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Abstract

We investigate bounds for point energies, separation radius, and mesh norm of certain arrangements of
N points on sets A from a class A¢ of d-dimensional compact sets embedded in ]Rd,, 1<d<d. We
assume that these points interact through a Riesz potential V' = |- |7, where s > 0 and | - | is the
Euclidean distance in R% . With 05 (A, N) and p; (A, N) denoting, respectively, the separation radius and
mesh norm of s-extremal configurations, which are defined to yield minimal discrete Riesz s-energy, we
show, in particular, the following.

(A) For the d-dimensional unit sphere S¢ C R**! and s < d—1, §3(S%, N) > eN~Y+D and, moreover,
05(SY N) > eN~YVE+2 if § < d — 2. The latter result is sharp in the case s = d — 2. In addition, point
energies for s-extremal configurations are asymptotically equal. This observation relates to numerical
experiments on observed scar defects in certain biological systems.

(B) For A € A% and s > d, 6:(A,N) > ¢N~'/% and the mesh ratio p%(A, N)/5:(A, N) is uniformly
bounded for a wide subclass of A?. We also conclude that point energies for s-extremal configurations
have the same order, as N — oo.
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1 Introduction

The problem of distributing a large number of points over the surface of a smooth manifold is an interesting
and widely studied problem with numerous applications in diverse areas. To name just a few: spherical
t-designs, discrepancy and combinatorics, Monte-Carlo and Quasi-Monte-Carlo methods, approximation
theory, finite fields, complexity theory, frame theory, viral morphology, crystallography, molecular structure
and electrostatics. We refer the reader to [1]-[11], [13]-[16], [18]—[25], and the many references cited therein
for a detailed account of this fascinating subject. In this paper, we are interested in studying point energies,
separation and mesh norm for arrangements of N points on a class of d-dimensional compact sets A embedded
in RY. (Here and throughout the paper, 1 < d < d’ are integers.) We assume that these N-arrangements

interact through the power law (Riesz) potential V' = |-|~%, where s > 0 and | - | is the Euclidean distance
in RY
Given a compact set A C R? and a collection wy = {z1,...,zy} of N > 2 distinct points on A, the
discrete Riesz s-energy associated with wy is given by
B(Awy)= Y |- (1.1)
1<i<j<N
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Let w(A,N) :={z7,...,25} C A be a configuration for which F,(A,wy) attains its minimal value, that
is,
Es(A,N):= min F (A ,wyn)=Es;(4,wi(A4,N)).
wnyCA
In accordance with convention, we shall call such minimal configurations s-extremal configurations. It is
well-known that, in general, s-extremal configurations are not always unique. For example, in the case of
the unit sphere S¢ := {x € R4*! : |x| = 1}, they are invariant under rotations.

In this paper, we investigate bounds for point energies, separation radius, and mesh norm of s-extremal
configurations, which are defined to yield minimal discrete Riesz s-energy. With §%(A, N) and p%(A, N)
denoting, respectively, the separation radius and mesh norm of such configurations, we show, in particular,
the following. (A) For the d-dimensional unit sphere S C R¥*! and s < d—1, §7(S%, N) > ¢N~Y/(+1) and,
moreover, §*(S9, N) > cN~V/(+2) if s < d — 2. The latter result is sharp in the case s = d — 2. In addition,
point energies for s-extremal configurations are asymptotically equal. This observation relates to numerical
experiments on observed scar defects in certain biological systems.

(B) For A € A% and 5 > d, §*(A, N) > ¢N~'/4 and the mesh ratio p*(A, N)/§*(A, N) is uniformly bounded
for a wide subclass of A% We also conclude that point energies for s-extremal configurations have the same
order, as N — oo.

Natural questions that arise in studying the discrete Riesz energy are:
(1) What is the asymptotic behavior of £5(A, N), as N — oo?
(2) How are s-extremal configurations distributed on A for large N?

It is well-known that answers to these questions essentially depend on the relation between s and the
Hausdorff dimension dg(A) of A. We demonstrate this fact with the following two classical examples and
refer the reader to [15] for more details.

Example 1 The interval [—1,1], dy([—1,1]) = 1: In the limiting cases, i.e., s = 0 (logarithmic interactions)
and s = oo (best-packing problem), the s-extremal configurations are Fekete points and equally spaced points,
respectively. It is well-known that Fekete points are distributed on [—1, 1] according to the arcsine measure,
which has the density uf(z) := (1/7)(1 — 22)~1/2, while the equally spaced points, —1 + 2(k — 1)/(N — 1),
k=1,...,N, have the arclength distribution, as N — oo. It is also known that s = 1 is the critical value
in the sense that s-extremal configurations are distributed on [—1,1] differently for s < 1 and s > 1 (see
[17, Appendix] and [20]). Indeed, for s < 1, the limiting distribution of s-extremal configurations has an
arcsine-type density
) L0 +5/2)

’ VrT((1+5)/2)

and, for s > 1, the limiting distribution is the arclength distribution.
Concerning the minimal energies, they again behave differently for s <1, s =1, and s > 1:

(1— )=/ (1.2)

(1/2)N2e, s <1,
E([-1,1],N) << (1/2)N?In N, s=1,
(1/2)%¢(s)NFs, s> 1,
where e := [/7['(1 4 s/2)] / [cos(ms/2)T'((1 + s)/2)] and ((s) stands for the Riemann zeta function.
This dependence of the distribution of s-extremal configurations over [—1,1] and the asymptotics for

minimal discrete s-energy on s can be easily explained from potential theory point of view. Indeed, for a
probability Borel measure v on [—1, 1], its s-energy integral is defined to be

zx%me;:/ & — |~ du(z)dv(y) (1.3)
[

—1,1]2



(which can be finite or infinite). Let, for a set of points wy = {x1,...,zx} on [-1,1],

veN = li&
. N "

denote the normalized counting measure of wy (so that v~ ([—1,1]) = 1). Then the discrete Riesz s-energy,
associated with wx and defined by (1.1), can be written as

Ey([-1,1],wn) = (1/2)N2/ |z —y| 7 dv®N (2)dvN (y), (1.4)
TFY

where the integral represents a discrete analog of the s-energy integral (1.3) for the point-mass measure v~

If s < 1, then it is well-known (cf. [17, Appendix]) that the energy integral (1.3) is minimized uniquely
by an arcsine-type measure v}, whose density p’(x) with respect to the Lebesgue measure is given by (1.2).
On the other hand, the normalized counting measure v  of an s-extreme configuration minimizes the
discrete energy integral in (1.4) over all configurations wy on [—1,1]. Thus one can reasonably expect that,
for N large, v} y is “close” to v} and, therefore, the minimal discrete s-energy &([—1,1], N) is close to
(/2N L ([~1,1],07) = (1/2)Ne,.

If s > 1, then the energy integral (1.3) diverges for every measure v. Thus, & ([—1,1], N) must grow
faster than N2. Concerning the distribution of s-extremal points over [—1,1], the interactions are now
strong enough to force them to stay away from each other as far as possible. Of course, depending on s,
“far” neighbors still incorporate some energy in Es([—1,1], N), but the closest neighbors are dominating. So,
s-extremal points distribute themselves over [—1, 1] in an equally spaced manner.

Example 2 The unit sphere S dy(S?) = d: Here we again see three distinct cases: s < d, s = d, and
s > d. Although it turns out that, for any s, the limiting distribution of s-extremal configurations is given
by the normalized area measure on S? (cf. [17]; [13], [9]; [14], resp.), which is not a big surprise due to the
rotation invariance, the asymptotic behavior of (5%, N) is quite different. With

N2, s <d,
7s,d(N) := ¢ N2In N, s=d,
Nits/d s> d,

it is known that the limit limyx_ oo E(SY, N)/75.4(N) exists (see [17], [16], [14]). Moreover, in the first two
cases, it has the value (1/2)~s 4, where
I'((d+1)/2)
Vdd = 7= o
dy/7L(d/2)
~ T((d+1)/2)r'(d —s)
T T T(d - s+ 1)/2)T(d - 5/2)°

s <d. (1.5)

The dependence of the growth rate of £,(5%, N) on s can be explained using potential theory arguments
similar to those in Example 1.

2 Class A

In this section, we introduce a class of compact sets A C Rd/, for which, in the case s > d and under
some additional assumptions, the asymptotic behavior of £;(A, N), separation results, and the limiting
distribution of w*(A, N) over A (in terms of weak-star convergence of the normalized counting measures)
have been recently obtained (see [14, Theorems 2.1-2.4]). We will also give two important properties of sets
in A? (estimates (2.3) and (2.4) below), which turn out to be crucial in what follows.

For a set A C R, let H?(A) denote its d-dimensional Hausdorff measure (which reduces to d-dimensional
Lebesgue measure if d' = d).



Definition 2.1 We say that a set A belongs to the class A® if, for some d' >d, A C RY and
(1) H(A) >0 and

(2) A is a finite union of bi-Lipschitz images of compact sets in RY, that is
m
A= i (K,
i=1
where each K; C R? is compact and @, : K; — RY s bi-Lipschitz on K;, 1 =1,...,m.

We recall that a mapping ¢ : K — R is called bi-Lipschitz (with a constant L) on a compact set
K C RY if there exists a constant L such that for all z, y € K

(1/L)|z =yl <le(z) = ¢(y)| < Lz —yl.

Clearly, H(¢(K')) < L*H%(K') for any measurable set K’ C K. In particular, it follows that, for any
measurable set A’ C ¢(K),

HAYA') < C [diam(A")]*, (2.1)
where the constant C' depends on L and d only, and diam(-) means the diameter of a set. Indeed, since
diam (¢~!(A4’)) < Ldiam(A’), the preimage ¢~'(A’) is contained in a ball B C R? of radius Ldiam(A’).
Thus,
27Td/2L2d

. nd
< A9y [diam(A")]" .

Hd(A/) < Lde [(P—l(Al):I < Lde(B)
We now give some examples of sets from the class A%

Example 3 (i) Compact sets A in R? with H?(A) > 0: with d’ = d, these sets are bi-Lipschitz images
of themselves under the identity map. (One can also consider these sets embedded in RY for d’ > d.)
For example, balls B4(x,7) := {y € R? : |y — 2| < r}, d-dimensional cubes and parallelepipeds,
d-dimensional Cantor sets having positive H?-measure.

(ii) d-dimensional spheres in R4t (more generally, ellipsoids), since a closed hemisphere is a bi-Lipschitz
image of a d-dimensional ball under a stereographic projection.

(iii) Quasismooth (chord-arc) curves in RY. These are Jordan curves A C R? satisfying the following
condition: there exists a constant C' such that, for any two points z, y € A, the length of the (shortest)
subarc of A with endpoints z and y is bounded by C|x — y|. In this case, the bi-Lipschitz mapping
@ : [0,length(A)] — R? is given by a natural parametrization of the curve.

(iv) Finite unions of sets from (i)-(iii). For instance, a ball B%(z,r) with a quasismooth outgoing “tail”.
Thus, sets in A% can have, locally, different Hausdorff dimensions.

We remark the following useful properties of sets A € A% For r > 0 and = € A, let
E(x,r):={yeA: ly—z|<r} (2.2)
denote a “cap” on A with center z and radius r. Then
H (B(x,r)) < Cyrf (2.3)
with a constant C; independent of z and r. Indeed, let L be such that all ¢,’s in Definition 2.1 are bi-Lipschitz
with the constant L. We note that diam(E(x,r)) < 2r and, using (2.1), conclude that

HE(E(z,r)) < Em:Hd (E(z,r) N K;) <mC(2r)? = Cyré.
=1



In particular, H%(A) < Cy[diam(A)]¢ < oo since A is compact. Moreover, (2.3) implies that, for s > d,
/ ly — x| dH(y) < Cor?™, (2.4)
A\E(z,r)

where (5 does not depend on x and r. This inequality can be verified as follows.
[ w-alanie) = [# (- ol > 0 (A Bw)) de

A\E(z,r)

—s

IN

[

0

/Hd (E(.”E,t_l/s)) dt S / C]t_d/sdt _ OQT'd_S,
0 0

3 Main results

Our results concern point energies, separation radius, and the mesh norm for sets A € A? in the case s > d.
We also obtain new separation estimates for the unit sphere S C R%+! in the case s < d — 1 and show that
point energies are asymptotically equal, as N — oo.

Throughout the paper, we denote by C, Ci, ... positive constants, and by ¢, ¢y, ... sufficiently small
positive constants (different each time, in general), that may depend on d, s, A, and other parameters not
essential for arguments, but independent of N and other variable quantities.

We define the point energies associated with w*(A, N) by

& «(AN): Z|x i j=1,...,N. (3.1)
z#]

For s > d, it was shown in [14] that, if A € A? and m = 1 in Definition 2.1 (i.e., A € R? is a bi-Lipschitz
image of one compact set in R?), then

(A N)<CN*/4 1< j<N.
We extend this result with
Theorem 3.2 Let A€ A% and s > d. Then, for all1 < j < N,

£js(A, N) < CN*/4, (3.2)

Remark 3.3 Our proof of Theorem 3.2 shows that given d, s, and A in advance, the constant C' in (3.2)
can be explicitly estimated. Since £5(A, N) = (1/2) Z 1€5,s(A, N), we conclude that

lim sup £ (A, N)

W<C(dsA)

with an explicit value of the constant C'(d, s, A), and so we obtain an estimate for a constant in the upper
bound for the minimal energies.



For j=1,...,N and a set wy = {z1,...,2x} of distinct points on 4 € A%, we let
6 (wn) :=min {|z; — z;(}
i#]

and define

6(wN) = 1;1}21]\[(53' (wN)

The quantity 6 (wy) is called the separation radius and gives the minimal distance between points in wy.
We also define the mesh norm p (A,wy) of wy by
A, = i —x|. 3.3
p(A,wy) = max min [y — x| (3.3)
Geometrically, p (A, wy) means the maximal radius of a cap E(y,r) (see (2.2)) on A, which does not contain
points from wy.
These two quantities, 6 (wy) and p (4, wy), give a good enough description of the distribution of wy over
the set A. It is worth mentioning that, even for a sequence {wy} of asymptotically s-extremal configurations,
i.e., configurations satisfying

Es (Av wN)
lim ————~ =1
Nose E(AN)
using results from [14], one can get only trivial estimates for the separation radius. Namely,
§(wy) > eN~A/d+1/s) s >d.

However, for s-extremal configurations on A € A? much better (best possible) estimate for the separation
radius holds. As an immediate consequence of Theorem 3.2, we get

Corollary 3.4 For A€ A%, s > d, and any s-extremal configuration w*(A, N) on A,
8X(A,N) =6 (w*(A,N)) > eN~V4, (3.4)

Indeed, for any 1 < j < N, (3.2) yields
ON*/? > € (A, N) > [6;(w5(A,N)] 7,
and so §;(w%(A,N)) > cN~V4 for all j.

Remark 3.5 We remark that (3.4) was proved in [16, Corollary 1.4] for the unit sphere S¢. The same
estimate was also shown in [14, Theorem 2.4] for A € A? with an additional condition that m = 1 in
Definition 2.1. Unfortunately, this latter condition is not satisfied for many sets, including the sphere S%,
and so Corollary 3.4 constitutes an extension of [14, Theorem 2.4].

Separation results for s < d are far more difficult to find in the literature. It trivially follows from
Example 2 that
0 (wn) > cN~2/s

for any sequence {wx} of asymptotically s-extremal configurations on the unit sphere S¢. But, even for
s-extremal configurations on S?, there are only two non-trivial results known to the authors: for d = 2, s = 0
([10], [22]) and d > 2, s = d — 1 ([8]) it was shown that

65(84,N) > eN~V4, (3.5)

(In [8], two-sided estimates were obtained for more general surfaces.) The estimate (3.5) is quite natural
and, intuitively, should be valid for any s > 0. A reason for such a lack of results for weak interactions
(s < d) is that this case require more delicate considerations based on the minimizing property of w?(A4, N)
while strong interactions (s > d) prevent points to be very close to each other without affecting the total
energy, and separation estimates can be obtained by looking at nearest neighbors only.

Our next result provides a separation estimate in the case s < d — 1 for the unit sphere S¢.



Theorem 3.6 Ford>2 and s <d—1,

8X (ST N) > N~V HD, (3.6)

As a by-product of the proof of Theorem 3.6, we obtain the following
Corollary 3.7 Forany 0 < s<d—1,

i XN E,6(9% N)
N—o00 minlSjSN gj’s(Sd, N)

~1. (3.7)

Indeed, it follows from (4.3), (4.6), and (4.11) that, for N large enough,

d . A r*
| < AN 5j,s(5d7N) _ maXigjsn Uj(xf) <14+ NV,
miny<j<y &,5(5% N)  mim<j<n Uj(a7)

Remark 3.8 Numerical computations for a sphere and a torus (see [3], [5], [6], [15]) suggest that, for any
s > 0, the point energies are nearly equal for almost all points (which are of so called “hexagonal” type).
However, some points (“pentagonal”) have elevated energies and some (“heptagonal”) have low energies.
The transition from points that are “hexagonal” to those that are “pentagonal” and “heptagonal” induces
scar defects, which are conjectured to vanish for NV large enough. Thus, Corollary 3.7 confirms this conjecture
for0<s<d—1.

The estimate (3.6) can be improved for d > 3 and s < d — 2.
Theorem 3.9 Letd >3 and s <d—2. Then

8X(S? N) > N~V (+2), (3.8)

Note that, when s = d — 2, (3.8) gives the best possible estimate (3.5).

Concerning the mesh norm p (A, wy), for any sequence {wy } of asymptotically s-extremal configurations
on A, clearly,
lim p(A,wyn)=0.
N—o00

However, no estimate on the rate of convergence can be made. We show that, for s > d, under an additional
condition on A € A% the mesh norm and the separation radius of any sequence {w?(A, N)} of s-extremal
configurations on A have the same order, as N — oo.

Theorem 3.10 Let s > d, A € A%, and suppose further that
HY(E(x,7)) > er?, (3.9)

where a constant ¢ > 0 is independent of x € A and v > 0 small enough. Then, for any s-extremal
configuration wi(A,N) on A,

PE(A,N) := p(A,wi(A,N)) < CN~V/4, (3.10)



We remark that the condition (3.9) implies the existence of a constant C; > 0, which depends only on C
in (2.1) and ¢ in (3.9), such that

(max 3 (w3 (4, N)) < Cip(A, N), (3.11)

Indeed, let k be an index for which the maximum in (3.11) is attained. Thus,

12;35(1\/ 6] (ws(AaN)) = Jy, (WS(A,N)) =:0".

The cap E(xy, (1/3)6*) contains a point y satisfying

1 /cN\1/d
_ > (= * .
ly — wx| > (C) %, (3.12)

where constants C' > 1 and ¢ < 1 are such that (2.1) and (3.9) hold. (Assuming that no such point existed,
we would easily conclude that diam (E(xzy, (1/3)0*) < (¢/C)Y/46* /4 and so, by (2.1),

5\ ¢
H (Bl (1307 < ()
which contradicts (3.9).) Since |y — x| > (2/3)d* for all i # k, taking into account (3.12), we obtain
1 /cN\1/d
. _a s l(c «
oin Jy— =] 2 5 (C) 5%,
and (3.11) follows.
Corollary 3.4, Theorem 3.10, and (3.11) yield

Corollary 3.11 Let s > d, and assume that A € A¢ satisfies (3.9). Then, for any s-extremal configuration
wi(A,N) on A,
e < NYd5, (w(A,N)) < C, 1<j<N. (3.13)

Since the upper estimate in (3.13) gives
£ (AN) 2 [0 (@A, N))) 7" 2 [ONTV4] "= eN*/ 1< <N,

combining this inequality with (3.2), we get

Corollary 3.12 Fors > d, A € A? satisfying (3.9), and any s-extremal configuration w*(A, N) on A, there
holds

1< maxji<;j<nN Sj’s(A, N)

T minigjen &5(4,N)

<C. (3.14)

Remark 3.13 Corollary 3.12 says that, for s > d and a set A € A? satisfying (3.9), the point energies are
asymptotically of the same order, as N — oo. Most likely, this is the best possible assertion in the sense
that an analog of (3.7) does not hold, in general.

Remark 3.14 Simple examples show that the upper estimates in (3.13) and (3.14) are not valid, in general,
for a set A € A¢ without an additional condition on its geometry. For instance, if z € R and |z| > 1,
then A := S?U {x}, clearly, does not enjoy these properties.

The measure condition (3.9) in Theorem 3.10 can be omitted if m = 1 in Definition 2.1 (in particular, if
A C R is a compact set with positive d-dimensional Lebesgue measure).

Theorem 3.15 Let A € A% and suppose that A is the image of one compact set K C R under a bi-Lipschitz
mapping p. Then (3.10) holds.

The remainder of this paper is devoted to proofs of our results.



4 Proofs

First, we introduce some notations and properties of s-extreme configurations, which will be used in subse-
quent proofs.
Let A € A%, w*(A,N) = {z},...,2%} be an s-extremal configuration on A,

XN
VeN = N Z(Szc;‘
i=1

denote the normalized counting measure of w¥(A, N), and let

Uvin /|x—y\ vty (y /|x—y\ vty (y Zm—x - (4.1)

be the potential associated with v . We also introduce functions

N
—S 1 *x|—S8 — *
5| =5 Sl =t = [le = sl di,n ). (42)
i=1 A
1#]
where v ; v == vy — (1/N)8,:. Note that the total mass of v ; y is (N —1)/N. It follows from (3.1) that

Since wj(A, N) is an s-extremal configuration, U;(z) attains its minimal value at x7. Thus, for any z € A
and 1 < j < N, we have

U¥in (@) = U, () + % o — o3| > U () + % o — a7 = % £ I
Therefore,
. v 1 S 1 . *| TS v
leUsN(:c)EN;Eﬁ(A,N)+N;|z—xj] Es(A,N) + U~ (x)
and so 5 5
UYs:N () > NN=T) Es(A,N) > ﬁé’é(A,N), xeA (4.5)

4.1 Proof of Theorem 3.2

Our proof will follow from (2.3), (2.4), and ideas used in [16, Section 5]. For the reader’s convenience, we
present a sketch of the proof.

Let A € A?, w*(A,N) = {z},...,2%} be an s-extremal configuration on A, and let U;(x) be defined by
(4.2), 7 =1,...,N. We denote D; := A\ E (z},[2NC1/H?(A)]~1/9), where C; is the constant from (2.3),
and D := MY, D;. Then, using (2.4), we get

N
. d _ l / K|S d i / o d
/Uj(z)d’H(x) = N; x— x| dHY Nﬁ x— x| 7" dH(z)
D itj D ; D;
oNC, 1D/ 20, 1/
< Ns/d 1.
< s almm] <ol

#J



On the other hand, by (2.3),

N d A
HA(D) = HY(A) — H? ( UE (:v [2NC’1/Hd(A)]‘1/d)> >HYA) = Ci2NCy/HY(A) T = " 2( ),

i=1 i=1

and so the minimizing property of w*(A, N) yields

1 s— —s/d s/d— s/d—
Ui(=5) < 372057 /Uj(x)de(:r) < (C1Co) ™ [ (A) 2] T N = gy N/,
D
(Note that, since C; and Cy depend explicitly on d, s, and A, so does Cj.)
Finally, using (4.3), we obtain (3.2). n

4.2 Proof of Theorems 3.6 and 3.9
Note that, sinced =d+1 and s <d—1 = d' — 2, the potential

U (z) = / & — 4 ~*dv(y)

Rd+1

is superharmonic in R4 for any finite positive Borel measure v on R%*! (see [17, Thm. 1.4]).

To save in writing, we will use a standard notation o for the normalized d-dimensional Hausdorff measure
H? on S9.

Let 75,4 be defined by (1.5). It is well-known that (for any 0 < s < d) o(z) is the equilibrium measure
for S, and so U° () = Vs,d O S?. Using this fact and integrating both sides of

N
1 *x|—S8 v* 1 | T * 1 * | T
NZ |z — ¥ 7% = U (z) > N [57-75(A,N) + |z — =} 1 =Uj(z}) + N |z — 23"
i=1
(see (4.1), (4.4), and (4.3)) against o(x), we get
1
Vs, d = Uj(xj) + N’Vs,d-
Thus,
Uj (x;k) S _ ’Ys,d < 75,d7 j = 17"'7N' (46)
Next, we obtain estimates for U; (2}) from below. It was shown in ([16], [25]) that
1 1 .
5%’611\/2 — O Neld < g (57 N) < i%}dNQ — ¢ Ntts/d, (4.7)

a(s, d) = s/(s+2), 0<s<d—2,
) s/d, d—2<s<d

For d—2 < s < d, (4.7) gives the exact bounds for the second term in the asymptotic behavior of £,(S¢, N).
In the case 0 < s < d — 2, the lower estimate in (4.7), most likely, is not best possible.
We now use estimates (4.5) and (4.7) to conclude that, for x € S9,

x 2 1
UVsN (x) > Nz <2 Vs,aN? — ClNHa(s’d)) = Yoa — Co N1, (4.8)
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Since UYs~ (2) is superharmonic, by the minimal value principle (4.8) also holds for |z] < 1.
Next, fixed g9 > 0 small enough, let 0 < ¢ < g9. For any z satisfying 1 < |z| < 1+ ¢, we denote
Z:= (2 —|z|)x/|z|. Tt can be easily verified that

LTyl 3 —el o 2(j2 = 1)

= >1—¢
vest o —y|  Ja[+1 2| +1

(with the minimum attained at y = —z/|z|). Therefore, using (4.8), we get

N s
v — *|—8 ~ —s |(,E >lK|
s = NTUY|e-xil 1Z| e (e
i=1

> (1—e)’U%n~ (7) > (1 - Cye) (%,d _ Gy N1 ) > yga — CaNOGED=1 _ Oy,

Thus,
UYsn () > ygq — CoNGED™L _ Cae |z <1 +e. (4.9)

We now apply this estimate to establish Theorems 3.6 and 3.9. Let us assume that, for some § > 0, @
and j, [z7 — 23| < (1/2), and consider the function

Uss(2) = Uj(@) = Nz — o} = 0% (@) = N7 (Jo = 2| o =i ™) = N7 Y o —ail ™
k#i,j

Then it follows from (4.9) that, for any z satisfying |z — 27| = ¢ and |z <1 +e¢,

()]

= Yoa— CoN“ED™1 — Cye — CyN~167° (4.10)

Ui ()

Y]

Yo,a — CoN*ED=1 — Cze — N7

with constants Cy, Cs, and C4 independent of €, §, N, and z.
We begin with the proof of (3.6). Choosing e = 4§ = N~1/(+1) (4.10) yields for |z — 23| = N~/ (1)

Ui,j(x) > Yord — CQNa(s,d)—l . CSN—I/(8+1) _ C4N—1Ns/(s+1) > Youd — C5N_1/(S+1).

(Here, we have used the fact that, for s <d —1, 1 —a(s,d) > 1/(s + 1).) Clearly, U, j(z) is superharmonic
in R, and so we conclude that
Uij (7)) > Ysa — CsN~V/EHD,

Therefore

U; (ﬁc;) =U;; (x;‘) +NT ‘xf — m;‘

TP > g a— CsNTHETD p N g — g7 (4.11)

Combining (4.6) and (4.11), we finally get

*|*5

Yot > o~ CoN =D Ntz
Hence,
C5N |3;;“ _ x;k|9 > Nl/(s+1)’
and (3.6) is proved. ]

Then, if x € P(z}) with
and radius § contained in

For (3.8), let P(x7), denote the d-dimensional hyperplane touching S at zj.
|z —25[=0>0 (i.e.7 x belongs to the (d — 1)-dimensional sphere with center
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P(x7)), then clearly |z| < 1+ 6%. Thus, choosing § = N~/ (2 and £ = §? = N=2/(*+2)we conclude from
(4.10) that

Ui j(x) > vs,0 — CoN¥/H271 — N =2/(F2) — UNTIN®/ 642 = o,y — CN 2/ (512)

on the (d — 1)-dimensional sphere {|z — 27| = N-V6H2)1n0 P(x}). Since s < d — 2, it is easy to see that
Ui j(z), restricted to P(x7), is superharmonic and, therefore,
Uij (]) > Ysa — CeN~2/42),

Similarly to (4.11), we find that

)

Uj (25) = Ui () + N7 o] = 23] 7" > q00 = CeN™2/0F2 £ N7Haf — o)

|7S

which together with (4.6) yields

—S

Ys,d > Vs,d — CGN_Q/(S+2) + Nt |Jt;k — x;‘

Thus, ’
CGN ’mj _ x; s > N2/(s+2)’

and (3.8) follows. ]

4.3 Proof of Theorems 3.10 and 3.15
To simplify notations, let us denote p* := p%(A, N). We can obviously assume that
p* >NV (4.12)

where ¢ is the constant from the separation estimate (3.4).

In [14, Lemma 3.1], the authors proved a two-sided estimate on (A, N) for the case when A C R? is a
bounded set with nonempty interior. (See also [23, Theorem 2] for the case of the unit sphere S¢ C R4+1.)
It can be easily verified that the approach used in proving the lower estimate,

E(A,N) > ¢, NiFs/d

with a constant ¢; > 0 depending on d, s, and A, but not on N, can be applied to any set A € A%. Therefore,
for the potential U"s:~ (z) defined in (4.1), (4.5) yields the estimate

. 2
Ui (@) > —5 (aNY) =2 N pe Al

In particular, this estimate is valid for z = y*, where y* is a point at which the maximum in (3.3) is attained
(with wy = w%(A, N)). Thus
UYsn (y*) > 2¢, N/471, (4.13)

We now derive an upper estimate for UYs.v (y*). First, we note that
ly* — xf| > p*, i=1,...,N.
Let E} := E (z, (c/4)N~1/). It is clear that
EfNE; =0, N (4.14)
We also have that

* = i | <|zf—yt|, 1<i<N. 4.15
p wa%l(lgN)\w v <lzi -y <i< (4.15)
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Then for any z € Ef, 1 <i < N, (4.12) and (4.15) yield

* * * * CN?l/d * *
[z =y <o =27+ |27 =y < + | *y|<4+|93 —yl<g Iwwy|7
which implies that
lzf —y*| 77 < 5y’ min {|x—y |~ } (4.16)
! ~\4) =z€E
and "
* * * * * * cN~ * * * 3p*
o —y*| 2 laf =y — o — 2| = | — 7| - R (4.17)
Now using (4.16), (3.9), and (3.4), we get
_s 5 s . —s 5 * 1 —s d
kTS o e gl [ 2 - ok
o= < (§) min {le-w} < (5) Hd(Ez)/u v )
C —s d d
< — | — | dH()<C'2N |33—y| " dH (x). (4.18)
[(c/a)N-1/d)"
By (4.17),
N
U E;r cA\NE(y 307 /4) =
i=1
Thus (4.18), (4.14), and (2.4) yield
N N
Ui ) = N el -2 Y [le -y anda)
i=1 i=1
3[)* d—s
< C’g/|:rfy*| S dH (x) < cg< 0 > = Cy(pH)"". (4.19)
D
Combining (4.13) and (4.19), we obtain 2¢; N*/4=1 < Cy (p*)**, and (3.10) follows. m

Theorem 3.15 can be proved in a very similar way. The only difference is that, this time, we can obtain
the upper estimate (4.19) without the condition (3.9) by using the mapping . Indeed, let 2 := ¢~ 1(z}),
t* := ¢~ 1(y*). Since ¢ is bi-Lipschitz (say, with a constant L), we have

|27 =y = (1/L)]27 —t7].

Therefore,
N N
U () < NS (/D) — o) = DN e e (4.20)
— —
We also note that B
inlz* —2f > ZN-1/d 4.21
min |25 =zl = 7 ; (4.21)

where ¢ is the constant from (3.4), and (see (4.15))

l2f — ] > 1<i<N. (4.22)



Let B} denote the ball in R? with center 2 and radius (¢cN~—/%)/(4L). Tt follows from (4.21) that
Bf nB; =10, i # j. (4.23)

Then, for z € B, 1 <i < N, (4.22) yields

\z—t*|<cN_l/d+|z*—t*|<p—*+\z*—t*|<§\z*—t*|
- 4L ’ —arL 4 ’
which implies that
S

o< (5) mip {le -1} (4.24)

and 1d
. s CNT o P30
-t >z =t — >z, —t7|— — > . 4.2
Using (4.24), we conclude that
l2f —t*]7° < 5 ) _ 1 / |z —t*| " dH(z) < C N/ |z — t*| 7% dH%(2) (4.26)
1’ ~\4) Hi(B;) - ' '
Br B

By (4.25),

N

U By ¢ R*\ B¢ (t*,3p"/(4L)) =: D.

i=1
Thus (4.20), (4.26), and (4.23) yield

N N
U (yf) < LN | =77 < G L° Z/ |z —t*| 72 dH(2)
i=1 i=1g-
30" d—s
S ClLs / |Z — t*‘_s de(Z) = CQ ( 42 ) = C3 (p*)d_s .
D

Combining this estimate with (4.13), we obtain (3.10). ]
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