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Summary. The purpose of this paper is to demonstrate that a number of results


on
erning approximation, integration, and uniform distribution on spheres 
an be

generalised to a mu
h wider range of 
ompa
t homogeneous manifolds. The essential

ingredient is that a 
ertain type of invariant kernels on the manifolds (the gener-

alisation of zonal kernels on spheres or radial kernels in the eu
lidean spa
es) have

a spe
tral de
omposition in terms of proje
tion kernels onto invariant polynomial

subspa
es. In parti
ular, we establish a Weyl's 
riterion on su
h manifolds and an-

noun
e a dis
repan
y estimate that generalises some pertinent results of Damelin

and Grabner.

Keywords and Phrases: Compa
t Homogeneous Manifold, Energy, Invariant

Kernels, Invariant Polynomial Subspa
es, Numeri
al Integration, Proje
tion

Kernels, Spheri
al Harmoni
, Uniform Distribution, Weyl's Criterion.

1 Introdu
tion

Let M be a d � 1 dimensional homogeneous spa
e of a 
ompa
t Lie group

G embedded in R

d+r

for some r � 0. Then (see [6℄), we may assume that

G � O(d+ r), the orthogonal group on R

d+r

. Thus M = fgp : g 2 Gg where

p 2 M is a non-zero ve
tor in R

d+r

. For te
hni
al reasons, we will assume

that M is re
exive. That is, for any given x; y 2 M , there exists g 2 G su
h

that gx = y and gy = x.

Let d(x; y) be the geodesi
 distan
e between x; y;2 M indu
ed by the

embedding ofM in R

d+r

(see [5℄ for details). On the spheres, this 
orresponds
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to the usual geodesi
 distan
e. A real valued fun
tion �(x; y) de�ned onM�M

is 
alled a positive de�nite kernel on M , if for every nonempty �nite subset

Y �M , and arbitrary real numbers 


y

; y 2 Y , we have

X

x2Y

X

y2Y




x




y

�(x; y) � 0:

If the above inequality be
omes stri
t whenever the points y are distin
t, and

not all the 


y

are zero, then the kernel � is 
alled stri
tly positive de�nite.

A kernel � is 
alled G-invariant if �(gx; gy) = �(x; y) for all x; y 2 M and

g 2 G. For example, ifM := S

d

, the d dimensional sphere realized as a subset

of R

d+1

and G := O(d + 1), then all the G{invariant kernels have the form

�(xy), where � : [�1; 1℄! R, and where xy denotes the usual inner produ
t

of x and y. A kernel of the form �(xy) is often 
alled a zonal kernel on the

sphere in the literature.

Let � be a G{invariant measure on M (whi
h may be taken as an appro-

priately normalized `surfa
e' measure). Then, for two fun
tions f; g :M ! R,

we de�ne an inner produ
t with respe
t to �:

[f; g℄ = [f; g℄

�

:=

Z

M

fgd�

and let L

2

(M )

�

denote the spa
e of all square integrable fun
tions from M

into Rwith respe
t to the above inner produ
t. In the usual way, we identify

all fun
tions as being equal in L

2

(M )

�

, if they are equal almost everywhere

with respe
t to the measure �.

Let n � 0 and P

n

be the spa
e of polynomials in d + r variables of de-

gree n restri
ted on M . Here, multipli
ation is taken pointwise on R

d+r

. The

harmoni
 polynomials of degree n on M are H

n

:= P

n

T

P

?

n�1

. We may al-

ways (uniquely) de
ompose H

n

into irredu
ible G-invariant subspa
es H

n;k

,

k = 1; : : : ; �

n

. Indeed, the uniqueness of the de
omposition follows from the

minimality of the G{invariant spa
e, sin
e a di�erent de
omposition would

give subspa
es 
ontained in minimal ones leading to a 
ontradi
tion.

Any G{invariant kernel �, has an asso
iated integral operator whi
h we

de�ne by

T

�

f(x) =

Z

M

�(x; y)f(y) d�(y):

Now, for n � 0; k � 1, let Y

1

n;k

; : : : ; Y

d

n;k

n;k

be any orthonormal basis for

H

n;k

, and set

Q

n;k

(x; y) :=

d

n;k

X

j=1

Y

j

n;k

(x)Y

j

n;k

(y):

Then Q

n;k

is the unique G-invariant kernel for the orthogonal proje
tion T

Q

n;k

of L

2

(M )

�

onto H

n;k

a
ting as
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T

Q

n;k

f(x) =

Z

M

Q

n;k

(x; y)f(y) d�(y):

The symmetry of Q

n;k

in x and y implies that it is positive de�nite on M .

In fa
t, for every nonempty �nite subset Y �M , and arbitrary real numbers




y

; y 2 Y , we have

X

x2Y

X

y2Y




x




y

Q

n;k

(x; y) =

d

n;k

X

j=1

�

X

x2Y




x

Y

j

n;k

(x)

��

X

y2Y




y

Y

j

n;k

(y)

�

=

d

n;k

X

j=1

�

X

x2Y




x

Y

j

n;k

(x)

�

2

� 0:

We summarise a few basi
 fa
ts about G-invariant kernels in the following

lemma:

Lemma 1. Let y; z be �xed points in M . Then

a.

R

M

Q

n;k

(y; x)Q

n;k

(x; z)d�(x) = Q

n;k

(y; z):

b. For all x 2M , we have Q

n;k

(x; x) = d

n;k

.


. If � is a G-invariant kernel, then for all pairs of (x; y) 2M �M , we have

�(x; y) = �(y; x).

d. For all (x; y) 2M �M , we have jQ

n;k

(x; y)j � Q

n;k

(x; x):

Proof: Part (a) follows dire
tly from the fa
t that Q

n;k

is the proje
tion

kernel from L

2

(M )

�

onto H

n;k

.

Part (b) is a 
onsequen
e of the equation

Q

n;k

(x; x) :=

d

n;k

X

j=1

Y

j

n;k

(x)Y

j

n;k

(x):

Indeed, sin
e Q

n;k

is G-invariant, Q

n;k

(x; x) is a 
onstant fun
tion of x for all

x 2M . Integrating the last equation over M and using the orthonormality of

the Y

j

n;k

, we then arrive at the desired result.

The proof of Part (
) needs the re
exivity of M . Indeed, pi
k a g 2 G so

that gx = y and gy = x. Then

�(x; y) = �(gy; gx) = �(y; x)

using the G-invarian
e of �.

Part (d) follows from a standard positive de�niteness argument. Indeed,

for ea
h �xed pair (x; y) 2M�M , the positive de�niteness of the kernel Q

n;k

implies that the matrix

�

Q

n;k

(x; x) Q

n;k

(x; y)

Q

n;k

(y; x) Q

n;k

(y; y)

�
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is nonnegative de�nite, whi
h further implies that

(Q

n;k

(x; x)) (Q

n;k

(y; y)) � (Q

n;k

(x; y)) (Q

n;k

(y; x)) � 0:

Sin
e Q

n;k

(x; x) = Q

n;k

(y; y), by Part (b), and Q

n;k

(x; y) = Q

n;k

(y; x) by

Part (
), we have the desired inequality. �

An important 
onsequen
e of the development above is that ea
h irre-

du
ible subspa
e is generated by the translates of a �xed element. For this

result on the sphere S

d

, see, for instan
e, [1℄.

Proposition 1. Let Y 2 H

n;k

; Y 6= 0. Then H

n;k

= spanfY (g�); g 2 Gg.

Proof: It is 
lear that V = spanfY (g�); g 2 Gg is a G-invariant subspa
e

of H

n;k

, and sin
e Y is not zero this is a non-trivial subspa
e. But H

n;k

is

irredu
ible, so that V 
annot be a proper subspa
e of H

n;k

. Thus V = H

n;k

.

�

Lemma 2. Let �

1

and �

2

be 
ontinuous G-invariant kernels. If M is a re-


exive spa
e, T

�

1

T

�

2

= T

�

2

T

�

1

.

Proof: Let f 2 L

2

(M )

�

. Then

[T

�

1

T

�

2

f ℄(x) =

Z

M

�

1

(x; y)

�

Z

M

�

2

(y; z)f(z)d�(z)

�

d�(y)

=

Z

M

f(z)

�

Z

M

�

1

(x; y)�

2

(y; z)d�(y)

�

d�(z):

Sin
e the manifold is re
exive there is a g 2 G whi
h inter
hanges x and z.

Thus,

Z

M

�

1

(x; y)�

2

(y; z)d�(y) =

Z

M

�

1

(z; y)�

2

(y; x)d�(y);

so that

[T

�

1

T

�

2

f ℄(x) =

Z

M

f(z)

�

Z

M

�

1

(z; y)�

2

(y; x)d�(y)

�

d�(z)

=

Z

M

�

2

(x; y)

�

Z

M

�

1

(y; z)f(z)d�(z)

�

d�(y)

= [T

�

2

T

�

1

f ℄(x);

where the penultimate step uses Lemma 1 (
). The 
hanges of order of inte-

gration are easy to justify sin
e the kernels are 
ontinuous and f 2 L

2

(M )

�

.

�

We are now able to show that a G{invariant kernel has a spe
tral de
om-

position in terms of proje
tion kernels onto invariant polynomial subspa
es.

This is 
ontained in the following theorem.
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Theorem 1. If M is a re
exive manifold, then any G{invariant kernel � has

the spe
tral de
omposition

�(x; y) =

1

X

n=0

�

n

X

k=1

a

n;k

(�)Q

n;k

(x; y);

where

a

n;k

(�) =

1

d

n;k

Z

M

�(x; y)Q

n;k

(x; y) d�(y); n � 0; k � 1:

Here the 
onvergen
e is in the topology of L

2

(M )

�

.

Proof: If Y 2 H

n;k

then T

Q

n;k

Y = Y . Thus

T

�

Y = T

�

(T

Q

n;k

Y )

= T

Q

n;k

(T

�

Y ) 2 H

n;k

;

sin
e T

Q

n;k

is the orthogonal proje
tion onto H

n;k

. Here we have used

Lemma 2.

Sin
e T

�

is a symmetri
 operator, it 
an be represented on the �nite dimen-

sional subspa
e by a symmetri
 matrix. Either this matrix is the zero matrix,

in whi
h 
ase all the pertinent a

n;k

(�) are zero, or T

�

has a non-trivial range.

Sin
e the matrix is symmetri
, it must have a non-zero real eigenvalue. Let 


be a nonzero eigenvalue of the matrix, and let Y be an asso
iated eigenve
-

tor, i.e., T

�

Y = 
Y . This implies that, for any �xed g 2 G, Y (g�) is also an

eigenve
tor. In fa
t, we have

[T

�

Y (g�)℄(x) =

Z

M

�(x; y)Y (gy)d�(y)

=

Z

M

�(x; g

�1

y)Y (y)d�(g

�1

y)

=

Z

M

�(gx; y)Y (y)d�(y);

using the G-invarian
e of both � and �. But Y is an eigenve
tor of T

�

, so that

[T

�

Y (g�)℄(x) = 
Y (gx):

Now, using Proposition 1 we see that H

n;k

is an eigenspa
e for T

�

with

single eigenvalue 
. We 
an 
ompute 
 by evaluating T

�

on Q

n;k

(�; y) for a

�xed y:

Z

M

�(z; x)Q

n;k

(x; y)d�(x) = 
Q

n;k

(z; y):

Setting z = y and using Lemma 1 (b) we have


 =

1

d

n;k

Z

M

�(y; x)Q

n;k

(x; y)d�(x);

and the appropriate form for 
 follows using the symmetry of G-invariant

kernels (Lemma 1 (
)). �
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2 Weyl's 
riterion

Weyl's 
riterion 
on
erns uniformly distributed sequen
es fx

l

: l 2 Ng � M .

These are sequen
es for whi
h

lim

N!1

1

N

N

X

l=1

Æ

x

l


onverge weakly to the measure �. In this se
tion we provide alternative 
har-

a
terisations for uniformly distributed sequen
es. The equivalen
e of the above

de�nition to that of Part (a) of the following theorem follows from standard

arguments (see Kuipers and Niederreiter [4℄).

In this se
tion, we assume that a

n;k

(�) > 0 for all n; k, and

1

X

n=0

�

n

X

k=1

d

n;k

a

n;k

(�) <1: (1)

Thus � is bounded and 
ontinuous on M � M . More importantly for our

purpose in this se
tion, � is stri
tly positive de�nite on M . We will prove the

equivalen
e of two 
hara
terisations of uniform distribution of points on M .

Our main result of this se
tion is as follows.

Theorem 2. The following two 
riteria of a uniformly distributed sequen
e

on M are equivalent.

a. A sequen
e fx

l

: l 2Ng is uniformly distributed on M if and only if

lim

N!1

1

N

N

X

l=1

Y

j

n;k

(x

l

) = 0

for all n � 0 and 1 � k � �

n

, 1 � j � d

n;k

.

b. Let � be a stri
tly positive de�nite G-invariant kernel on M . A sequen
e

fx

l

: l 2Ng is uniformly distributed on M if and only if

lim

N!1

1

N

N

X

l=1

�(x

l

; y) = a

0;0

(�);

holds true uniformly for y 2M .

Proof: Using the series expansion for � we have for any y 2M ,

1

N

N

X

l=1

�(x

l

; y) =

1

X

n=0

�

n

X

k=1

a

n;k

(�)

d

n;k

X

j=1

Y

j

n;k

(y)

 

1

N

N

X

l=1

Y

j

n;k

(x

l

)

!

: (2)

Suppose fx

l

: l 2 Ng is uniformly distributed by Criterion (a). Using Lemma

1, Part (d), we 
an dominate the right hand side of the last equation by
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1

X

n=0

�

n

X

k=1

a

n;k

(�)

1

N

N

X

l=1

jQ

n;k

(x

l

; y)j �

1

X

n=0

�

n

X

k=1

d

n;k

a

n;k

(�):

The right hand side of the inequality is bounded from Equation (1). This

allows us to use the dominated 
onvergen
e theorem to pass the limit in N

through the sum to get

lim

N!1

1

X

n=1

�

n

X

k=1

a

n;k

(�)

d

n;k

X

j=1

Y

j

n;k

(y)

 

1

N

N

X

l=1

Y

j

n;k

(x

l

)

!

=

1

X

n=1

�

n

X

k=1

a

n;k

(�)

d

n;k

X

j=1

Y

j

n;k

(y) lim

N!1

 

1

N

N

X

l=1

Y

j

n;k

(x

l

)

!

= 0;

by assumption. Thus

lim

N!1

1

N

m

X

l=1

�(x

l

; y) = a

0;0

(�)

uniformly for ea
h y by (1), and the sequen
e fx

l

: l 2 Ng is thus uniformly

distributed by Criterion (b).

Conversely suppose that fx

l

: l 2 Ng is uniformly distributed by Criterion

(b). Then, as in Equation (2), we have

1

N

2

N

X

m=1

N

X

l=1

�(x

m

; x

l

) =

1

X

n=0

�

n

X

k=1

a

n;k

(�)

d

n;k

X

j=1

 

1

N

N

X

l=1

Y

j

n;k

(x

l

)

!

2

:

Now, for ea
h x

m

, by hypothesis

lim

N!1

1

N

N

X

l=1

�(x

m

; x

l

) =

Z

M

�(x

m

; x)d�(x) = a

0;0

(�):

Thus,

lim

N!1

1

N

2

N

X

m=1

N

X

l=1

�(x

l

; x

j

) =

Z

M

�(x; x

j

)d�(x) = a

0;0

(�):

Therefore

lim

N!1

1

X

n=1

�

n

X

k=1

a

n;k

(�)

d

n;k

X

j=1

 

1

N

N

X

l=1

Y

j

n;k

(x

l

)

!

2

= 0;

and sin
e a

n;k

(�) > 0, n 2N and 1 � k � �

n

, it must be that
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lim

N!1

1

N

N

X

l=1

Y

j

n;k

(x

l

) = 0;

so that fx

l

: l 2Ng is uniformly distributed by (a). �

We note that Criterion (a) is 
alled Weyl's 
riterion in the literature.

3 Energy on manifolds

In this se
tion, we work with kernels � that satisfy the following two 
ondi-

tions:

1. There exists a positive 
onstant C, independent of x, su
h that

Z

M

j�(x; y)jd�(y) � C:

2. For ea
h non-trivial 
ontinuous fun
tion � on M , we have

Z

M

Z

M

�(x; y)�(x)�(y)d�(x)d�(y) > 0:

We will 
all a kernel � satisfying the above two 
onditions admissible. The

ar
hetype for admissible kernels is the Riesz kernel

�(x; y) = kx� yk

�s

; 0 < s < d+ r; x; y 2M;

where k � k is the Eu
lidean norm in R

d+r

.

We are interested in studying errors of numeri
al integration of 
ontinuous

fun
tions f :M ! Rover a set Z �M of 
ardinality N � 1. In parti
ular, we

seek a generalization of results of Damelin and Grabner in [2℄. More pre
isely,

given an admissible kernel � and su
h a point set Z, we de�ne the dis
rete

energy

E

�

(Z) =

1

N

2

X

y;z2Z

y 6=z

�(y; z)

and for the normalised G{invariant measure � on M , denote by

R(f; Z; �) :=

�

�

�

�

�

�

Z

M

fd��

1

N

X

y2Z

f(y)

�

�

�

�

�

�

the error of numeri
al integration of f with respe
t to � over M .

For an admissible kernel � and probability measure � on M , we de�ne the

energy integral

E

�

(�) =

Z

M

Z

M

�(x; y)d�(x)d�(y):

We have
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Lemma 3. The energy integral E

�

(�) is uniquely minimised by the normalized

G{invariant measure �.

Proof: Sin
e � satis�es Condition 2 we have a

n;k

> 0, E

�

(�) � 0 for every

Borel probability measure �. Also, a simple 
omputation shows that E

�

(�) =

a

0;0

(�).

Next, for an arbitrary probability measure � on M , we use Lemma 1, Part

(d) to write down

E

�

(�) =

Z

M

Z

M

(

1

X

n=0

�

n

X

k=1

a

n;k

(�)Q

n;k

(x; z)

)

d�(x)d�(z)

= a

0;0

(�) +

1

X

n=1

�

n

X

k=1

a

n;k

(�)

Z

M

Z

M

Q

n;k

(x; z)d�(x)d�(z)

= a

0;0

(�) +

1

X

n=1

�

n

X

k=1

a

n;k

(�)

Z

M

Z

M

Z

M

Q

n;k

(x; y)Q

n;k

(y; z)d�(y)d�(x)d�(z)

= a

0;0

(�) +

1

X

j=1

�

n

X

k=1

a

n;k

(�)

Z

M

�

Z

M

Q

n;k

(x; y)d�(x)

�

2

d�(y):

If � is a probability measure on M that minimises E

�

(�), i.e.,

E

�

(�) = min

�

E

�

(�);

where the minimum is taken over all the probability measures on M , then �

must satisfy

Z

M

Q

n;k

(x; y)d�(x) = 0; k = 1; : : : ; �

n

; n = 1; : : : :

Hen
e, sin
e � also annihilates all polynomials of degree � 0, � � � annihi-

lates all polynomials. Be
ause the polynomials are dense in the 
ontinuous

fun
tions, we see that � � � is the zero measure and the result is proved. �

Heuristi
ally, one expe
ts that a point distribution Z of minimal energy

gives a dis
rete approximation to the measure �, in the sense that the integral

with respe
t to the measure is approximated by a dis
rete sum over the points

of Z. For the sphere, this was shown by Damelin and Grabner in [2℄ for Riesz

kernels. The essen
e of our main result below is that we are able to formulate

a general analogous result whi
h works on M and for a sub
lass of admissible

kernels �. To des
ribe this result, we need some more notations.

Let �

�

be a sequen
e of kernels 
onverging to the Æ distribution (the distri-

bution for whi
h all Fourier 
oeÆ
ients are unity) as �! 0. Let � be admis-

sible and for � < �

0

for some �xed �

0

, we wish the 
onvolution �

�

= � � �

�

to have the following properties:

a. �

�

is positive de�nite
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b. �

�

(x; y) � �(x; y) for all x; y 2M .

If the above 
onstru
tion is possible, we say that � is strongly admissible.

Besides Riesz kernels on d dimensional spheres see [2, 3℄, we have as a futher

natural example on the 2-torus embedded in R

4

, strongly admissible kernels

de�ned as produ
ts of univariate kernels:

�(x; y) = �(x

1

; y

1

)�(x

2

; y

2

); x

1

; y

1

; x

2

; y

2

2 S

1

;

where

�(s; t) = j1� stj

�1=2

; s; t 2 S

1

and S

1

is the one dimensional 
ir
le (realized as a subset of R

2

). See [3℄ for

further details.

We now give an interesting result whi
h demonstrates the way in whi
h

results on the sphere 
an be transplanted onto more general manifolds. The

reader is dire
ted to [3℄ for the proof and further results.

Theorem 3. Let � be strongly admissible on M and Z �M be a point subset

of 
ardinality N � 1. Fix x 2M . If q is a polynomial of degree at most n � 0

on M then, for � < �

0

,

jR(f; Z; �)j � max

j�n; l�h

j

1

(a

j;l

(�

�

))

1=2

kqk

2

�

E

�

(Z) +

1

N

�

�

(x; x)� a

0;0

(�

�

)

�

1=2

:
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