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Summary. The purpose of this paper is to demonstrate that a number of results

onerning approximation, integration, and uniform distribution on spheres an be

generalised to a muh wider range of ompat homogeneous manifolds. The essential

ingredient is that a ertain type of invariant kernels on the manifolds (the gener-

alisation of zonal kernels on spheres or radial kernels in the eulidean spaes) have

a spetral deomposition in terms of projetion kernels onto invariant polynomial

subspaes. In partiular, we establish a Weyl's riterion on suh manifolds and an-

noune a disrepany estimate that generalises some pertinent results of Damelin

and Grabner.
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1 Introdution

Let M be a d � 1 dimensional homogeneous spae of a ompat Lie group

G embedded in R

d+r

for some r � 0. Then (see [6℄), we may assume that

G � O(d+ r), the orthogonal group on R

d+r

. Thus M = fgp : g 2 Gg where

p 2 M is a non-zero vetor in R

d+r

. For tehnial reasons, we will assume

that M is reexive. That is, for any given x; y 2 M , there exists g 2 G suh

that gx = y and gy = x.

Let d(x; y) be the geodesi distane between x; y;2 M indued by the

embedding ofM in R

d+r

(see [5℄ for details). On the spheres, this orresponds
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to the usual geodesi distane. A real valued funtion �(x; y) de�ned onM�M

is alled a positive de�nite kernel on M , if for every nonempty �nite subset

Y �M , and arbitrary real numbers 

y

; y 2 Y , we have

X

x2Y

X

y2Y



x



y

�(x; y) � 0:

If the above inequality beomes strit whenever the points y are distint, and

not all the 

y

are zero, then the kernel � is alled stritly positive de�nite.

A kernel � is alled G-invariant if �(gx; gy) = �(x; y) for all x; y 2 M and

g 2 G. For example, ifM := S

d

, the d dimensional sphere realized as a subset

of R

d+1

and G := O(d + 1), then all the G{invariant kernels have the form

�(xy), where � : [�1; 1℄! R, and where xy denotes the usual inner produt

of x and y. A kernel of the form �(xy) is often alled a zonal kernel on the

sphere in the literature.

Let � be a G{invariant measure on M (whih may be taken as an appro-

priately normalized `surfae' measure). Then, for two funtions f; g :M ! R,

we de�ne an inner produt with respet to �:

[f; g℄ = [f; g℄

�

:=

Z

M

fgd�

and let L

2

(M )

�

denote the spae of all square integrable funtions from M

into Rwith respet to the above inner produt. In the usual way, we identify

all funtions as being equal in L

2

(M )

�

, if they are equal almost everywhere

with respet to the measure �.

Let n � 0 and P

n

be the spae of polynomials in d + r variables of de-

gree n restrited on M . Here, multipliation is taken pointwise on R

d+r

. The

harmoni polynomials of degree n on M are H

n

:= P

n

T

P

?

n�1

. We may al-

ways (uniquely) deompose H

n

into irreduible G-invariant subspaes H

n;k

,

k = 1; : : : ; �

n

. Indeed, the uniqueness of the deomposition follows from the

minimality of the G{invariant spae, sine a di�erent deomposition would

give subspaes ontained in minimal ones leading to a ontradition.

Any G{invariant kernel �, has an assoiated integral operator whih we

de�ne by

T

�

f(x) =

Z

M

�(x; y)f(y) d�(y):

Now, for n � 0; k � 1, let Y

1

n;k

; : : : ; Y

d

n;k

n;k

be any orthonormal basis for

H

n;k

, and set

Q

n;k

(x; y) :=

d

n;k

X

j=1

Y

j

n;k

(x)Y

j

n;k

(y):

Then Q

n;k

is the unique G-invariant kernel for the orthogonal projetion T

Q

n;k

of L

2

(M )

�

onto H

n;k

ating as
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T

Q

n;k

f(x) =

Z

M

Q

n;k

(x; y)f(y) d�(y):

The symmetry of Q

n;k

in x and y implies that it is positive de�nite on M .

In fat, for every nonempty �nite subset Y �M , and arbitrary real numbers



y

; y 2 Y , we have

X

x2Y

X

y2Y



x



y

Q

n;k

(x; y) =

d

n;k

X

j=1

�

X

x2Y



x

Y

j

n;k

(x)

��

X

y2Y



y

Y

j

n;k

(y)

�

=

d

n;k

X

j=1

�

X

x2Y



x

Y

j

n;k

(x)

�

2

� 0:

We summarise a few basi fats about G-invariant kernels in the following

lemma:

Lemma 1. Let y; z be �xed points in M . Then

a.

R

M

Q

n;k

(y; x)Q

n;k

(x; z)d�(x) = Q

n;k

(y; z):

b. For all x 2M , we have Q

n;k

(x; x) = d

n;k

.

. If � is a G-invariant kernel, then for all pairs of (x; y) 2M �M , we have

�(x; y) = �(y; x).

d. For all (x; y) 2M �M , we have jQ

n;k

(x; y)j � Q

n;k

(x; x):

Proof: Part (a) follows diretly from the fat that Q

n;k

is the projetion

kernel from L

2

(M )

�

onto H

n;k

.

Part (b) is a onsequene of the equation

Q

n;k

(x; x) :=

d

n;k

X

j=1

Y

j

n;k

(x)Y

j

n;k

(x):

Indeed, sine Q

n;k

is G-invariant, Q

n;k

(x; x) is a onstant funtion of x for all

x 2M . Integrating the last equation over M and using the orthonormality of

the Y

j

n;k

, we then arrive at the desired result.

The proof of Part () needs the reexivity of M . Indeed, pik a g 2 G so

that gx = y and gy = x. Then

�(x; y) = �(gy; gx) = �(y; x)

using the G-invariane of �.

Part (d) follows from a standard positive de�niteness argument. Indeed,

for eah �xed pair (x; y) 2M�M , the positive de�niteness of the kernel Q

n;k

implies that the matrix

�

Q

n;k

(x; x) Q

n;k

(x; y)

Q

n;k

(y; x) Q

n;k

(y; y)

�
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is nonnegative de�nite, whih further implies that

(Q

n;k

(x; x)) (Q

n;k

(y; y)) � (Q

n;k

(x; y)) (Q

n;k

(y; x)) � 0:

Sine Q

n;k

(x; x) = Q

n;k

(y; y), by Part (b), and Q

n;k

(x; y) = Q

n;k

(y; x) by

Part (), we have the desired inequality. �

An important onsequene of the development above is that eah irre-

duible subspae is generated by the translates of a �xed element. For this

result on the sphere S

d

, see, for instane, [1℄.

Proposition 1. Let Y 2 H

n;k

; Y 6= 0. Then H

n;k

= spanfY (g�); g 2 Gg.

Proof: It is lear that V = spanfY (g�); g 2 Gg is a G-invariant subspae

of H

n;k

, and sine Y is not zero this is a non-trivial subspae. But H

n;k

is

irreduible, so that V annot be a proper subspae of H

n;k

. Thus V = H

n;k

.

�

Lemma 2. Let �

1

and �

2

be ontinuous G-invariant kernels. If M is a re-

exive spae, T

�

1

T

�

2

= T

�

2

T

�

1

.

Proof: Let f 2 L

2

(M )

�

. Then

[T

�

1

T

�

2

f ℄(x) =

Z

M

�

1

(x; y)

�

Z

M

�

2

(y; z)f(z)d�(z)

�

d�(y)

=

Z

M

f(z)

�

Z

M

�

1

(x; y)�

2

(y; z)d�(y)

�

d�(z):

Sine the manifold is reexive there is a g 2 G whih interhanges x and z.

Thus,

Z

M

�

1

(x; y)�

2

(y; z)d�(y) =

Z

M

�

1

(z; y)�

2

(y; x)d�(y);

so that

[T

�

1

T

�

2

f ℄(x) =

Z

M

f(z)

�

Z

M

�

1

(z; y)�

2

(y; x)d�(y)

�

d�(z)

=

Z

M

�

2

(x; y)

�

Z

M

�

1

(y; z)f(z)d�(z)

�

d�(y)

= [T

�

2

T

�

1

f ℄(x);

where the penultimate step uses Lemma 1 (). The hanges of order of inte-

gration are easy to justify sine the kernels are ontinuous and f 2 L

2

(M )

�

.

�

We are now able to show that a G{invariant kernel has a spetral deom-

position in terms of projetion kernels onto invariant polynomial subspaes.

This is ontained in the following theorem.
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Theorem 1. If M is a reexive manifold, then any G{invariant kernel � has

the spetral deomposition

�(x; y) =

1

X

n=0

�

n

X

k=1

a

n;k

(�)Q

n;k

(x; y);

where

a

n;k

(�) =

1

d

n;k

Z

M

�(x; y)Q

n;k

(x; y) d�(y); n � 0; k � 1:

Here the onvergene is in the topology of L

2

(M )

�

.

Proof: If Y 2 H

n;k

then T

Q

n;k

Y = Y . Thus

T

�

Y = T

�

(T

Q

n;k

Y )

= T

Q

n;k

(T

�

Y ) 2 H

n;k

;

sine T

Q

n;k

is the orthogonal projetion onto H

n;k

. Here we have used

Lemma 2.

Sine T

�

is a symmetri operator, it an be represented on the �nite dimen-

sional subspae by a symmetri matrix. Either this matrix is the zero matrix,

in whih ase all the pertinent a

n;k

(�) are zero, or T

�

has a non-trivial range.

Sine the matrix is symmetri, it must have a non-zero real eigenvalue. Let 

be a nonzero eigenvalue of the matrix, and let Y be an assoiated eigenve-

tor, i.e., T

�

Y = Y . This implies that, for any �xed g 2 G, Y (g�) is also an

eigenvetor. In fat, we have

[T

�

Y (g�)℄(x) =

Z

M

�(x; y)Y (gy)d�(y)

=

Z

M

�(x; g

�1

y)Y (y)d�(g

�1

y)

=

Z

M

�(gx; y)Y (y)d�(y);

using the G-invariane of both � and �. But Y is an eigenvetor of T

�

, so that

[T

�

Y (g�)℄(x) = Y (gx):

Now, using Proposition 1 we see that H

n;k

is an eigenspae for T

�

with

single eigenvalue . We an ompute  by evaluating T

�

on Q

n;k

(�; y) for a

�xed y:

Z

M

�(z; x)Q

n;k

(x; y)d�(x) = Q

n;k

(z; y):

Setting z = y and using Lemma 1 (b) we have

 =

1

d

n;k

Z

M

�(y; x)Q

n;k

(x; y)d�(x);

and the appropriate form for  follows using the symmetry of G-invariant

kernels (Lemma 1 ()). �
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2 Weyl's riterion

Weyl's riterion onerns uniformly distributed sequenes fx

l

: l 2 Ng � M .

These are sequenes for whih

lim

N!1

1

N

N

X

l=1

Æ

x

l

onverge weakly to the measure �. In this setion we provide alternative har-

aterisations for uniformly distributed sequenes. The equivalene of the above

de�nition to that of Part (a) of the following theorem follows from standard

arguments (see Kuipers and Niederreiter [4℄).

In this setion, we assume that a

n;k

(�) > 0 for all n; k, and

1

X

n=0

�

n

X

k=1

d

n;k

a

n;k

(�) <1: (1)

Thus � is bounded and ontinuous on M � M . More importantly for our

purpose in this setion, � is stritly positive de�nite on M . We will prove the

equivalene of two haraterisations of uniform distribution of points on M .

Our main result of this setion is as follows.

Theorem 2. The following two riteria of a uniformly distributed sequene

on M are equivalent.

a. A sequene fx

l

: l 2Ng is uniformly distributed on M if and only if

lim

N!1

1

N

N

X

l=1

Y

j

n;k

(x

l

) = 0

for all n � 0 and 1 � k � �

n

, 1 � j � d

n;k

.

b. Let � be a stritly positive de�nite G-invariant kernel on M . A sequene

fx

l

: l 2Ng is uniformly distributed on M if and only if

lim

N!1

1

N

N

X

l=1

�(x

l

; y) = a

0;0

(�);

holds true uniformly for y 2M .

Proof: Using the series expansion for � we have for any y 2M ,

1

N

N

X

l=1

�(x

l

; y) =

1

X

n=0

�

n

X

k=1

a

n;k

(�)

d

n;k

X

j=1

Y

j

n;k

(y)

 

1

N

N

X

l=1

Y

j

n;k

(x

l

)

!

: (2)

Suppose fx

l

: l 2 Ng is uniformly distributed by Criterion (a). Using Lemma

1, Part (d), we an dominate the right hand side of the last equation by
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1

X

n=0

�

n

X

k=1

a

n;k

(�)

1

N

N

X

l=1

jQ

n;k

(x

l

; y)j �

1

X

n=0

�

n

X

k=1

d

n;k

a

n;k

(�):

The right hand side of the inequality is bounded from Equation (1). This

allows us to use the dominated onvergene theorem to pass the limit in N

through the sum to get

lim

N!1

1

X

n=1

�

n

X

k=1

a

n;k

(�)

d

n;k

X

j=1

Y

j

n;k

(y)

 

1

N

N

X

l=1

Y

j

n;k

(x

l

)

!

=

1

X

n=1

�

n

X

k=1

a

n;k

(�)

d

n;k

X

j=1

Y

j

n;k

(y) lim

N!1

 

1

N

N

X

l=1

Y

j

n;k

(x

l

)

!

= 0;

by assumption. Thus

lim

N!1

1

N

m

X

l=1

�(x

l

; y) = a

0;0

(�)

uniformly for eah y by (1), and the sequene fx

l

: l 2 Ng is thus uniformly

distributed by Criterion (b).

Conversely suppose that fx

l

: l 2 Ng is uniformly distributed by Criterion

(b). Then, as in Equation (2), we have

1

N

2

N

X

m=1

N

X

l=1

�(x

m

; x

l

) =

1

X

n=0

�

n

X

k=1

a

n;k

(�)

d

n;k

X

j=1

 

1

N

N

X

l=1

Y

j

n;k

(x

l

)

!

2

:

Now, for eah x

m

, by hypothesis

lim

N!1

1

N

N

X

l=1

�(x

m

; x

l

) =

Z

M

�(x

m

; x)d�(x) = a

0;0

(�):

Thus,

lim

N!1

1

N

2

N

X

m=1

N

X

l=1

�(x

l

; x

j

) =

Z

M

�(x; x

j

)d�(x) = a

0;0

(�):

Therefore

lim

N!1

1

X

n=1

�

n

X

k=1

a

n;k

(�)

d

n;k

X

j=1

 

1

N

N

X

l=1

Y

j

n;k

(x

l

)

!

2

= 0;

and sine a

n;k

(�) > 0, n 2N and 1 � k � �

n

, it must be that
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lim

N!1

1

N

N

X

l=1

Y

j

n;k

(x

l

) = 0;

so that fx

l

: l 2Ng is uniformly distributed by (a). �

We note that Criterion (a) is alled Weyl's riterion in the literature.

3 Energy on manifolds

In this setion, we work with kernels � that satisfy the following two ondi-

tions:

1. There exists a positive onstant C, independent of x, suh that

Z

M

j�(x; y)jd�(y) � C:

2. For eah non-trivial ontinuous funtion � on M , we have

Z

M

Z

M

�(x; y)�(x)�(y)d�(x)d�(y) > 0:

We will all a kernel � satisfying the above two onditions admissible. The

arhetype for admissible kernels is the Riesz kernel

�(x; y) = kx� yk

�s

; 0 < s < d+ r; x; y 2M;

where k � k is the Eulidean norm in R

d+r

.

We are interested in studying errors of numerial integration of ontinuous

funtions f :M ! Rover a set Z �M of ardinality N � 1. In partiular, we

seek a generalization of results of Damelin and Grabner in [2℄. More preisely,

given an admissible kernel � and suh a point set Z, we de�ne the disrete

energy

E

�

(Z) =

1

N

2

X

y;z2Z

y 6=z

�(y; z)

and for the normalised G{invariant measure � on M , denote by

R(f; Z; �) :=

�

�

�

�

�

�

Z

M

fd��

1

N

X

y2Z

f(y)

�

�

�

�

�

�

the error of numerial integration of f with respet to � over M .

For an admissible kernel � and probability measure � on M , we de�ne the

energy integral

E

�

(�) =

Z

M

Z

M

�(x; y)d�(x)d�(y):

We have
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Lemma 3. The energy integral E

�

(�) is uniquely minimised by the normalized

G{invariant measure �.

Proof: Sine � satis�es Condition 2 we have a

n;k

> 0, E

�

(�) � 0 for every

Borel probability measure �. Also, a simple omputation shows that E

�

(�) =

a

0;0

(�).

Next, for an arbitrary probability measure � on M , we use Lemma 1, Part

(d) to write down

E

�

(�) =

Z

M

Z

M

(

1

X

n=0

�

n

X

k=1

a

n;k

(�)Q

n;k

(x; z)

)

d�(x)d�(z)

= a

0;0

(�) +

1

X

n=1

�

n

X

k=1

a

n;k

(�)

Z

M

Z

M

Q

n;k

(x; z)d�(x)d�(z)

= a

0;0

(�) +

1

X

n=1

�

n

X

k=1

a

n;k

(�)

Z

M

Z

M

Z

M

Q

n;k

(x; y)Q

n;k

(y; z)d�(y)d�(x)d�(z)

= a

0;0

(�) +

1

X

j=1

�

n

X

k=1

a

n;k

(�)

Z

M

�

Z

M

Q

n;k

(x; y)d�(x)

�

2

d�(y):

If � is a probability measure on M that minimises E

�

(�), i.e.,

E

�

(�) = min

�

E

�

(�);

where the minimum is taken over all the probability measures on M , then �

must satisfy

Z

M

Q

n;k

(x; y)d�(x) = 0; k = 1; : : : ; �

n

; n = 1; : : : :

Hene, sine � also annihilates all polynomials of degree � 0, � � � annihi-

lates all polynomials. Beause the polynomials are dense in the ontinuous

funtions, we see that � � � is the zero measure and the result is proved. �

Heuristially, one expets that a point distribution Z of minimal energy

gives a disrete approximation to the measure �, in the sense that the integral

with respet to the measure is approximated by a disrete sum over the points

of Z. For the sphere, this was shown by Damelin and Grabner in [2℄ for Riesz

kernels. The essene of our main result below is that we are able to formulate

a general analogous result whih works on M and for a sublass of admissible

kernels �. To desribe this result, we need some more notations.

Let �

�

be a sequene of kernels onverging to the Æ distribution (the distri-

bution for whih all Fourier oeÆients are unity) as �! 0. Let � be admis-

sible and for � < �

0

for some �xed �

0

, we wish the onvolution �

�

= � � �

�

to have the following properties:

a. �

�

is positive de�nite
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b. �

�

(x; y) � �(x; y) for all x; y 2M .

If the above onstrution is possible, we say that � is strongly admissible.

Besides Riesz kernels on d dimensional spheres see [2, 3℄, we have as a futher

natural example on the 2-torus embedded in R

4

, strongly admissible kernels

de�ned as produts of univariate kernels:

�(x; y) = �(x

1

; y

1

)�(x

2

; y

2

); x

1

; y

1

; x

2

; y

2

2 S

1

;

where

�(s; t) = j1� stj

�1=2

; s; t 2 S

1

and S

1

is the one dimensional irle (realized as a subset of R

2

). See [3℄ for

further details.

We now give an interesting result whih demonstrates the way in whih

results on the sphere an be transplanted onto more general manifolds. The

reader is direted to [3℄ for the proof and further results.

Theorem 3. Let � be strongly admissible on M and Z �M be a point subset

of ardinality N � 1. Fix x 2M . If q is a polynomial of degree at most n � 0

on M then, for � < �

0

,

jR(f; Z; �)j � max

j�n; l�h

j

1

(a

j;l

(�

�

))

1=2

kqk

2

�

E

�

(Z) +

1

N

�

�

(x; x)� a

0;0

(�

�

)

�

1=2

:
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