
Energies, Group Invariant Kernels and
Numerical Integration on Compact Manifolds

S. B. Damelin, J. Levesley, D. L. Ragozin and X. Sun

February 10, 2008

AMS(MOS) Classification: Primary 41A05; Secondary 41A15, 41A63

Keywords: Compact Homogeneous Manifold, Discrepancy, Group, Energy,
Invariant Kernels, Invariant Polynomial, Numerical Integration, Projection
Kernels, Projective Space, Quadature, Reflexive Manifold, Riesz Kernel,
Spherical Harmonic, Sphere, Torus, Weight.

Abstract

The purpose of this paper is to derive quadrature estimates on
compact, homogenous manifolds embedded in Euclidean spaces, via
energy functionals associated with a class of group-invariant kernels
which are generalizations of zonal kernels on the spheres or radial ker-
nels in euclidean spaces. Our results apply, in particular, to weighted
Riesz kernels defined on spheres and certain projective spaces. Our
energy functionals describe both uniform and perturbed uniform dis-
tribution of quadrature point sets.

1 Introduction

Let M be a compact d-dimensional manifold (d ≥ 1) embedded in the Eu-
clidean space IRd+k for some k ≥ 0. We are interested in obtaining estimates
pertaining to numerical integration over M . In the classical setting, the do-
main of integration is the interval [−1, 1]. As is well known, the nodes of the
celebrated Gaussian quadrature formula are the zeros of the unique monic
polynomial of minimal mean-square deviation on [−1, 1]. In other words, the
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nodes are the zeros of the unique solution of an extremal problem. In [3], this
idea was extended to spheres whereby the authors related numerical integra-
tion to an extremal problem using Riesz energy and a class of smooth kernels
defined on the spheres which are called zonal in what follows. The purpose
of this paper is to derive quadrature estimates on compact and homogeneous
manifolds M embedded in Euclidean space, via energy functionals associ-
ated with a class of group-invariant kernels that are generalizations of zonal
kernels on the sphere and radial kernels in euclidean spaces. The quadra-
ture nodes are determined by the criterion that they minimize certain energy
functionals defined on M in complete analogy with classical Gauss quadra-
ture. We make, in particular, use of methods of [13, 14] which allow us to
demonstrate that certain kernel approximation techniques on spheres may
be extended to manifolds which are the orbit of a compact group.

Our investigation in the present article allows us to uncover and identify
natural geometric ideas which as we discover, extend past the sphere to a
large class of manifolds. Our results are expected to provide a wide range
of interdisciplinary applications in areas diverse as meteorology, imaging,
financial mathematics, geoscience and material science; see [6, 14] and the
references cited therein. Our results apply, in particular to kernels such as
weighted Riesz kernels and classes of smooth functions defined on spheres and
certain projective spaces. We mention that point sets that minimize discrete
Riesz energies enjoy uniform distribution densities on M whereas weighted
energies are useful in describing point sets which have density which may
not be uniform. The later points, are found for example in computational
modeling of surfaces; see for example [6, 7] and the references cited therein.

The remainder of this paper is structured as follows. In Sections 2-4, we
outline important ideas we need concerning harmonic analysis on compact
manifolds and convolution of group invariant kernels. In Section 5 we state
and prove our main result on error estimates of numerical integrations on
spheres and projective spaces. The estimate will be established for functions
in certain reproducing kernel Hilbert spaces. In Section 6 we extend the
estimate obtained in Section 5 to a wider class of smooth functions on spheres
and on certain projective spaces.
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2 Harmonic analysis on compact homogeneous

manifolds

In the sequel we will assume further that Md is a compact homogeneous
C∞ d-dimensional manifold embedded as the orbit of a compact group G
of isometries of IRd+k; i.e. there is an η ∈ M (often referred to as the
pole) such that M = {gη : g ∈ G}. In fact, for any ζ = gη ∈ M , since
G = Gg, M = Gη = Ggη = Gζ. So any point in M can be chosen as the
pole. In the special case that for each pair x, y ∈ M , there is a gx,y ∈ G
with gx,yx = y and gx,yy = x, M is called a reflexive compact homogeneous
manifold. Natural reflexive examples to keep in mind are Sd, d > 1, the
d-dimensional spheres. Each sphere is realized as the subset of IRd+1 which
is the orbit of any unit vector under the action of SO(d + 1), the group
of d + 1 dimensional orthogonal matrices of determinant 1. For x, y ∈ Sd

gx,y ∈ SO(d + 1) can be chosen to be any rotation by π radians about any
diameter of a great circle containing x, y which joins the antipodal bisectors
of the two arcs between x, y; see [10] for a good description of these later
spaces. When d = 1, no such rotation of S1 exists, so the circle realized as
the orbit of the rotation group, SO(2), is non-reflexive. Other non-reflexive
examples are the flat tori (S1)k realized as subsets of IR2k = (IR2)k which are
the orbits of ([1 0]t)k, the k-fold product of the column vector [1 0]t under
Gk = SO(2)k. If the Gk are enlarged to be the groups O(2)k, where O(m) is
the group of all m dimensional orthogonal matrices, then these homogeneous
realizations of the flat tori are reflexive, since in the i-th plane, reflection in
the bisector of the line-segment xiyi interchanges xi, yi. Henceforth, we will
assume that d and k are fixed for a given M .

A kernel κ : M×M → (0,∞] is termed zonal (or G-invariant) if κ(x, y) =
κ(gx, gy) for all g ∈ G and x, y ∈ M . Since the maps in G are isometries of
Euclidean space, they preserve both Euclidean distance and the (arc-length)
metric d(·, ·) induced on the components of M by the Euclidean metric. Thus
the distance kernel d(x, y) on M is zonal, as are all functions ψ(d(x, y)), ψ :
IR → IR. Moreover, the radial functions, φ(‖x−y‖), on Euclidean space that
depend only on ‖x − y‖, the Euclidean distance between x, y are also zonal
functions; see [5, 13, 15] and the references cited therein. The manifold M
carries a Borel surface (G-invariant) measure µ such that µ(M) = 1, where
G-invariant means

g · µ(B) := µ(gB),∀g ∈ G and ∀ Borel sets B.
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With thisG-invariant measure µ, we define the inner product of real functions
f1, f2 : M → IR

(f1, f2) =

∫
M

f1f2dµ.

In what follows, we will assume henceforth that a kernel κ always satisfies
the following three conditions:

i. The kernel κ is continuous off the “diagonal” of M ×M , and is lower
semi-continuous on M×M . Here, the “diagonal” of M×M means the
set {(x, y) ∈M ×M : x = y}.

ii. For each fixed x ∈M , κ(x, ·) and κ(·, y) are integrable with respect to
surface measure µ; i.e., κ(x, ·) and κ(·, y) ∈ L1(µ).

iii. For each non-trivial finite signed measure ν on M , we have∫
M

∫
M

κ(x, y)dν(x)dν(y) > 0,

where the iterated integral may be infinite.

We will say that a kernel κ is admissible if κ satisfies all the three conditions
above. We note that kernels satisfying (iii) are referred to as “strictly positive
definite” in the literature. Examples of admissible kernels are the weighted
Riesz kernels

κ(x, y) = w(x, y)‖x− y‖−s, 0 < s < d, x, y ∈M.

Here w : M×M → (0,∞] is chosen so that κ is admissible. If, in addition, w
is G-invariant, then κ is zonal. Such kernels (in the case w ≡ 1), arise natu-
rally in describing uniform distributions of electrons on rectifiable manifolds
such as the sphere Sd. The uniformity arises because of the singularity in
the kernel which forces points not to stay close to each other. See [6, 7] and
the references cited therein for more details. If w is active, then perturba-
tions of the distributions in the electrons are allowed. Perturbations of this
type, arise for example in problems in computer modeling. For the sphere
Sd, zonal type kernels were introduced into the study of discrepancy first by
Damelin and Grabner in [3].

Harmonic analysis on M , in our case, requires the construction of poly-
nomials on M . In this regard, if Πj is the space of all polynomials of total
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degree j on the space IRd+k, then Pj := Πj|M is the space of degree j poly-
nomials on M . When j < 0, Πj = {0} and so Pj = {0}, j < 0. We can also
construct the sets Hj := Pj

⋂
P⊥

j−1, where the orthogonality is with respect
to the inner product (·, ·). We call Hj the harmonic polynomials of degree j.

It is straightforward to show that Hj is G-invariant, in the sense that
g · pj ∈ Hj for all pj ∈ Hj and g ∈ G, where for any function f on M , g · f
is defined by

g · f(x) := f(g−1x),∀g ∈ G and ∀x ∈M. (1)

Moreover, each Hj has an orthogonal decomposition into irreducible G-
invariant subspaces (i.e., subspaces with no proper G-invariant subspace)

Hj = ⊕hj

l=1Ξj,l.

The machinery above, gives the following easily proved but important fact.

Lemma 2.1 Let M be a compact homogeneous space embedded in Euclidean
space. The harmonic polynomials,

∑∞
i=0Hi are dense in C(M), where “perp”,

in the definition of Hi is with respect to the inner product (.) induced by the
tangential portion of Lebesgue measure(equivalently the measure derived from
the Riemannian structure on M which is induced from the embedding).

3 Group invariant kernels and smooth con-

volution

The kernel operator Tκ associated with a kernel κ(x, y) is defined by

(Tκf)(x) =

∫
M

κ(x, y)f(y)dµ(y), x ∈M (2)

for those Borel measurable f for which the right hand side exists. More gen-
erally, Tκ(ν)(x) :=

∫
M
κ(x, y)dν(y).When κ is zonal, then Tκ is G-equivariant

in the sense expressed by the following equation:

Tκ(g · f) = g · Tκ(f), (3)

where g · f is defined at (1). We now form the convolution product of kernels
κ and σ,

(κ ∗ σ)(x, y) =

∫
M

κ(x, z)σ(z, y)dµ(z), x, y ∈M
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which is the kernel whose associated operator Tκ∗σ is the product of the
operators Tκ and Tσ; i.e., Tκ∗σ = TκTσ. When κ, σ are zonal, then it is easy
to show that κ∗σ is itself zonal, since the product of G-equivariant operators
is obviously G-equivariant. However, when κ and σ are merely symmetric,
we have

κ ∗ σ(x, y) = σ ∗ κ(y, x).

Thus the convolution product of symmetric kernels, κ∗σ, is symmetric when
and only when κ and σ commute with respect to the convolution product,
just as the product of symmetric(self-adjoint) operators is symmetric exactly
when the operators commute. Now in case M is reflexive, then

i. Any zonal kernel κ is symmetric, since κ(x, y) = κ(gx,yx, gx,yy) =
κ(y, x).

ii. Two zonal kernels commute since κ ∗ σ is zonal, hence symmetric.

Now let an admissible kernel κ be given. For a signed Borel measure on
M , its κ-energy integral is defined by:

Eκ(ν) =

∫
M

∫
M

κ(x, y)dν(x)dν(y).

Notice that the κ-energy is unchanged when κ(x, y) is replaced by its sym-
metrized form 1

2
(κ(x, y)+κ(y, x)), which is also an admissible kernel. Hence,

we will assume that κ is symmetric when dealing with questions about κ-
energy.

We remark that the above integral may be infinite though from our as-
sumptions of positive definiteness and lower semicontinuity on κ, combined
with the strict convexity of the κ-energy, we know that either Eκ(ν) = +∞
for all ν 6= 0 or

min{ν: ν(1)=1}Eκ(ν)

exists and the minimizer is unique. We now show remarkably that for all
compact homogeneous C∞ manifolds M and admissible symmetric zonal
kernels κ, the unique finite κ-energy minimizer above exists and is precisely
the normalized surface measure µ. That this is true is by no means obvious.
For the sphere, this fact was established in [3] for a class of zonal kernels.
We have:
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Lemma 3.1 The normalized surface measure µ has finite κ-energy. More-
over, Eκ(ν) > Eκ(ν(1)µ) for all ν 6= ν(1)µ. So among all signed ν with
ν(1) = 1, the κ-energy is uniquely minimized by the normalized surface mea-
sure µ.

Proof: By the admissibility condition (ii) and the fact that κ is zonal,
for any g ∈ G ∫

κ(x, y)dµ(y) =

∫
κ(gx, y)dµ(y) <∞.

Since Gx = M , integrating the constant right hand side over G yields (with
dg the Haar measure on G)

=

∫
G

∫
M

κ(gx, y)dµ(y)dg

=

∫
M

∫
M

κ(z, y)dµ(y)dµ(z)

= Eκ(µ) <∞.

Now suppose ν is any finite signed measure. Then either +∞ = Eκ(ν) >
Eκ(µ). Or, Eκ(ν) < ∞ and this finite energy can be written, using the
symmetry of κ, as the sum of three finite summands as follows:

Eκ(ν) = Eκ(ν(1)µ + (ν − ν(1)µ))

= Eκ(ν(1)µ) + Eκ(ν − ν(1)µ)

+ 2

∫ ∫
κ(x, y)d(ν(1)µ)(x)d(ν − ν(1)µ)(y).

Since κ is zonal, for any g ∈ G the last summand is

2

∫ ∫
κ(x, y)d(ν(1)µ)(x)d(ν − ν(1)µ)(y)

= 2

∫ ∫
κ(gx, gy)d(ν(1)µ)(x)d(ν − ν(1)µ)(y)

= 2

∫ ∫
κ(x, y)d(ν(1)g · µ)(x)d(g · ν − ν(1)g · µ)(y)

= 2

∫ ∫
κ(x, y)d(ν(1)µ)(x)d(g · ν − ν(1)µ)(y).
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But averaging this constant function of g over G and changing the order of
integration twice, the inner integral is,

∫
(g ·ν−ν(1)µ)dg = ν(1)µ−ν(1)µ = 0,

so we see the summand is 0. Hence,

Eκ(ν) = Eκ(ν(1)µ) + Eκ(ν − ν(1)µ) > Eκ(ν(1)µ)

since κ is strictly positive definite.

4 N-point discrete κ energy

Let N ≥ 1. Let Z be a finite subset of M with |Z| = N . We define the
N -point discrete κ-energy associated with Z by

Eκ(Z) =
1

N2

∑
y,z∈Z

y 6=z

κ(y, z).

Since κ is continuous off the diagonal of M × M , and is lower semi-
continuous onM×M , the minimal N -point discrete κ-energy can be attained
at some Z∗ ⊂M with |Z∗| = N . That is

Eκ(Z
∗) = inf

Z⊂M
Eκ(Z),

where the infimum is taken over all subsets Z of M with |Z| = N . We will
simply call such a set Z∗ a minimal energy configuration. It is clear that for
each g ∈ G, gZ∗ is also a minimal energy configuration. Heuristics suggests
that probability measures supported on minimal energy configurations pro-
vide good approximation to the measure µ in the sense that the integral of a
continuous f : M → IR with respect to µ is approximated well by a discrete
sum over the points of Z. This was first shown by Damelin and Grabner in
[3] for a class of unweighted Riesz kernels on the sphere Sd, d ≥ 2, for a class
of Lipchitz functions, where µ is the rotation invariant probability measure
on Sd. For the circle, S1, it is easy to see that every minimal energy configu-
ration corresponds to the set of vertices of a regular N -gon and are thus the
best points to use for numerical integration for equally weighted quadrature
rules.
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We find it convenient to work with the full quadratic form∑
y,z∈Z

κ(y, z).

However, the diagonal entries in the above quadratic form, κ(x, x), x ∈ Z,
may not be finite. As a matter of fact, for Riesz kernels, these diagonal
entries are infinity. The lower semi-continuity of the kernel κ allows us to
consider approximating κ from below by a sequence of smooth kernels via
convolution. To make this precise, let us fix an α0 > 0. Assume that, for each
0 < α < α0, σα is a zonal kernel such that the convolution kernel κα := κ∗σα

is well defined and satisfies the following properties:

a. κα is continuous on M ×M .

b. κα is strictly positive definite.

c. κα(x, y) ≤ κ(x, y) for all x, y ∈M .

d. limα↓0 κα(x, y) = κ(x, y) for all x, y ∈M .

If the above construction is possible, we say that κ is strongly admissible.
The construction details are often delicate and entail case-by-case analysis.
We offer two examples in which the criteria are all satisfied.

Example 1. Wagner [18], [19] studied a kind of modified Riesz kernel in
the form

κα(x, y) = (1 + α− xy)−s/2, x, y ∈ S2, 0 < s < 1, α > 0,

where xy denotes the Euclidean inner product of the vectors x and y. On S2,
this kernel can be written as the convolution of the Riesz kernel κ(x, y) =
(1− xy)−1/2 and the smooth kernel σα with the Fourier-Legendre expansion

σα(x, y) =
1√
2π

∞∑
n=0

h2n+1Qn(xy),

in which h = 2/(
√
α +

√
4 + α), and Qn is the Legendre polynomial nor-

malised so that ‖Qn‖2
2,[−1,1] = 2n + 1. This expansion can be found in the

work of Hubbert and Baxter [11].
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Example 2 On the 2-torus embedded in IR4, one may form kernels as
products of univariate kernels:

κ(x, y) = ρ(x1, y1)ρ(x2, y2), x1, y1, x2, y2 ∈ S1,

where
ρ(s, t) = |1− st|−1/4.

The kernel
ρα(s, t) = (1 + α− st)−1/4, s, t ∈ S1,

can be written as a convolution of ρ with the analytic kernel

σα(s, t) =
∞∑

n=0

F (n+ 1/4, n+ 1/2; 2n+ 1; 4
4+α

)

F (n+ 1/4, n+ 1/2; 2n+ 1; 1)
Tn(st),

where Tn is the Chebyshev polynomial and F (a, b; c; z) is the Gauss hyper-
geometric function ([1, 15.1.1]). Again see [11] for details.

5 Quadrature for polynomials on compact,

reflexive homogeneous manifolds

In this section and henceforth, we will need to assume that M is reflexive.
In this case, we need some more machinery on reflexive spaces. Firstly, if

dj,l = dim Ξj,l and {Y 1
j,l, . . . , Y

dj,l

j,l } is any orthonormal basis for Ξj,l, then

Pj,l(x, y) :=

dj,l∑
m=1

Y m
j,l (x)Y

m
j,l (y), x, y ∈M,

is the unique G-invariant reproducing kernel for Ξj,l. In other words, if Tj,l

is the orthogonal projector onto Ξj,l,

Tj,lf(x) :=

∫
M

Pj,l(x, y)f(y)dµ(y), x ∈M. (4)

In particular,

Tj,lf(x) := (Tj,lf, Pj,l(·, x)), x ∈M. (5)
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Moreover, for any g ∈ G, {g · Y 1
j,l, . . . , g · Y

dj,l

j,l } is another orthonormal basis
for Ξj,l. So the uniqueness of a reproducing kernel shows Pj,l(g

−1x, g−1y) =
Pj,l(x, y); i.e., Pj,l is zonal. From its definition, it is obvious that each Pj,l is
symmetric. Observe that the self-adjoint projectors Tj,l associated with the
G-invariant kernels Pj,l are kernel operators TPj,l

defined by Equation (2). By
reflexivity, we conclude that for any zonal κ Tκ commutes with each projector
Tj,l and hence TκTj,l is a G-equivariant self-adjoint linear transformation of
Ξj,l. Since Ξj,l is an irreducible G-invariant subspace, TκTj,l = aj,lTj,l for some
scalar aj,l, i.e. the subspace Ξj,l of degree j harmonic polynomials is also a
subspace of the Tκ eigenspace associated to the eigenvalue aj,l. Moreover,
if κ is admissible, so strictly positive definite, and 0 6= p ∈ Ξj,l, we have
Eκ(pµ) = aj,l‖p‖2

L2(µ) > 0; i.e., all aj,l > 0. Thus, on reflexive spaces, by
the density of harmonic polynomials, each admissible zonal kernel κ has an
expansion with positive coefficients (convergent in an appropriate operator
norm)

κ(x, y) =
∞∑

j=0

hj∑
l=1

aj,l(κ)Pj,l(x, y), x, y ∈M.

Let us define the native space Nκ for an admissible κ via the kernels
defined by Equation (2) and coefficients aj,l defined by Equation (6).

Let

Nκ :=

f : ‖f‖2
Nκ

:=
∞∑

j=0

hj∑
l=1

‖Tj,lf‖2

aj,l(κ)
<∞

 .

In this paper, we are interested in the error of integration for a class of
smooth real valued functions f on M , when f is given on a point set Z ⊂M
of finite cardinality N ≥ 1. The error in integration is defined by

R(f, Z) :=

∫
M

f(y)dµ(y)− 1

N

∑
z∈Z

f(z).

We may now state the main result of this section.

Theorem 5.1 Let κ be strongly admissible on M and Z ⊂ M be a point
subset of cardinality N ≥ 1. Fix x ∈ Z. Then, for 0 < α < α0, the following
estimate holds true for every f ∈ Nκα:

|R(f, Z)| ≤ ‖f‖Nκα

(
Eκ(Z) +

1

N
κα(x, x)− a0,1(κα)

)1/2

.
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Remark The special case of a sphere Sd and a class of G invariant kernels
on Sd, the above theorem was established first in [3]. A further elaboration
on the estimate of Theorem 5.1 is also appropriate. Notice that the right
hand side of the estimate depends on both the function and the point set Z.
One way to obtain tighter upper bounds in Theorem 5.1, is to link the kernel
studied with the function space with a different measure of energy. This is
done in [4] but at the price of smaller classes of functions. Another way, is to
replace the energy function in the right hand side by a potential. This is done
in [2]. Again there are trade-offs with the generality of Theorem 5.1. Future
research clearly demands the study of tight estimates that simultaneously
incorporate different discrepancy factors and different levels of smoothness
of kernels.

The proof of Theorem 5.1 uses two Lemmas. The first is:

Lemma 5.2 Let Z ⊂ M be a point set of cardinality N ≥ 1, and let κ be a
strongly admissible kernel. Then, for 0 < α < α0, we have

1

N2

∑
y,z∈Z

κα(y, z) ≤ Eκ(Z) +
1

N
κα(x, x).

Proof: Since κα(x, y) ≤ κ(x, y) for all α < α0 we see that

1

N2

∑
y,z∈Z

κα(y, z) =
1

N2

∑
y,z∈Z

y 6=z

κα(y, z) +
1

N
κα(x, x)

≤ Eκ(Z) +
1

N
κα(x, x).

Next, we have the analogue of the well known Funk-Hecke formula:

Lemma 5.3 For any x, z ∈M ,

(Pj,l ∗ Pj,l)(x, z) =

∫
M

Pj,l(x, y)Pj,l(y, z)dµ(y) = Pj,l(x, z).

Proof: This is an immediate consequence of the fact that TPj,l
is the

orthogonal projector onto Ξj,l, so

TPj,l∗Pj,l
= TPj,l

TPj,l
= TPj,l

.
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We now proceed with the proof of Theorem 5.1:

Proof Theorem 5.1: We first write

f =
∞∑

j=0

hj∑
l=1

Tj,lf.

Then

−R(f, Z) =
1

N

∑
z∈Z

f(z)−
∫

M

f(y)dµ(y)

=
1

N

∞∑
j=1

hj∑
l=1

Tj,lf(z).

However,

Tj,lf(z) =

∫
M

Pj,l(z, y)Tj,lf(y)dµ(y),

so that

R(f, Z) =
∞∑

j=1

hj∑
l=1

∫
M

Tj,lf(y)Qj,l(y, Z)dµ(y), (6)

where

Qj,l(y, Z) =
1

N

∑
z∈Z

Pj,l(y, z).

Using the fact that

‖Qj,l(y, Z)‖2 =
1

N2

∑
y,z∈Z

Pj,l(y, z),

we can apply the Cauchy-Schwarz inequality to (6) to obtain

|R(q, Z)|2 ≤

 ∞∑
j=1

hj∑
l=1

1

aj,l(κα)
‖Tj,lf‖2

 ∞∑
j=1

hj∑
l=1

aj,l(κα)‖Qj,l(y, Z)‖2


≤ ‖f‖2

Nκα

(
1

N2

∑
y,z∈Z

κα(y, z)− a0,1(κα)

)
,

13



where the last line follows by the positivity of the coefficients aj,l(κα), and
the positive definiteness of the kernels Pj,l on Ξj,l. Using Lemma 4.2, we
arrive at the required result.

Since for a polynomial q of degree n we have the following inequality

‖q‖Nα ≤ max
1≤j,1≤νn

‖q‖2

aj,l(κα)
,

we immediately have the following corollary.

Corollary 5.4 Let κ be strongly admissible on M and Z ⊂ M be a point
subset of cardinality N ≥ 1. Fix x ∈ Z. If q ∈ Pn, then, for 0 < α < α0,

|R(q, Z)| ≤ max
j≤n, l≤νn

1

(aj,l(κα))1/2
‖q‖2

(
Eκ(Z) +

1

N
κα(x, x)− a0,1(κα)

)1/2

.

6 Quadrature for smooth functions on the

sphere and projective spaces

In this last section, we extend Theorem 5.1 to a class of smooth functions
on projective spaces and sphere, which are examples of so-called 2-point
homogeneous manifolds (see below for a definition). Let F be one of the
following fields: Q = {r0 + r1i + r2j + r3k : ri ∈ IR} (quaternions), C =
{q ∈ Q : r2 = r3 = 0} (complex) or IR. Let F have dimension m (= 4, 2, 1
respectively) over the reals. The length squared of an element f ∈ F is
|f |2 = r2

0 + r2
1 + r2

2 + r2
3. Writing a vector f ∈ Fm+1 in the form f =

(f1, f2, · · · , fm+1), the sphere S(Fm+1) = {f ∈ Fm+1 :
∑m+1

i=1 |fi|2 = 1}. The
standard definition of the projective space P dm(F ) is the set of points on
the sphere S(Fm+1), where points x and y are identified if x = αy for some
α ∈ F with |α| = 1.

This description of the projective spaces does not give us a homogeneous
manifold, but, as shown in [17] and described in [16], one can provide an
equivalent definition of the projective spaces as orbits of a compact subgroup
of an orthogonal group acting in IRd+k for some d and k. This construction
is given explicitly in [16].

To extend our result we require some additional machinery which we now
state; see [16]. We denote by Ck(M), the space of k times, continuously
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differentiable functions f : M → IR. It is well known that M carries an
inner product and the action of G on M translates this inner product to the
tangent spaces at each point in M so that M has a well defined Riemannian
metric which in turn induces a well defined arc-length metric ρ on M ×M .
To define suitable moduli of smoothness, let g be the natural Lie algebra on
M formed by taking the set of all skew-symmetric operators D on IRd+k such
that exptD ∈ G, ∀t ∈ G. Let G act on C(M) as in (1). Then we define the
space C1(M) as the space of functions f ∈ C(M), such that for each D ∈ g,
there exists D(f) ∈ C(M) such that

lim
t→0

||t−1(exp tD · f − f)−D(f)||∞ = 0.

The space Ck, k ∈ IN, k ≥ 2 is then defined inductively.
We define a first modulus of continuity on C(M) by

ω1(f, h) := sup {|f(x)− f(y)| : ρ(x, y) ≤ h}

Similarly, if x+, x, x− denote equaly spaced points along a geodesic in M ,
then the second modulus of continuity on C(M) is defined by way of

ω2(f, h) := sup {|f(x+)− 2f(x) + f(x−)| : ρ(x+, x) ≤ h} .

Now choose an orthonormal basis D1, ...Dj for g for some j ≥ 1. Then define
inductively for f ∈ Ck+1, k ≥ 0:

ωr(f
k+1;h) :=

j∑
i=1

ωr

(
(Di(f))(k);h

)
, r = 1, 2,

where f (0) = f .
A two-point homogeneous space is one for which, given two pairs of points,

x1, y1 and x2, y2 on M , with ρ(x1, y1) = ρ(x2, y2), there exists a g ∈ G such
that gx1 = x2 and gy1 = y2. If this is the case then, for ρ(x1, y1) = ρ(x2, y2)
and a zonal kernel κ,

κ(x2, y2) = κ(gx1, gy1) = κ(x1, y1),

so that κ is a function only of the distance between the points. In this case
we have a simple representation of the reproducing kernels as a univariate
polynomial of an inner product. This is exploited in [16].
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Also, it is straightforward to see that such spaces are reflexive. Indeed,
choose two points x and y inM and let d(x, y) = ρ = d(y, x) where the metric
d(·, ·) is induced on the components of M by the Euclidean metric. Now,
using the 2 point homogeneous condition applied to the two pair (x1, x2) =
(x, y) and (y1, y2) = (y, x), there is a g ∈ G such that gx = y and gy = x.
Hence g switches x and y.

In order to prove our extension, we use the following result given in The-
orems 3.3 and 4.6 of [16].

Proposition 6.1 Let M be a sphere or a projective space. Then there are
positive constants A(s, r), r = 1, 2, such that for each f ∈ Cs(M), there exist
polynomials qn, of degree n for which

‖f − qn‖∞ ≤ A(s, r)n−sωr(f
(s); 1/n).

Note that for r = 1, for the sphere case, the construction used by Ragozin
to produce qn was introduced first by Newman and Shapiro and was used by
Damelin and Grabner to prove Theorem 6.2 for r = 1, s = 1. As alluded to
above, on projective spaces, the construction for the sphere can be followed
(as in [16, Prop 4.2]) as the reproducing kernels are essentially univariate.
The univariate nature of κ also can be used to show that each Hj is irre-
ducible, so for each j there is only one l and only one eigenvalue aj for Tκ

acting on Hj.

Theorem 6.2 Let κ be admissible on M and Z ⊂ M be a point subset of
cardinality N ≥ 1. There exists positive constants C,C ′ dependent only on
d, r, s,M , such that for any s ≥ 0, any f ∈ Cs(M), any n ≥ 1 and any
0 < α < α0,

|R(f, Z)| ≤ Cn−sωr

(
f (s);

1

n

)
+

C ′ max
j≤n

1

(aj(κα))1/2
‖f‖∞

(
Eκ(Z) +

1

N
κα(x, x)− a0(κα)

)1/2

.

Proof: Let qn be the polynomial from Proposition 6.1. From the
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definition of R(f, Z), we see that,

|R(f, Z)| = |R(f − qn, Z) +R(qn, Z)|
≤ ‖f − qn‖∞ + |R(qn, Z)|
≤ Cn−sωr(f

(s); 1/n)

+ max
j≤n,

1

(aj(κα))1/2
‖qn‖2

(
Eκ(Z) +

1

N
κα(x, x)− a0(κα)

)1/2

,

and the result follows.
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