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Summary. The purpose of this paper is to demonstrate that a number of results
concerning approximation, integration, and uniform distribution on spheres can be
generalised to a much wider range of compact homogeneous manifolds. The essential
ingredient is that a certain type of invariant kernels on the manifolds (the gener-
alisation of zonal kernels on spheres or radial kernels in the euclidean spaces) have
a spectral decomposition in terms of projection kernels onto invariant polynomial
subspaces. In particular, we establish a Weyl’s criterion on such manifolds and an-
nounce a discrepancy estimate that generalises some pertinent results of Damelin
and Grabner.

Keywords and Phrases: Compact Homogeneous Manifold, Energy, Invariant
Kernels, Invariant Polynomial Subspaces, Numerical Integration, Projection
Kernels, Spherical Harmonic, Uniform Distribution, Weyl’s Criterion.

1 Introduction

Let M be a d > 1 dimensional homogeneous space of a compact Lie group
G embedded in R4*" for some » > 0. Then (see [6]), we may assume that
G C O(d + r), the orthogonal group on R4 Thus M = {gp : g € G} where
p € M is a non-zero vector in R%*". For technical reasons, we will assume
that M is reflexive. That is, for any given z,y € M, there exists ¢ € G such
that g = y and gy = =.

Let d(z,y) be the geodesic distance between z,y,€ M induced by the
embedding of M in Rt (see [5] for details). On the spheres, this corresponds
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to the usual geodesic distance. A real valued function &(x, y) defined on M x M
is called a positive definite kernel on M, if for every nonempty finite subset
Y C M, and arbitrary real numbers ¢y, y € Y, we have

Z Z cocyki(z,y) > 0.

z€Y yey

If the above inequality becomes strict whenever the points y are distinct, and
not all the ¢, are zero, then the kernel « is called strictly positive definite.
A kernel k is called G-invariant if «(gx, gy) = «(z,y) for all z,y € M and
g € G. For example, if M := S¢, the d dimensional sphere realized as a subset
of Rl and G := O(d + 1), then all the G—invariant kernels have the form
é(xy), where ¢ : [—1,1] = R, and where xy denotes the usual inner product
of # and y. A kernel of the form ¢(xy) is often called a zonal kernel on the
sphere in the literature.

Let p be a G—invariant measure on M (which may be taken as an appro-
priately normalized ‘surface’ measure). Then, for two functions f,g : M — R,
we define an inner product with respect to pu:

and let Ly (M), denote the space of all square integrable functions from M
into R with respect to the above inner product. In the usual way, we identify
all functions as being equal in Lo (M), if they are equal almost everywhere
with respect to the measure p.

Let n > 0 and P, be the space of polynomials in d 4 r variables of de-
gree n restricted on M. Here, multiplication is taken pointwise on R4+". The
harmonic polynomials of degree n on M are H, := P, Pl ;. We may al-
ways (uniquely) decompose H, into irreducible G-invariant subspaces Hp, g,
k=1,...,v,. Indeed, the uniqueness of the decomposition follows from the
minimality of the G-invariant space, since a different decomposition would
give subspaces contained in minimal ones leading to a contradiction.

Any G-invariant kernel &, has an associated integral operator which we

define by
T, f(x) = /M w2, 9) £ () du(y).

Now, for n > 0,k > 1, let VI, ... D T be any orthonormal basis for
Hpy i, and set

Qnx(z,y) ZY{Z;@ Y{Zk Y).

Then @y x is the unique G-invariant kernel for the orthogonal projection Tg,, ,
of Ly(M), onto H, ; acting as
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1Q,. f(x /any y) du(y).

The symmetry of @, in x and y implies that it is positive definite on M.
In fact, for every nonempty finite subset Y C M, and arbitrary real numbers
¢y, ¥y €Y, we have

Z Z ColyQn r(2,y) = Z (Z xYT‘Zk(x)) (Z Cer‘z,k(i‘/))

z€Y yey i=1 z€Y yeyYy

We summarise a few basic facts about G-invariant kernels in the following
lemma:

Lemma 1. Let y, z be fired points in M. Then

a. fM Qn,k(ya x)Qn,k($a Z)d/,t(l‘) = Qn,k(ya Z)

b. For all v € M, we have Qn (2, ) = dp k.

c. If  is a G-invariant kernel, then for all pairs of (x,y) € M x M, we have
k(z,y) = k(y, x).

d. For all (z,y) € M x M, we have |Q, x(z,y)| < Qnx(z, ).

Proof: Part (a) follows directly from the fact that @, x is the projection

kernel from L, (M), onto Hy, k.
Part (b) is a consequence of the equation

anl‘l‘ZZ (z).

Indeed, since @, x is G-invariant, Q, x(z, z) is a constant function of « for all
x € M. Integrating the last equation over M and using the orthonormality of
the Yn Jo We then arrive at the desired result.

The proof of Part (c) needs the reflexivity of M. Indeed, pick a g € G so
that g = y and gy = x. Then

k(z,y) = k(gy, gx) = &(y, ©)

using the G-invariance of «.

Part (d) follows from a standard positive definiteness argument. Indeed,
for each fixed pair (x,y) € M x M, the positive definiteness of the kernel @,
implies that the matrix

(Grete ) Gttt
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is nonnegative definite, which further implies that
(Qnk(z,2)) (Qnk(y,¥) — (Qnr(x,9) (@nk(y,2)) > 0.

Since Qn i(z,2) = Qni(y,y), by Part (b), and Qnx(z,y) = Qnr(y, z) by
Part (c), we have the desired inequality. O

An important consequence of the development above is that each irre-
ducible subspace is generated by the translates of a fixed element. For this
result on the sphere S%, see, for instance, [1].

Proposition 1. Let Y € H, i, Y # 0. Then Hy, = span{Y (g-);¢9 € G}.

Proof: Tt is clear that V =span{Y(g¢-); ¢ € G} is a G-invariant subspace
of Hy, k, and since Y is not zero this is a non-trivial subspace. But H, j is
irreducible, so that V' cannot be a proper subspace of H,, ;. Thus V = H, 1.
O

Lemma 2. Let k1 and ko be continuous G-invariant kernels. If M s a re-
flezwe space, Ty, Ty, = T, T,

Proof: Let f € Ly(M),. Then

atello) = [ s | [ w5 i

= [ 10 [ st vt piutn b i)

Since the manifold is reflexive there is a ¢ € G which interchanges « and z.
Thus,

/M k(e y)ra(y, 2)du(y) = /M £1(z, y) k2 (y, z)dp(y),
so that

1Tt = [ 50 [ et ity o)dut  ante

= /M Koz, y) {/M K1 (y, z)f(Z)du(Z)} dp(y)
= [T, Tx, f1(2),

where the penultimate step uses Lemma 1 (c). The changes of order of inte-
gration are easy to justify since the kernels are continuous and f € Lo(M),.
O

We are now able to show that a G—invariant kernel has a spectral decom-
position in terms of projection kernels onto invariant polynomial subspaces.
This is contained in the following theorem.
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Theorem 1. If M is a reflexive manifold, then any G —invariant kernel k has
the spectral decomposition

k(z,y) = Z Zn: an i (K)Qn (2, ),

n=0k=1

where

1
dn,k

Here the convergence is in the topology of La(M),.
Proof: IfY € H,  then Ty, Y =Y. Thus

T,Y =Ty(Tq, ,Y)
= 10,4 (T5Y) € Hu,

ann(K) = /M &(2,9)Qn i (2, y) du(y), n >0, k > 1.

since Tq, , is the orthogonal projection onto Hy ;. Here we have used
Lemma 2.

Since T} is a symmetric operator, it can be represented on the finite dimen-
sional subspace by a symmetric matrix. Either this matrix is the zero matrix,
in which case all the pertinent a, x(x) are zero, or T, has a non-trivial range.
Since the matrix is symmetric, it must have a non-zero real eigenvalue. Let v
be a nonzero eigenvalue of the matrix, and let Y be an associated eigenvec-
tor, i.e., T,Y = ~4Y. This implies that, for any fixed ¢ € GG, Y(g-) is also an
eigenvector. In fact, we have

[T ()(x) = / sz, 9)Y (g9)du(y)

M

- /M k(z, 97 Y)Y (y)dulg™"y)

= [ sz )Y (o)
M
using the G-invariance of both x and p. But Y is an eigenvector of T}, so that

(1Y (9))](x) = 7Y (g).

Now, using Proposition 1 we see that H, ; is an eigenspace for T, with
single eigenvalue y. We can compute v by evaluating T, on @, (-, y) for a
fixed y:

/M k(22 2) @ (2 ) A1) = 1@ (2, 9).

Setting z = y and using Lemma 1 (b) we have

/M k(y, 2)Qn k(x, y)dp(x),

7= dn,k

and the appropriate form for v follows using the symmetry of G-invariant
kernels (Lemma 1 (c)). O
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2 Weyl’s criterion

Weyl’s criterion concerns uniformly distributed sequences {a; : l € N} C M.
These are sequences for which

1 N
lim —» 4,
i, 2 b

converge weakly to the measure p. In this section we provide alternative char-
acterisations for uniformly distributed sequences. The equivalence of the above
definition to that of Part (a) of the following theorem follows from standard
arguments (see Kuipers and Niederreiter [4]).

In this section, we assume that a, x(x) > 0 for all n, &, and

Zidn,kan,k(ﬁ) < 0. (1)

n=0k=1

Thus k is bounded and continuous on M x M. More importantly for our
purpose in this section, & is strictly positive definite on M. We will prove the
equivalence of two characterisations of uniform distribution of points on M.
Our main result of this section is as follows.

Theorem 2. The following two criteria of a uniformly distributed sequence
on M are equivalent.

a. A sequence {x; : 1 € N} is uniformly distributed on M if and only if

1L
L SO

foralln>0and 1 <k <wvp, 1 <j<dyp.
b. Let k be a strictly positive definite G-invariant kernel on M. A sequence
{@; : 1 € N} is untformly distributed on M if and only if

N

. 1
lim ¥ Zﬁ(l‘l, y) = aoo(k),

N—o00
=1

holds true uniformly fory € M.

Proof: Using the series expansion for x we have for any y € M,

Y wen ) = 30 Y k) Y V) (% inm) )

Suppose {#; : | € N} is uniformly distributed by Criterion (a). Using Lemma
1, Part (d), we can dominate the right hand side of the last equation by
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Zianyk Z|an l’l, |<sz”ka”k

n=0k=1 n=0k=1

The right hand side of the inequality is bounded from Equation (1). This
allows us to use the dominated convergence theorem to pass the limit in N
through the sum to get

oo dn,k . 1 N .
Nh_I}I;OZZank ZY{Zk(Z‘/) (ﬁ Z:Y{Zk(l’l))

n=1k=1 Jj=1
dn K
J
= an k(K lim Y7 (%)
=Y e Y, kyN%o( Einkz
n=1k=1 j=1
=0,

by assumption. Thus

B G
lim NZK(l‘l,y) = ap,0(k)

N—o00
=1

uniformly for each y by (1), and the sequence {#; : { € N} is thus uniformly
distributed by Criterion (b).

Conversely suppose that
(b). Then, as in Equation (2

S SUIES 3 T 3 ES TR

m=11{=1 n=0k=1 Jj=1

{#; : | € N} is uniformly distributed by Criterion
), we have

Now, for each z,,, by hypothesis

lim —quxm,xl /(/)xm, Ydp(z) = ago(k).

Nooo N

Thus,
N N
J\;l_I}I(l)oNn;lz;d)l‘l,l‘] /qua:]du (z) = ao (k).
Therefore
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1L
i 2 Vialwn) =0,

so that {#; : | € N} is uniformly distributed by (a). O
We note that Criterion (a) is called Weyl’s criterion in the literature.

3 Energy on manifolds

In this section, we work with kernels x that satisfy the following two condi-
tions:

1. There exists a positive constant (', independent of z, such that

/M (. )l du(y) < C.

2. For each non-trivial continuous function ¢ on M, we have

/M /M k(x, y)é()d(y)dpu(w)du(y) > 0.

We will call a kernel « satisfying the above two conditions admussible. The
archetype for admissible kernels is the Riesz kernel

fle,y) =le—oll™*, 0<s<d+r, zyeM,

where || - || is the Euclidean norm in R4+

We are interested in studying errors of numerical integration of continuous
functions f : M — Rover aset 7 C M of cardinality N > 1. In particular, we
seek a generalization of results of Damelin and Grabner in [2]. More precisely,
given an admissible kernel & and such a point set 7, we define the discrete
energy

1
Ey(Z) = e Z K(y, z)
Y,2€2
y#£z

and for the normalised G—invariant measure ¢ on M, denote by

Rz = [ gdn=5 X 1w

yez
the error of numerical integration of f with respect to u over M.

For an admissible kernel « and probability measure v on M, we define the

energy integral
Eq(v) = /M /M k(z, y)dv(z)dv(y).

We have
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Lemma 3. The energy integral £, (v) is uniquely minimised by the normalized
G—invariant measure [i.

Proof: Since « satisfies Condition 2 we have a, x > 0, £:(v) > 0 for every
Borel probability measure v. Also, a simple computation shows that &, (p) =

aoyo(ﬁ).
Next, for an arbitrary probability measure o on M, we use Lemma 1, Part

(d) to write down

/M /M {i i an k (K)Qn i (2, z)} do(x)do(z)

n=0k=1

o)+ 303 i) /M /M Qs (. 2)do(2)do (2)

n=1k=1

IISES B) SIS || @usten@ueto utuyin(eydat:)

n=1k=1

= ag.o(k) + iian,k(ﬁ) /M {/M Qn il y)da(m)}z dp(y).

j=1k=1

Eq(0)

If v is a probability measure on M that minimises £, (o), i.e.,
Ex(v) = min&, (o),
o

where the minimum is taken over all the probability measures on M, then v
must satisfy

/Qnyk(x,y)dy(x)zo, k=1,...,v,, n=1....
M

Hence, since p also annihilates all polynomials of degree > 0, v — p annihi-
lates all polynomials. Because the polynomials are dense in the continuous
functions, we see that v — p is the zero measure and the result is proved. O

Heuristically, one expects that a point distribution Z of minimal energy
gives a discrete approximation to the measure p, in the sense that the integral
with respect to the measure is approximated by a discrete sum over the points
of Z. For the sphere, this was shown by Damelin and Grabner in [2] for Riesz
kernels. The essence of our main result below is that we are able to formulate
a general analogous result which works on M and for a subclass of admissible
kernels . To describe this result, we need some more notations.

Let o be a sequence of kernels converging to the § distribution (the distri-
bution for which all Fourier coefficients are unity) as o — 0. Let & be admis-
sible and for a < ag for some fixed ag, we wish the convolution k, = Kk * o,
to have the following properties:

a. Ko 18 positive definite
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b. ko(z,y) < k(z,y) for all z,y € M.

If the above construction is possible, we say that x is strongly admissible.
Besides Riesz kernels on d dimensional spheres see [2, 3], we have as a futher
natural example on the 2-torus embedded in R*, strongly admissible kernels
defined as products of univariate kernels:

w(z,y) = ple1, y1)p(z2,¥2), T1,y1,%2,y2 €S,

where
pls,t) = 1= st|V/2, stest

and S! is the one dimensional circle (realized as a subset of R?). See [3] for
further details.

We now give an interesting result which demonstrates the way in which
results on the sphere can be transplanted onto more general manifolds. The
reader is directed to [3] for the proof and further results.

Theorem 3. Let k be strongly admissible on M and Z C M be a point subset
of cardinality N > 1. Fix x € M. If q is a polynomial of degree at most n > 0
on M then, for a < ag,

1 1 1/2
|R(f, Z,p)] < jmax, WHQHz (ER(Z) + (e, @) = ao,o(m)) .
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