements of
N points on sets A from a class Ad of d-dimensional compact sets embedded in Rd′ , 1 ≤ d ≤ d′. We
assume that these points interact through a Riesz potential V = | · |−s, where s > 0 and | · | is the

Euclidean distance in Rd′ . With δ∗s (A, N) and ρ∗s(A, N) denoting, respectively, the separation radius and
mesh norm of s-extremal configurations, which are defined to yield minimal discrete Riesz s-energy, we
show, in particular, the following.
(A) For the d-dimensional unit sphere Sd ⊂ Rd+1 and s < d− 1, δ∗s (Sd, N) ≥ cN−1/(s+1) and, moreover,
δ∗s (Sd, N) ≥ cN−1/(s+2) if s ≤ d− 2. The latter result is sharp in the case s = d− 2. In addition, point
energies for s-extremal configurations are asymptotically equal. This observation relates to numerical
experiments on observed scar defects in certain biological systems.
(B) For A ∈ Ad and s > d, δ∗s (A, N) ≥ cN−1/d and the mesh ratio ρ∗s(A, N)/δ∗s (A, N) is uniformly
bounded for a wide subclass of Ad. We also conclude that point energies for s-extremal configurations
have the same order, as N →∞.
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1 Introduction

The problem of distributing a large number of points over the surface of a smooth manifold is an interesting
and widely studied problem with numerous applications in diverse areas. To name just a few: spherical
t-designs, discrepancy and combinatorics, Monte-Carlo and Quasi-Monte-Carlo methods, approximation
theory, finite fields, complexity theory, frame theory, viral morphology, crystallography, molecular structure
and electrostatics. We refer the reader to [1]–[11], [13]–[16], [18]–[25], and the many references cited therein
for a detailed account of this fascinating subject. In this paper, we are interested in studying point energies,
separation and mesh norm for arrangements of N points on a class of d-dimensional compact sets A embedded
in Rd′ . (Here and throughout the paper, 1 ≤ d ≤ d′ are integers.) We assume that these N -arrangements
interact through the power law (Riesz) potential V = | · |−s, where s > 0 and | · | is the Euclidean distance
in Rd′ .

Given a compact set A ⊂ Rd′ and a collection ωN = {x1, . . . , xN} of N ≥ 2 distinct points on A, the
discrete Riesz s-energy associated with ωN is given by

Es(A,ωN ) :=
∑

1≤i<j≤N

|xi − xj |−s. (1.1)
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Let ω∗s(A,N) := {x∗1, . . . , x∗N} ⊂ A be a configuration for which Es(A,ωN ) attains its minimal value, that
is,

Es(A,N) := min
ωN⊂A

Es(A,ωN ) = Es(A,ω∗s(A,N)).

In accordance with convention, we shall call such minimal configurations s-extremal configurations. It is
well-known that, in general, s-extremal configurations are not always unique. For example, in the case of
the unit sphere Sd := {x ∈ Rd+1 : |x| = 1}, they are invariant under rotations.

In this paper, we investigate bounds for point energies, separation radius, and mesh norm of s-extremal
configurations, which are defined to yield minimal discrete Riesz s-energy. With δ∗s (A,N) and ρ∗s(A,N)
denoting, respectively, the separation radius and mesh norm of such configurations, we show, in particular,
the following. (A) For the d-dimensional unit sphere Sd ⊂ Rd+1 and s < d− 1, δ∗s (Sd, N) ≥ cN−1/(s+1) and,
moreover, δ∗s (Sd, N) ≥ cN−1/(s+2) if s ≤ d− 2. The latter result is sharp in the case s = d− 2. In addition,
point energies for s-extremal configurations are asymptotically equal. This observation relates to numerical
experiments on observed scar defects in certain biological systems.
(B) For A ∈ Ad and s > d, δ∗s (A,N) ≥ cN−1/d and the mesh ratio ρ∗s(A,N)/δ∗s (A,N) is uniformly bounded
for a wide subclass of Ad. We also conclude that point energies for s-extremal configurations have the same
order, as N →∞.

Natural questions that arise in studying the discrete Riesz energy are:

(1) What is the asymptotic behavior of Es(A,N), as N →∞?

(2) How are s-extremal configurations distributed on A for large N?

It is well-known that answers to these questions essentially depend on the relation between s and the
Hausdorff dimension dH(A) of A. We demonstrate this fact with the following two classical examples and
refer the reader to [15] for more details.

Example 1 The interval [−1, 1], dH([−1, 1]) = 1: In the limiting cases, i.e., s = 0 (logarithmic interactions)
and s = ∞ (best-packing problem), the s-extremal configurations are Fekete points and equally spaced points,
respectively. It is well-known that Fekete points are distributed on [−1, 1] according to the arcsine measure,
which has the density µ′0(x) := (1/π)(1− x2)−1/2, while the equally spaced points, −1 + 2(k − 1)/(N − 1),
k = 1, . . . , N , have the arclength distribution, as N → ∞. It is also known that s = 1 is the critical value
in the sense that s-extremal configurations are distributed on [−1, 1] differently for s < 1 and s ≥ 1 (see
[17, Appendix] and [20]). Indeed, for s < 1, the limiting distribution of s-extremal configurations has an
arcsine-type density

µ′s(x) :=
Γ(1 + s/2)√

π Γ((1 + s)/2)
(1− x2)(s−1)/2 (1.2)

and, for s ≥ 1, the limiting distribution is the arclength distribution.
Concerning the minimal energies, they again behave differently for s < 1, s = 1, and s > 1:

Es([−1, 1], N) �


(1/2)N2es , s < 1,

(1/2)N2 lnN, s = 1,

(1/2)sζ(s)N1+s, s > 1,

where es := [
√

πΓ(1 + s/2)] / [cos(πs/2)Γ((1 + s)/2)] and ζ(s) stands for the Riemann zeta function.
This dependence of the distribution of s-extremal configurations over [−1, 1] and the asymptotics for

minimal discrete s-energy on s can be easily explained from potential theory point of view. Indeed, for a
probability Borel measure ν on [−1, 1], its s-energy integral is defined to be

Is([−1, 1], ν) :=
∫∫

[−1,1]2

|x− y|−sdν(x)dν(y) (1.3)
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(which can be finite or infinite). Let, for a set of points ωN = {x1, . . . , xN} on [−1, 1],

νωN :=
1
N

N∑
i=1

δxi

denote the normalized counting measure of ωN (so that νωN ([−1, 1]) = 1). Then the discrete Riesz s-energy,
associated with ωN and defined by (1.1), can be written as

Es([−1, 1],ωN ) = (1/2)N2

∫∫
x6=y

|x− y|−sdνωN (x)dνωN (y), (1.4)

where the integral represents a discrete analog of the s-energy integral (1.3) for the point-mass measure νωN .
If s < 1, then it is well-known (cf. [17, Appendix]) that the energy integral (1.3) is minimized uniquely

by an arcsine-type measure ν∗s , whose density µ′s(x) with respect to the Lebesgue measure is given by (1.2).
On the other hand, the normalized counting measure ν∗s,N of an s-extreme configuration minimizes the
discrete energy integral in (1.4) over all configurations ωN on [−1, 1]. Thus one can reasonably expect that,
for N large, ν∗s,N is “close” to ν∗s and, therefore, the minimal discrete s-energy Es([−1, 1], N) is close to
(1/2)N2Is([−1, 1], ν∗s ) = (1/2)N2es.

If s ≥ 1, then the energy integral (1.3) diverges for every measure ν. Thus, Es([−1, 1], N) must grow
faster than N2. Concerning the distribution of s-extremal points over [−1, 1], the interactions are now
strong enough to force them to stay away from each other as far as possible. Of course, depending on s,
“far” neighbors still incorporate some energy in Es([−1, 1], N), but the closest neighbors are dominating. So,
s-extremal points distribute themselves over [−1, 1] in an equally spaced manner.

Example 2 The unit sphere Sd, dH(Sd) = d: Here we again see three distinct cases: s < d, s = d, and
s > d. Although it turns out that, for any s, the limiting distribution of s-extremal configurations is given
by the normalized area measure on Sd (cf. [17]; [13], [9]; [14], resp.), which is not a big surprise due to the
rotation invariance, the asymptotic behavior of Es(Sd, N) is quite different. With

τs,d(N) :=


N2, s < d,

N2 lnN, s = d,

N1+s/d, s > d,

it is known that the limit limN→∞ Es(Sd, N)/τs,d(N) exists (see [17], [16], [14]). Moreover, in the first two
cases, it has the value (1/2)γs,d, where

γd,d =
Γ((d + 1)/2)
d
√

πΓ(d/2)
,

γs,d =
Γ((d + 1)/2)Γ(d− s)

Γ((d− s + 1)/2)Γ(d− s/2)
, s < d. (1.5)

The dependence of the growth rate of Es(Sd, N) on s can be explained using potential theory arguments
similar to those in Example 1.

2 Class Ad

In this section, we introduce a class of compact sets A ⊂ Rd′ , for which, in the case s ≥ d and under
some additional assumptions, the asymptotic behavior of Es(A,N), separation results, and the limiting
distribution of ω∗s(A,N) over A (in terms of weak-star convergence of the normalized counting measures)
have been recently obtained (see [14, Theorems 2.1–2.4]). We will also give two important properties of sets
in Ad (estimates (2.3) and (2.4) below), which turn out to be crucial in what follows.

For a set A ⊂ Rd′ , let Hd(A) denote its d-dimensional Hausdorff measure (which reduces to d-dimensional
Lebesgue measure if d′ = d).
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Definition 2.1 We say that a set A belongs to the class Ad if, for some d′ ≥ d, A ⊂ Rd′ and

(1) Hd(A) > 0 and

(2) A is a finite union of bi-Lipschitz images of compact sets in Rd, that is

A =
m⋃

i=1

ϕi (Ki) ,

where each Ki ⊂ Rd is compact and ϕi : Ki → Rd′ is bi-Lipschitz on Ki, i = 1, . . . ,m.

We recall that a mapping ϕ : K → Rd′ is called bi-Lipschitz (with a constant L) on a compact set
K ⊂ Rd if there exists a constant L such that for all x, y ∈ K

(1/L)|x− y| ≤ |ϕ(x)−ϕ(y)| ≤ L|x− y|.

Clearly, Hd(ϕ(K ′)) ≤ LdHd(K ′) for any measurable set K ′ ⊆ K. In particular, it follows that, for any
measurable set A′ ⊆ ϕ(K),

Hd(A′) ≤ C [diam(A′)]d , (2.1)

where the constant C depends on L and d only, and diam(·) means the diameter of a set. Indeed, since
diam

(
ϕ−1(A′)

)
≤ Ldiam(A′), the preimage ϕ−1(A′) is contained in a ball B ⊂ Rd of radius Ldiam(A′).

Thus,

Hd(A′) ≤ LdHd
[
ϕ−1(A′)

]
≤ LdHd(B) ≤ 2πd/2L2d

dΓ(d/2)
[diam(A′)]d .

We now give some examples of sets from the class Ad.

Example 3 (i) Compact sets A in Rd with Hd(A) > 0: with d′ = d, these sets are bi-Lipschitz images
of themselves under the identity map. (One can also consider these sets embedded in Rd′ for d′ > d.)
For example, balls Bd(x, r) := {y ∈ Rd : |y − x| ≤ r}, d-dimensional cubes and parallelepipeds,
d-dimensional Cantor sets having positive Hd-measure.

(ii) d-dimensional spheres in Rd+1 (more generally, ellipsoids), since a closed hemisphere is a bi-Lipschitz
image of a d-dimensional ball under a stereographic projection.

(iii) Quasismooth (chord-arc) curves in Rd′ . These are Jordan curves A ⊂ Rd′ satisfying the following
condition: there exists a constant C such that, for any two points x, y ∈ A, the length of the (shortest)
subarc of A with endpoints x and y is bounded by C|x − y|. In this case, the bi-Lipschitz mapping
ϕ : [0, length(A)] → Rd′ is given by a natural parametrization of the curve.

(iv) Finite unions of sets from (i)–(iii). For instance, a ball Bd(x, r) with a quasismooth outgoing “tail”.
Thus, sets in Ad can have, locally, different Hausdorff dimensions.

We remark the following useful properties of sets A ∈ Ad. For r > 0 and x ∈ A, let

E(x, r) := {y ∈ A : |y − x| < r} (2.2)

denote a “cap” on A with center x and radius r. Then

Hd (E(x, r)) ≤ C1r
d (2.3)

with a constant C1 independent of x and r. Indeed, let L be such that all ϕi’s in Definition 2.1 are bi-Lipschitz
with the constant L. We note that diam(E(x, r)) ≤ 2r and, using (2.1), conclude that

Hd (E(x, r)) ≤
m∑

i=1

Hd (E(x, r) ∩Ki) ≤ mC(2r)d = C1r
d.
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In particular, Hd(A) ≤ C1[diam(A)]d < ∞ since A is compact. Moreover, (2.3) implies that, for s > d,∫
A\E(x,r)

|y − x|−sdHd(y) ≤ C2r
d−s, (2.4)

where C2 does not depend on x and r. This inequality can be verified as follows.

∫
A\E(x,r)

|y − x|−sdHd(y) =

∞∫
0

Hd
({
|y − x|−s > t

}
∩ {A \ E(x, r)}

)
dt

≤
r−s∫
0

Hd
(
E(x, t−1/s)

)
dt ≤

r−s∫
0

C1t
−d/sdt = C2r

d−s.

3 Main results

Our results concern point energies, separation radius, and the mesh norm for sets A ∈ Ad in the case s > d.
We also obtain new separation estimates for the unit sphere Sd ⊂ Rd+1 in the case s < d− 1 and show that
point energies are asymptotically equal, as N →∞.

Throughout the paper, we denote by C, C1, . . . positive constants, and by c, c1, . . . sufficiently small
positive constants (different each time, in general), that may depend on d, s, A, and other parameters not
essential for arguments, but independent of N and other variable quantities.

We define the point energies associated with ω∗s(A,N) by

Ej,s(A,N) :=
N∑

i=1
i 6=j

∣∣x∗j − x∗i
∣∣−s

, j = 1, . . . , N. (3.1)

For s > d, it was shown in [14] that, if A ∈ Ad and m = 1 in Definition 2.1 (i.e., A ⊂ Rd′ is a bi-Lipschitz
image of one compact set in Rd), then

Ej,s(A,N) ≤ CNs/d, 1 ≤ j ≤ N.

We extend this result with

Theorem 3.2 Let A ∈ Ad and s > d. Then, for all 1 ≤ j ≤ N ,

Ej,s(A,N) ≤ CNs/d. (3.2)

Remark 3.3 Our proof of Theorem 3.2 shows that given d, s, and A in advance, the constant C in (3.2)
can be explicitly estimated. Since Es(A,N) = (1/2)

∑N
j=1 Ej,s(A,N), we conclude that

lim sup
n→∞

Es(A,N)
N1+s/d

≤ C(d, s, A)

with an explicit value of the constant C(d, s, A), and so we obtain an estimate for a constant in the upper
bound for the minimal energies.
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For j = 1, . . . , N and a set ωN = {x1, . . . , xN} of distinct points on A ∈ Ad, we let

δj (ωN ) := min
i 6=j

{|xi − xj |}

and define
δ (ωN ) := min

1≤j≤N
δj (ωN ) .

The quantity δ (ωN ) is called the separation radius and gives the minimal distance between points in ωN .
We also define the mesh norm ρ (A,ωN ) of ωN by

ρ (A,ωN ) := max
y∈A

min
x∈ωN

|y − x|. (3.3)

Geometrically, ρ (A,ωN ) means the maximal radius of a cap E(y, r) (see (2.2)) on A, which does not contain
points from ωN .

These two quantities, δ (ωN ) and ρ (A,ωN ), give a good enough description of the distribution of ωN over
the set A. It is worth mentioning that, even for a sequence {ωN} of asymptotically s-extremal configurations,
i.e., configurations satisfying

lim
N→∞

Es(A,ωN )
Es(A,N)

= 1,

using results from [14], one can get only trivial estimates for the separation radius. Namely,

δ (ωN ) ≥ cN−(1/d+1/s), s > d.

However, for s-extremal configurations on A ∈ Ad much better (best possible) estimate for the separation
radius holds. As an immediate consequence of Theorem 3.2, we get

Corollary 3.4 For A ∈ Ad, s > d, and any s-extremal configuration ω∗s(A,N) on A,

δ∗s (A,N) := δ (ω∗s(A,N)) ≥ cN−1/d. (3.4)

Indeed, for any 1 ≤ j ≤ N , (3.2) yields

CNs/d ≥ Ej,s(A,N) ≥ [δj(ω∗s(A,N))]−s
,

and so δj(ω∗s(A,N)) ≥ cN−1/d for all j.

Remark 3.5 We remark that (3.4) was proved in [16, Corollary 1.4] for the unit sphere Sd. The same
estimate was also shown in [14, Theorem 2.4] for A ∈ Ad with an additional condition that m = 1 in
Definition 2.1. Unfortunately, this latter condition is not satisfied for many sets, including the sphere Sd,
and so Corollary 3.4 constitutes an extension of [14, Theorem 2.4].

Separation results for s < d are far more difficult to find in the literature. It trivially follows from
Example 2 that

δ (ωN ) ≥ cN−2/s

for any sequence {ωN} of asymptotically s-extremal configurations on the unit sphere Sd. But, even for
s-extremal configurations on Sd, there are only two non-trivial results known to the authors: for d = 2, s = 0
([10], [22]) and d ≥ 2, s = d− 1 ([8]) it was shown that

δ∗s (Sd, N) ≥ cN−1/d. (3.5)

(In [8], two-sided estimates were obtained for more general surfaces.) The estimate (3.5) is quite natural
and, intuitively, should be valid for any s > 0. A reason for such a lack of results for weak interactions
(s < d) is that this case require more delicate considerations based on the minimizing property of ω∗s(A,N)
while strong interactions (s > d) prevent points to be very close to each other without affecting the total
energy, and separation estimates can be obtained by looking at nearest neighbors only.

Our next result provides a separation estimate in the case s < d− 1 for the unit sphere Sd.
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Theorem 3.6 For d ≥ 2 and s < d− 1,

δ∗s (Sd, N) ≥ cN−1/(s+1). (3.6)

As a by-product of the proof of Theorem 3.6, we obtain the following

Corollary 3.7 For any 0 < s < d− 1,

lim
N→∞

max1≤j≤N Ej,s(Sd, N)
min1≤j≤N Ej,s(Sd, N)

= 1. (3.7)

Indeed, it follows from (4.3), (4.6), and (4.11) that, for N large enough,

1 ≤ max1≤j≤N Ej,s(Sd, N)
min1≤j≤N Ej,s(Sd, N)

=
max1≤j≤N Uj(x∗j )
min1≤j≤N Uj(x∗j )

≤ 1 + CN−1/(s+1).

Remark 3.8 Numerical computations for a sphere and a torus (see [3], [5], [6], [15]) suggest that, for any
s > 0, the point energies are nearly equal for almost all points (which are of so called “hexagonal” type).
However, some points (“pentagonal”) have elevated energies and some (“heptagonal”) have low energies.
The transition from points that are “hexagonal” to those that are “pentagonal” and “heptagonal” induces
scar defects, which are conjectured to vanish for N large enough. Thus, Corollary 3.7 confirms this conjecture
for 0 < s < d− 1.

The estimate (3.6) can be improved for d ≥ 3 and s ≤ d− 2.

Theorem 3.9 Let d ≥ 3 and s ≤ d− 2. Then

δ∗s (Sd, N) ≥ cN−1/(s+2). (3.8)

Note that, when s = d− 2, (3.8) gives the best possible estimate (3.5).

Concerning the mesh norm ρ (A,ωN ), for any sequence {ωN} of asymptotically s-extremal configurations
on A, clearly,

lim
N→∞

ρ (A,ωN ) = 0.

However, no estimate on the rate of convergence can be made. We show that, for s > d, under an additional
condition on A ∈ Ad, the mesh norm and the separation radius of any sequence {ω∗s(A,N)} of s-extremal
configurations on A have the same order, as N →∞.

Theorem 3.10 Let s > d, A ∈ Ad, and suppose further that

Hd (E(x, r)) ≥ crd, (3.9)

where a constant c > 0 is independent of x ∈ A and r > 0 small enough. Then, for any s-extremal
configuration ω∗s(A,N) on A,

ρ∗s(A,N) := ρ (A,ω∗s(A,N)) ≤ CN−1/d. (3.10)
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We remark that the condition (3.9) implies the existence of a constant C1 > 0, which depends only on C
in (2.1) and c in (3.9), such that

max
1≤j≤N

δj (ω∗s(A,N)) ≤ C1ρ
∗
s(A,N), (3.11)

Indeed, let k be an index for which the maximum in (3.11) is attained. Thus,

max
1≤j≤N

δj (ω∗s(A,N)) = δk (ω∗s(A,N)) =: δ∗.

The cap E(xk, (1/3)δ∗) contains a point y satisfying

|y − xk| ≥
1
8

( c

C

)1/d

δ∗, (3.12)

where constants C ≥ 1 and c ≤ 1 are such that (2.1) and (3.9) hold. (Assuming that no such point existed,
we would easily conclude that diam (E(xk, (1/3)δ∗) ≤ (c/C)1/dδ∗/4 and so, by (2.1),

Hd (E(xk, (1/3)δ∗)) ≤ c

(
δ∗

4

)d

,

which contradicts (3.9).) Since |y − x∗i | ≥ (2/3)δ∗ for all i 6= k, taking into account (3.12), we obtain

min
1≤i≤N

|y − x∗i | ≥
1
8

( c

C

)1/d

δ∗,

and (3.11) follows.

Corollary 3.4, Theorem 3.10, and (3.11) yield

Corollary 3.11 Let s > d, and assume that A ∈ Ad satisfies (3.9). Then, for any s-extremal configuration
ω∗s(A,N) on A,

c ≤ N1/dδj (ω∗s(A,N)) ≤ C, 1 ≤ j ≤ N. (3.13)

Since the upper estimate in (3.13) gives

Ej,s(A,N) ≥ [δj (ω∗s(A,N))]−s ≥
[
CN−1/d

]−s

= cNs/d, 1 ≤ j ≤ N,

combining this inequality with (3.2), we get

Corollary 3.12 For s > d, A ∈ Ad satisfying (3.9), and any s-extremal configuration ω∗s(A,N) on A, there
holds

1 ≤ max1≤j≤N Ej,s(A,N)
min1≤j≤N Ej,s(A,N)

≤ C. (3.14)

Remark 3.13 Corollary 3.12 says that, for s > d and a set A ∈ Ad satisfying (3.9), the point energies are
asymptotically of the same order, as N → ∞. Most likely, this is the best possible assertion in the sense
that an analog of (3.7) does not hold, in general.

Remark 3.14 Simple examples show that the upper estimates in (3.13) and (3.14) are not valid, in general,
for a set A ∈ Ad without an additional condition on its geometry. For instance, if x ∈ Rd+1 and |x| > 1,
then A := Sd ∪ {x}, clearly, does not enjoy these properties.

The measure condition (3.9) in Theorem 3.10 can be omitted if m = 1 in Definition 2.1 (in particular, if
A ⊂ Rd is a compact set with positive d-dimensional Lebesgue measure).

Theorem 3.15 Let A ∈ Ad and suppose that A is the image of one compact set K ⊂ Rd under a bi-Lipschitz
mapping ϕ. Then (3.10) holds.

The remainder of this paper is devoted to proofs of our results.
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4 Proofs

First, we introduce some notations and properties of s-extreme configurations, which will be used in subse-
quent proofs.

Let A ∈ Ad, ω∗s(A,N) = {x∗1, . . . , x∗N} be an s-extremal configuration on A,

ν∗s,N :=
1
N

N∑
i=1

δx∗i

denote the normalized counting measure of ω∗s(A,N), and let

Uν∗s,N (x) :=
∫

Rd′

|x− y|−sdν∗s,N (y) =
∫
A

|x− y|−sdν∗s,N (y) =
1
N

N∑
i=1

|x− x∗i |
−s (4.1)

be the potential associated with ν∗s,N . We also introduce functions

Uj(x) := Uν∗s,N (x)− 1
N

∣∣x− x∗j
∣∣−s =

1
N

N∑
i=1
i 6=j

|x− x∗i |
−s =

∫
A

|x− y|−sdν∗s,j,N (y), (4.2)

where ν∗s,j,N := ν∗s,N − (1/N)δx∗j
. Note that the total mass of ν∗s,j,N is (N − 1)/N . It follows from (3.1) that

Ej,s(A,N) = NUj

(
x∗j
)
. (4.3)

Since ω∗s(A,N) is an s-extremal configuration, Uj(x) attains its minimal value at x∗j . Thus, for any x ∈ A
and 1 ≤ j ≤ N , we have

Uν∗s,N (x) = Uj(x) +
1
N

∣∣x− x∗j
∣∣−s ≥ Uj

(
x∗j
)

+
1
N

∣∣x− x∗j
∣∣−s =

1
N

[
Ej,s(A,N) +

∣∣x− x∗j
∣∣−s
]
. (4.4)

Therefore,

N∑
j=1

Uν∗s,N (x) ≥ 1
N

N∑
j=1

Ej,s(A,N) +
1
N

N∑
j=1

∣∣x− x∗j
∣∣−s =

2
N
Es(A,N) + Uν∗s,N (x)

and so
Uν∗s,N (x) ≥ 2

N(N − 1)
Es(A,N) >

2
N2

Es(A,N), x ∈ A. (4.5)

4.1 Proof of Theorem 3.2

Our proof will follow from (2.3), (2.4), and ideas used in [16, Section 5]. For the reader’s convenience, we
present a sketch of the proof.

Let A ∈ Ad, ω∗s(A,N) = {x∗1, . . . , x∗N} be an s-extremal configuration on A, and let Uj(x) be defined by
(4.2), j = 1, . . . , N . We denote Di := A \ E

(
x∗i , [2NC1/Hd(A)]−1/d

)
, where C1 is the constant from (2.3),

and D := ∩N
i=1Di. Then, using (2.4), we get∫

D

Uj(x)dHd(x) =
1
N

N∑
i=1
i 6=j

∫
D

|x− x∗i |
−s

dHd(x) ≤ 1
N

N∑
i=1
i 6=j

∫
Di

|x− x∗i |
−s

dHd(x)

≤ 1
N

N∑
i=1
i 6=j

C2

[
2NC1

Hd(A)

](s−d)/d

< C2

[
2C1

Hd(A)

](s−d)/d

Ns/d−1.
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On the other hand, by (2.3),

Hd(D) = Hd(A)−Hd

(
N⋃

i=1

E
(
x∗i , [2NC1/Hd(A)]−1/d

))
≥ Hd(A)−

N∑
i=1

C1[2NC1/Hd(A)]−1 =
Hd(A)

2
,

and so the minimizing property of ω∗s(A,N) yields

Uj(x∗j ) ≤
1

Hd(D)

∫
D

Uj(x)dHd(x) ≤ (C1C2)
(s−d)/d [Hd(A)/2

]−s/d
Ns/d−1 = C3N

s/d−1.

(Note that, since C1 and C2 depend explicitly on d, s, and A, so does C3.)
Finally, using (4.3), we obtain (3.2).

4.2 Proof of Theorems 3.6 and 3.9

Note that, since d′ = d + 1 and s < d− 1 = d′ − 2, the potential

Uν(x) :=
∫

Rd+1

|x− y|−sdν(y)

is superharmonic in Rd+1 for any finite positive Borel measure ν on Rd+1 (see [17, Thm. 1.4]).
To save in writing, we will use a standard notation σ for the normalized d-dimensional Hausdorff measure

Hd on Sd.
Let γs,d be defined by (1.5). It is well-known that (for any 0 < s < d) σ(x) is the equilibrium measure

for Sd, and so Uσ(x) ≡ γs,d on Sd. Using this fact and integrating both sides of

1
N

N∑
i=1

|x− x∗i |
−s = Uν∗s,N (x) ≥ 1

N

[
Ej,s(A,N) +

∣∣x− x∗j
∣∣−s
]

= Uj(x∗j ) +
1
N

∣∣x− x∗j
∣∣−s

(see (4.1), (4.4), and (4.3)) against σ(x), we get

γs,d ≥ Uj(x∗j ) +
1
N

γs,d.

Thus,

Uj

(
x∗j
)
≤ N − 1

N
γs,d < γs,d, j = 1, . . . , N. (4.6)

Next, we obtain estimates for Uj

(
x∗j
)

from below. It was shown in ([16], [25]) that

1
2
γs,dN

2 − C1N
1+α(s,d) ≤ Es

(
Sd, N

)
≤ 1

2
γs,dN

2 − c1N
1+s/d, (4.7)

α(s, d) =

{
s/(s + 2), 0 < s < d− 2,

s/d, d− 2 ≤ s < d

For d− 2 ≤ s < d, (4.7) gives the exact bounds for the second term in the asymptotic behavior of Es(Sd, N).
In the case 0 < s < d− 2, the lower estimate in (4.7), most likely, is not best possible.

We now use estimates (4.5) and (4.7) to conclude that, for x ∈ Sd,

Uν∗s,N (x) >
2

N2

(
1
2

γs,dN
2 − C1N

1+α(s,d)

)
= γs,d − C2N

α(s,d)−1. (4.8)
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Since Uν∗s,N (x) is superharmonic, by the minimal value principle (4.8) also holds for |x| ≤ 1.
Next, fixed ε0 > 0 small enough, let 0 < ε < ε0. For any x satisfying 1 < |x| ≤ 1 + ε, we denote

x̃ := (2− |x|)x/|x|. It can be easily verified that

min
y∈Sd

|x̃− y|
|x− y|

=
3− |x|
|x|+ 1

= 1− 2(|x| − 1)
|x|+ 1

> 1− ε

(with the minimum attained at y = −x/|x|). Therefore, using (4.8), we get

Uν∗s,N (x) = N−1
N∑

i=1

|x− x∗i |−s = N−1
N∑

i=1

|x̃− x∗i |−s

(
|x̃− x∗i |
|x− x∗i |

)s

≥ (1− ε)sUν∗s,N (x̃) ≥ (1− Csε)
(
γs,d − C2N

α(s,d)−1
)
≥ γs,d − C2N

α(s,d)−1 − C3ε.

Thus,
Uν∗s,N (x) ≥ γs,d − C2N

α(s,d)−1 − C3ε, |x| ≤ 1 + ε. (4.9)

We now apply this estimate to establish Theorems 3.6 and 3.9. Let us assume that, for some δ > 0, i
and j, |x∗i − x∗j | ≤ (1/2)δ, and consider the function

Ui,j(x) := Uj(x)−N−1 |x− x∗i |
−s = Uν∗s,N (x)−N−1

(∣∣x− x∗j
∣∣−s + |x− x∗i |

−s
)

= N−1
∑

k 6=i,j

|x− x∗k|−s.

Then it follows from (4.9) that, for any x satisfying |x− x∗j | = δ and |x| ≤ 1 + ε,

Ui,j(x) ≥ γs,d − C2N
α(s,d)−1 − C3ε−N−1

[
δ−s +

(
δ

2

)−s
]

= γs,d − C2N
α(s,d)−1 − C3ε− C4N

−1δ−s (4.10)

with constants C2, C3, and C4 independent of ε, δ, N , and x.
We begin with the proof of (3.6). Choosing ε = δ = N−1/(s+1), (4.10) yields for |x− x∗j | = N−1/(s+1)

Ui,j(x) ≥ γs,d − C2N
α(s,d)−1 − C3N

−1/(s+1) − C4N
−1Ns/(s+1) ≥ γs,d − C5N

−1/(s+1).

(Here, we have used the fact that, for s < d− 1, 1− α(s, d) > 1/(s + 1).) Clearly, Ui,j(x) is superharmonic
in Rd+1, and so we conclude that

Ui,j

(
x∗j
)
≥ γs,d − C5N

−1/(s+1).

Therefore

Uj

(
x∗j
)

= Ui,j

(
x∗j
)

+ N−1
∣∣x∗i − x∗j

∣∣−s ≥ γs,d − C5N
−1/(s+1) + N−1

∣∣x∗i − x∗j
∣∣−s (4.11)

Combining (4.6) and (4.11), we finally get

γs,d > γs,d − C5N
−1/(s+1) + N−1

∣∣x∗i − x∗j
∣∣−s

.

Hence,
C5N

∣∣x∗i − x∗j
∣∣s ≥ N1/(s+1),

and (3.6) is proved.

For (3.8), let P (x∗j ), denote the d-dimensional hyperplane touching Sd at x∗j . Then, if x ∈ P (x∗j ) with
|x− x∗j | = δ > 0 (i.e., x belongs to the (d− 1)-dimensional sphere with center x∗j and radius δ contained in
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P (x∗j )), then clearly |x| < 1 + δ2. Thus, choosing δ = N−1/(s+2) and ε = δ2 = N−2/(s+2), we conclude from
(4.10) that

Ui,j(x) ≥ γs,d − C2N
s/(s+2)−1 − C3N

−2/(s+2) − C4N
−1Ns/(s+2) = γs,d − C6N

−2/(s+2)

on the (d − 1)-dimensional sphere {|x − x∗j | = N−1/(s+2)} ∩ P (x∗j ). Since s ≤ d − 2, it is easy to see that
Ui,j(x), restricted to P (x∗j ), is superharmonic and, therefore,

Ui,j

(
x∗j
)
≥ γs,d − C6N

−2/(s+2).

Similarly to (4.11), we find that

Uj

(
x∗j
)

= Ui,j

(
x∗j
)

+ N−1
∣∣x∗i − x∗j

∣∣−s ≥ γs,d − C6N
−2/(s+2) + N−1

∣∣x∗i − x∗j
∣∣−s

,

which together with (4.6) yields

γs,d > γs,d − C6N
−2/(s+2) + N−1

∣∣x∗i − x∗j
∣∣−s

.

Thus,
C6N

∣∣x∗i − x∗j
∣∣s ≥ N2/(s+2),

and (3.8) follows.

4.3 Proof of Theorems 3.10 and 3.15

To simplify notations, let us denote ρ∗ := ρ∗s(A,N). We can obviously assume that

ρ∗ ≥ cN−1/d, (4.12)

where c is the constant from the separation estimate (3.4).
In [14, Lemma 3.1], the authors proved a two-sided estimate on Es(A,N) for the case when A ⊂ Rd is a

bounded set with nonempty interior. (See also [23, Theorem 2] for the case of the unit sphere Sd ⊂ Rd+1.)
It can be easily verified that the approach used in proving the lower estimate,

Es(A,N) ≥ c1N
1+s/d

with a constant c1 > 0 depending on d, s, and A, but not on N , can be applied to any set A ∈ Ad. Therefore,
for the potential Uν∗s,N (x) defined in (4.1), (4.5) yields the estimate

Uν∗s,N (x) >
2

N2

(
c1N

1+s/d
)

= 2c1N
s/d−1, x ∈ A.

In particular, this estimate is valid for x = y∗, where y∗ is a point at which the maximum in (3.3) is attained
(with ωN = ω∗s(A,N)). Thus

Uν∗s,N (y∗) > 2c1N
s/d−1. (4.13)

We now derive an upper estimate for Uν∗s,N (y∗). First, we note that

|y∗ − x∗i | ≥ ρ∗, i = 1, . . . , N.

Let E∗
i := E

(
x∗i , (c/4)N−1/d

)
. It is clear that

E∗
i ∩ E∗

j = ∅, i 6= j. (4.14)

We also have that
ρ∗ = min

x∈ω∗
s(A, N)

|x− y∗| ≤ |x∗i − y∗| , 1 ≤ i ≤ N. (4.15)
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Then for any x ∈ E∗
i , 1 ≤ i ≤ N , (4.12) and (4.15) yield

|x− y∗| ≤ |x− x∗i |+ |x∗i − y∗| ≤ cN−1/d

4
+ |x∗i − y∗| ≤ ρ∗

4
+ |x∗i − y∗| ≤ 5

4
|x∗i − y∗| ,

which implies that

|x∗i − y∗|−s ≤
(

5
4

)s

min
x∈E∗

i

{
|x− y∗|−s

}
, (4.16)

and

|x− y∗| ≥ |x∗i − y∗| − |x− x∗i | ≥ |x∗i − y∗| − cN−1/d

4
≥ |x∗i − y∗| − ρ∗

4
≥ 3ρ∗

4
. (4.17)

Now using (4.16), (3.9), and (3.4), we get

|x∗i − y∗|−s ≤
(

5
4

)s

min
x∈E∗

i

{
|x− y∗|−s

}
≤
(

5
4

)s 1
Hd (E∗

i )

∫
E∗

i

|x− y∗|−s
dHd(x)

≤ C1[
(c/4)N−1/d

]d ∫
E∗

i

|x− y∗|−s
dHd(x) ≤ C2N

∫
E∗

i

|x− y∗|−s
dHd(x). (4.18)

By (4.17),
N⋃

i=1

E∗
i ⊂ A \ E (y∗, 3ρ∗/4) =: D.

Thus (4.18), (4.14), and (2.4) yield

Uν∗s,N (y∗) = N−1
N∑

i=1

|x∗i − y∗|−s ≤ C2

N∑
i=1

∫
E∗

i

|x− y∗|−s
dHd(x)

≤ C2

∫
D

|x− y∗|−s
dHd(x) ≤ C3

(
3ρ∗

4

)d−s

= C4 (ρ∗)d−s
. (4.19)

Combining (4.13) and (4.19), we obtain 2c1N
s/d−1 ≤ C4 (ρ∗)d−s, and (3.10) follows.

Theorem 3.15 can be proved in a very similar way. The only difference is that, this time, we can obtain
the upper estimate (4.19) without the condition (3.9) by using the mapping ϕ. Indeed, let z∗i := ϕ−1(x∗i ),
t∗ := ϕ−1(y∗). Since ϕ is bi-Lipschitz (say, with a constant L), we have

|x∗i − y∗| ≥ (1/L)|z∗i − t∗|.

Therefore,

Uν∗s,N (y∗) ≤ N−1
N∑

i=1

[(1/L)|z∗i − t∗|]−s = LsN−1
N∑

i=1

|z∗i − t∗|−s. (4.20)

We also note that
min
j 6=i

|z∗j − z∗i | ≥
c

L
N−1/d, (4.21)

where c is the constant from (3.4), and (see (4.15))

|z∗i − t∗| ≥ ρ∗

L
, 1 ≤ i ≤ N. (4.22)
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Let B∗
i denote the ball in Rd with center z∗i and radius (cN−1/d)/(4L). It follows from (4.21) that

B∗
i ∩B∗

j = ∅, i 6= j. (4.23)

Then, for z ∈ B∗
i , 1 ≤ i ≤ N , (4.22) yields

|z − t∗| ≤ cN−1/d

4L
+ |z∗i − t∗| ≤ ρ∗

4L
+ |z∗i − t∗| ≤ 5

4
|z∗i − t∗| ,

which implies that

|z∗i − t∗|−s ≤
(

5
4

)s

min
z∈B∗

i

{
|z − t∗|−s

}
, (4.24)

and

|z − t∗| ≥ |z∗i − t∗| − cN−1/d

4L
≥ |z∗i − t∗| − ρ∗

4L
≥ 3ρ∗

4L
. (4.25)

Using (4.24), we conclude that

|z∗i − t∗|−s ≤
(

5
4

)s 1
Hd (B∗

i )

∫
B∗

i

|z − t∗|−s
dHd(z) ≤ C1N

∫
B∗

i

|z − t∗|−s
dHd(z). (4.26)

By (4.25),
N⋃

i=1

B∗
i ⊂ Rd \Bd (t∗, 3ρ∗/(4L)) =: D.

Thus (4.20), (4.26), and (4.23) yield

Uν∗s,N (y∗) ≤ LsN−1
N∑

i=1

|z∗i − t∗|−s ≤ C1L
s

N∑
i=1

∫
B∗

i

|z − t∗|−s
dHd(z)

≤ C1L
s

∫
D

|z − t∗|−s
dHd(z) = C2

(
3ρ∗

4L

)d−s

= C3 (ρ∗)d−s
.

Combining this estimate with (4.13), we obtain (3.10).
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