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Abstract

An Erd}os weight is of the form W := e

�Q

where Q is even and of

faster than polynomial growth at 1. For example, we can take

Q(x) := exp

k

(jxj

�

); k � 1; � > 0; x 2 R

where exp

k

denotes the kth iterated exponential. We prove Jackson

theorems in weighted L

p

spaces with norm kfWk

L

p

(R)

for all 0 < p �

1. These are the �rst proper Jackson theorems for Erd}os weights

even in L

1

. An interesting feature is a Timan/Nikolskii/Brudnyi

e�ect: The degree of approximation improves towards the endpoints

of a certain interval. By contrast, there is no such feature for Freud

weights.
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1 Statement of Results

In recent years, there have been many advances in the theory of weighted

polynomial approximation, and orthonormal polynomials, associated with

the weights

W := e

�Q

: (1.1)

Here Q : R ! R is even, and typically grows at least as fast as jxj

�

, some

� > 1, at in�nity. In some contexts, there has been a distinction between the

case where Q is of polynomial growth at in�nity (the so-called Freud case)

and where Q is of faster than polynomial growth at in�nity (the so-called

Erd}os case). To some extent, this is similar to the distinction between entire

functions of �nite, and in�nite, order. For further orientation on this topic,

see [7], [10], [15], [16], [21], [22].

In this paper, we discuss Jackson theorems for Erd}os weights. That is,

we estimate

E

n

[f ]

W;p

:= inf

P2P

n

k(f � P )Wk

L

p

(R)

; (1.2)

0 < p � 1, where P

n

denote the polynomials of degree at most n.

Our methods are similar to those in [6], where Jackson theorems were

proved for Freud weights. The approach involves approximating f by a

spline (or piecewise polynomial), representing the piecewise polynomial in

terms of certain characteristic functions, and then approximating the char-

acteristic functions (in a suitable sense) by polynomials. This method has

the advantage of involving only hypotheses on Q

0

, in contrast with the more

complicated approach via orthogonal polynomials and de la Vallee Poussin

sums, that typically involves hypotheses on Q

00

[7], [10], [17], [21]. In the

Erd}os weight context, some new features arise: the degree of approximation

improves toward the endpoints of the Mhaskar-Sa� interval, and to re
ect

this, we need a more complicated modulus of continuity, and some proofs

become more involved.

To state our result, we need to de�ne our class of weights, as well as

various quantities. First, we say that a function f : (a; b)! (0;1) is quasi-

increasing if 9 C > 0 such that

a < x < y < b =) f(x) � Cf(y):

De�nition 1.1 Let W := e

�Q

, where
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(a) Q : R ! R is even, continuous, and Q

0

is positive in (0;1).

(b) xQ

0

(x) is strictly increasing in (0;1) with right limit 0 at 0.

(c) The function

T (x) :=

xQ

0

(x)

Q(x)

(1.3)

is quasi-increasing in (C;1) for some C > 0, and

lim

x!1

T (x) =1: (1.4)

(d) 9 C

1

; C

2

; C

3

> 0 such that

yQ

0

(y)

xQ

0

(x)

� C

1

 

Q(y)

Q(x)

!

C

2

; y � x � C

3

: (1.5)

Then we write W = e

�Q

2 E

1

.

The archetypal example of W 2 E

1

is

W (x) :=W

k;�

(x) := exp (� exp

k

(jxj

�

)) ; k � 1; � > 0; (1.6)

where exp

k

= exp ( exp(:::)) denotes the kth iterated exponential. For this

weight, we see

T (x) = �x

�

k�1

Y

j=1

exp

j

(x

�

); x > 0:

It is not too di�cult to see that we can choose C

2

> 1 in (1.5) arbitrarily

close to 1 in this case. Another example is

W (x) := exp

�

� exp [ log(2 + x

2

)]

�

�

; � > 1:

Here

T (x) =

2�x

2

2 + x

2

[ log(2 + x

2

)]

��1

; x > 0:

Again, we can choose C

2

arbitrarily close to 1.
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The function T (x) measures the regularity of growth of Q(x). In partic-

ular, (1.4) forces Q to be of faster than polynomial growth at1. The reader

is cautioned that in other papers on Erd}os weights [14], [17] the function

T

1

(x) := 1 +

xQ

00

(x)

Q

0

(x)

was used (and denoted by T ), but it has essentially the same rate of growth

as T , for \nice" weights.

We need the condition that xQ

0

(x) be strictly increasing to guarantee the

existence of the Mhaskar-Rakhmanov-Sa� number a

u

, the positive root of the

equation

u =

2

�

1

Z

0

a

u

tQ

0

(a

u

t)

dt

p

1� t

2

; u > 0: (1.7)

If we used something other than a

u

, we could require less of xQ

0

(x), namely

that it be quasi-increasing for large x. However this would complicate for-

mulations, so is omitted. For those to whom a

u

is new, its signi�cance lies

partly in the identity [18], [19], [20]

kPWk

L

1

(R)

= kPWk

L

1

[�a

n

;a

n

]

; P 2 P

n

; (1.8)

and that a

n

is the \smallest" such number.

Our modulus of continuity involves two parts, a \main part" and a \tail".

The \main part" involves rth symmetric di�erences over a suitable interval,

and the tail involves an error of weighted polynomial approximation over the

remainder of the real line. The size of this \suitable interval" is determined

by the decreasing function of t,

�(t) := inf

�

a

u

:

a

u

u

� t

�

; t > 0: (1.9)

Thus � is essentially the inverse function of the function u !

a

u

u

, which

decays to 0 as u!1.

For h > 0, an interval J , and r � 1, we de�ne the rth symmetric di�erence

4

r

h

(f; x; J) :=

r

X

i=0

 

r

i

!

(�1)

i

f

 

x+

rh

2

� ih

!

; (1.10)
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provided all arguments of f lie in J , and 0 otherwise. Sometimes the incre-

ment h will depend on x, and on the function

�

t

(x) :=

v

u

u

t

�

�

�

�

�

1�

jxj

�(t)

�

�

�

�

�

+ T (�(t))

�1=2

; x 2 R: (1.11)

This is the case in our modulus of continuity

!

r;p

(f;W; t) : = sup

0<h�t

kW4

r

h�

t

(x)

(f; x; R)k

L

p

(jxj��(2t))

+ inf

P2P

r�1

k(f � P )Wk

L

p

(jxj��(4t))

: (1.12a)

and its averaged `cousin'

!

r;p

(f;W; t) : =

0

@

1

t

t

Z

0

kW4

r

h�

t

(x)

(f; x; R)k

p

L

p

(jxj��(2t))

dh

1

A

1

p

+ inf

P2P

r�1

k(f � P )Wk

L

p

(jxj��(4t))

: (1.12b)

If p =1, we set :

!

r;p

(f;W; ; ) = !

r;p

(f;W; ; ) :

Observe that

!

r;p

(f;W; t) � !

r;p

(f;W; t)

for every �xed t 2 R.

The inf in the tail is at �rst disconcerting, but note that it is over polyno-

mials of degree at most r � 1, not n. Its presence ensures that for f 2 P

r�1

,

!

r;p

(f;W; t) � 0. The modulus of continuity is rather di�cult to assimilate

(as is the case with all its cousins [6], [7] for weighted approximation on R).

A good way to view the function �(t), is that for purposes of approximation

by polynomials of degree at most n, essentially t =

a

n

n

, the main part of

the modulus is taken over the range [�a

n

2

; a

n

2

], and the tail is taken over

Rn[�a

n=2

; a

n=2

]. Moreover, the function �

t

(x) describes the improvement in

the degree of approximation near �a

n=2

, in much the same way that

p

1� x

2

does for weights on [�1; 1].
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It is possible to replace �(2t) by the somewhat larger term �(t) � At

and �(4t) by the somewhat smaller term �(t) � Bt for suitable A;B in our

modulus, under additional conditions on Q. However, it hardly seems worth

the e�ort, as the resulting modulus is almost certainly equivalent to the above

one. As evidence of this, we note that in [3], the �rst author proves that the

above modulus is equivalent to a natural K-functional/realization functional.

Following is our main Jackson theorem:

Theorem 1.2 Let W := e

�Q

2 E

1

. Let r � 1 and 0 < p � 1. Then

for f : R ! R for which fW 2 L

p

(R), (and for p = 1, we require f to be

continuous, and fW to vanish at �1, we have for n � C

3

,

E

n

[f ]

W;p

� C

1

!

r;p

�

f;W;C

2

a

n

n

�

� C

1

!

r;p

�

f;W;C

2

a

n

n

�

(1.13)

where C

j

; j = 1; 2; 3, do not depend on f or n.

Remark.

We remark that it is possible using the methods of [6] and [3] to prove

Theorem 1:2 for n � r � 1.

Unfortunately, the modulus !

r;p

(f;W; t) is not obviously monotone in-

creasing in t. So we also present a result involving the increasing modulus

!

�

r;p

(f;W; t) : = sup

0<h�t

0<��L

kW4

r

�h�

h

(x)

(f; x; R)k

L

p

(jxj��(2h))

+ inf

P2P

r�1

k(f � P )Wk

L

p

(jxj��(4t))

: (1.14)

Here L is a �xed (large enough) number independent of f; t.

Theorem 1.3 Under the hypotheses of Theorem 1.2,

E

n

[f ]

W;p

� C

3

!

�

r;p

�

f;W;C

4

a

n

n

�

; (1.15)

where C

j

; j = 3; 4 do not depend on f or n.

It seems likely that one should only really need � = L in the de�nition of

!

�

r;p

, but we have only been able to prove this under additional conditions,

see Section 7.
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The modulus of continuity is analyzed in [3], and in particular the re-

lationship to K-functionals/realization functionals, is discussed. These have

the consequence, that at least for p � 1, we can dispense with the constant

C

2

inside the modulus !

r;p

in (1.13) or (1.15). For p < 1, this requires extra

hypotheses on W .

The paper is organized as follows: In Section 2, we present some techni-

cal details related to Q, a

u

, and so on. In Section 3, we present estimates

involving �(t) and �

t

. In Section 4, we obtain polynomial approximations to

W

�1

over suitable intervals, and then in Section 5, we present our crucial ap-

proximations to characteristic functions. We prove Theorem 1.2 in Section 6

and Theorem in Section 1.3 in Section 7. Moreover, we discuss simpli�cation

of the modulus !

�

r;p

in Section 7.

We close this section with a little more notation. Throughout, C;C

1

; C

2

; : : :

denote positive constants independent of n, x and P 2 P

n

. The same symbol

does not necessarily denote the same constant in di�erent occurrences. We

write C 6= C(L) to indicate that C is independent of L. The notation c

n

� d

n

means that C

1

� c

n

=d

n

� C

2

for the relevant range of n. Similar notation is

used for functions and sequences of functions. In the sequel, we assume that

W = e

�Q

2 E

1

.

2 Technical Lemmas

Lemma 2.1

(a) For some C

j

; j = 1; 2; 3; and s � r � C

3

,

�

s

r

�

C

2

T (r)

�

Q(s)

Q(r)

�

�

s

r

�

C

1

T (s)

: (2.1)

Moreover,

�

s

r

�

C

2

T (r)

T (s)

T (r)

�

sQ

0

(s)

rQ

0

(r)

�

T (s)

T (r)

�

s

r

�

C

1

T (s)

: (2.2)

(b) Given � > 0, there exists C such that

T (y) � T

 

y

�

1�

�

T (y)

�

!

; y � C: (2.3)
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(c) Given A � 0, the functions Q

0

(u)u

�A

and Q(u)u

�A

are quasi-increasing

for large enough u.

Proof

(a) Firstly, (2.1) follows from the identity

log

Q(s)

Q(r)

=

s

Z

r

T (t)

t

dt

and the fact that T is quasi-increasing. Then the de�nition (1.3) of T

gives (2.2).

(b) We can reformulate (1.5) as

T (y)

T (x)

� C

1

 

Q(y)

Q(x)

!

C

2

�1

:

Hence for x = y(1�

�

T (y)

), the quasi-increasing nature of T gives

C

4

�

T (y)

T (x)

� C

1

exp

0

@

(C

2

� 1)

y

Z

x

T (t)

t

dt

1

A

� C

1

exp

�

C

5

T (y) log

y

x

�

� C

6

:

Recall here that T (y) is large for large y.

(c) From (2.2) if s � r � C,

Q

0

(s)s

�A

Q

0

(r)r

�A

�

T (s)

T (r)

�

s

r

�

C

2

T (r)�1�A

� C

7

:

Here we have used the quasi-monotonicity of T , and also that if C is

large enough, then C

2

T (r)� 1� A � 0. Similarly for Q(s)s

�A

. 2

Next, some properties of a

u

:

Lemma 2.2
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(a) a

u

is uniquely de�ned and continuous for u 2 (0;1), and is a strictly

increasing function of u.

(b) For u � C,

a

u

Q

0

(a

u

) � uT (a

u

)

1=2

; (2.4)

Q(a

u

) � uT (a

u

)

�1=2

: (2.5)

(c) Given �xed � > 0, we have for large u,

T (a

�u

) � T (a

u

): (2.6)

(d) Given �xed � > 1,

a

�u

a

u

� 1 �

1

T (a

u

)

: (2.7)

(e) If C

2

is as in (1.5),

T (a

u

) � C

6

u

2

�

C

2

�1

C

2

+1

�

= C

6

u

2(1��)

(2.8)

with � > 0.

(f) If � > 1, then for large enough u,

Q(a

�u

)

Q(a

u

)

� C

7

> 1: (2.9)

(g) For some C

8

; C

9

; C

10

; C

11

; C

12

, u � C

8

, and L � 1;

exp

 

C

11

log(C

12

L)

T (a

u

)

!

�

a

Lu

a

u

� 1 + C

9

log(C

10

L)

T (a

Lu

)

: (2.10)

Proof

(a) The function u! a

u

is the inverse of the strictly increasing continuous

function

a!

2

�

1

Z

0

atQ

0

(at)

dt

p

1� t

2

dt; a 2 (0;1);

which has right limit 0 at 0 and limit1 at1. (Note that this function

is continuous even if Q

0

is not). So the assertion follows.
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(b) For u so large that T (a

u

) > 2, we have

u

a

u

Q

0

(a

u

)

=

2

�

2

6

4

1�1=T (a

u

)

Z

0

+

1

Z

1�1=T (a

u

)

3

7

5

a

u

tQ

0

(a

u

t)

a

u

Q

0

(a

u

)

dt

p

1� t

2

�

2

�

T (a

u

)

1=2

1�1=T (a

u

)

Z

0

a

u

Q

0

(a

u

t)

a

u

Q

0

(a

u

)

dt+

2

�

1

Z

1�1=T (a

u

)

dt

p

1� t

2

�

2

�

T (a

u

)

1=2

Q(a

u

)�Q(0)

a

u

Q

0

(a

u

)

+

4

�

T (a

u

)

�1=2

�

4

�

T (a

u

)

1=2

Q(a

u

)

a

u

Q

0

(a

u

)

+

4

�

T (a

u

)

�1=2

=

8

�

T (a

u

)

�1=2

:

Here we also need u so large that Q(a

u

) � jQ(0)j. So we have

a

u

Q

0

(a

u

) �

�

8

uT (a

u

)

1=2

:

In the other direction, (2.2) gives for large u,

u

a

u

Q

0

(a

u

)

=

2

�

1

Z

0

a

u

tQ

0

(a

u

t)

a

u

Q

0

(a

u

)

dt

p

1� t

2

� C

1

1

Z

1=2

T (a

u

t)

T (a

u

)

t

C

1

T (a

u

)

dt

p

1� t

2

� C

2

T

�

a

u

�

1�

1

T (a

u

)

��

T (a

u

)

 

1�

1

T (a

u

)

!

C

1

T (a

u

)

�

�

1

Z

1�1=T (a

u

)

dt

p

1� t

2

� C

3

T (a

u

)

�1=2

:

Here we have used (2.3) and the quasi-monotonicity of T . So we have

(2.4). Then (2.5) follows from the de�nition of T .
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(c) We can assume � > 1. Then by (2.5), and quasi-monotonicity of T ,

C

1

�

T (a

�u

)

T (a

u

)

�

"

�u

Q(a

�u

)

#

2

.

"

u

Q(a

u

)

#

2

� �

2

:

(d) Now

�u =

2

�

1

Z

0

a

�u

tQ

0

(a

�u

t)

dt

p

1� t

2

�

2

�

1

Z

a

u

=a

�u

a

u

Q

0

(a

u

)

dt

p

1� t

2

� C

2

uT (a

u

)

1=2

�

1�

a

u

a

�u

�

1=2

by (2.4). Hence

1�

a

u

a

�u

� C

3

=T (a

u

):

In the other direction,

�u =

2

�

2

6

4

a

u

=a

�u

Z

0

+

1

Z

a

u

=a

�u

3

7

5

a

�u

tQ

0

(a

�u

t)

dt

p

1� t

2

�

2

�

a

u

=a

�u

Z

0

a

�u

tQ

0

(a

�u

t)

dt

r

1�

�

a

�u

t

a

u

�

2

+

2

�

a

�u

Q

0

(a

�u

)

1

Z

a

u

=a

�u

dt

p

1� t

�

a

u

a

�u

2

4

2

�

1

Z

0

a

u

sQ

0

(a

u

s)

ds

p

1� s

2

3

5

+

4

�

a

�u

Q

0

(a

�u

)

�

1�

a

u

a

�u

�

1=2

� u+ CuT (a

u

)

1=2

�

1�

a

u

a

�u

�

1=2

by (2.4) and (2.6). Then

1�

a

u

a

�u

�

�

�� 1

C

�

2

1

T (a

u

)

:
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(e) We apply (1.5) with y = a

u

and x = C

3

, so that

a

u

Q

0

(a

u

) � C

4

Q(a

u

)

C

2

) uT (a

u

)

1=2

� C

5

(uT (a

u

)

�1=2

)

C

2

:

Rearranging this gives (2.8).

(f) For large enough u,

Q(a

�u

)

Q(a

u

)

= exp

0

@

a

�u

Z

a

u

T (t)

t

dt

1

A

� exp

�

C

6

T (a

u

) log

�

a

�u

a

u

��

� exp(C

7

) > 1;

by (d) of this lemma.

(g) From (1.5) with y = a

Lu

and x = a

u

,

T (a

Lu

)

T (a

u

)

� C

 

Q(a

Lu

)

Q(a

u

)

!

C

2

�1

:

This forces C

2

> 1, as the left-hand side !1 as L !1. Then with

the constants in � independent of L, (2.5) gives

Q(a

Lu

)

Q(a

u

)

�

LuT (a

Lu

)

�1=2

uT (a

u

)

�1=2

� CL

 

Q(a

Lu

)

Q(a

u

)

!

�(C

2

�1)=2

)

Q(a

Lu

)

Q(a

u

)

� CL

2

1+C

2

:

Then using (2.1),

�

a

Lu

a

u

�

C

1

T (a

Lu

)

� CL

2

1+C

2

:

We deduce the right-hand inequality in (2.10) from this last inequality

and the inequality log t � t� 1; t � 1. In the other direction, (2.1) and

12



then (2.5) give

a

Lu

a

u

�

 

Q(a

Lu

)

Q(a

u

)

!

1=(C

2

T (a

u

))

�

 

C

1

LuT (a

Lu

)

�1=2

uT (a

u

)

�1=2

!

1=(C

2

T (a

u

))

� (C

3

L)

1=(C

2

T (a

u

))

:

Here the constants are independent of L and u. Then the left inequality

in (2.10) follows. 2

We �nish this section with an in�nite �nite-range inequality: We provide

a proof as those in the literature [18], [20], [13], ...don't quite match our

needs/hypotheses:

Lemma 2.3 Let 0 < p � 1, s > 1. Then for some L; C

1

; C

2

> 0,

n � 1, and P 2 P

n

,

kPWk

L

p

(R)

� C

1

kPWk

L

p

(�a

sn

;a

sn

)

: (2.11)

Moreover,

kPWk

L

p

(jxj�a

sn

)

� C

1

e

�C

2

nT (a

n

)

�1=2

kPWk

L

p

(�a

sn

;a

sn

)

: (2.12)

Remark Note that (2.8) of Lemma 2.2(e) shows that for some C

3

> 0,

and large enough n;

nT (a

n

)

�1=2

� n

C

3

:

Proof We may change Q in a �nite interval without a�ecting (2.11),

(2.12) apart from increasing the constants. Note too that the a�ect on a

u

is marginal, and is absorbed into the fact that s > 1. Thus we may assume

that Q

0

is continuous in [�1; 1]. This and the strict monotonicity of tQ

0

(t)

in (0;1), allow us to apply existing sup-norm inequalities to deduce that for

P 2 P

n

,

kPWk

L

1

(R)

� CkPWk

L

1

[�a

sn

;a

sn

]

:

13



For a precise reference, see [25] and [9,Thm.4.5]. Moreover, the proof of

Lemma 5.1 in [13,pp.231-232] gives without change for p <1

jPW j

p

(a

n

x) �

1

�

2x

x� 1

1

Z

�1

jPW j

p

(a

n

t)dt; x > 1: (2.13)

Let hxi denote the greatest integer � x. Let � be small and positive, let

l := h�ni and let T

l

(x) denote the Chebyshev polynomial of degree l. Using

the identity

T

l

(x) =

1

2

h

(x +

p

x

2

� 1)

l

+ (x�

p

x

2

� 1)

l

i

; x > 1; (2.14)

it is not di�cult to see that

T

l

(x) �

(

1

2

exp

�

l

p

2

p

x� 1

�

; x 2

�

1;

9

8

�

1

2

x

l

; x � 1

)

: (2.15)

We now let m := n+ l = n+ h�ni, m

0

:= n+2l = n+2h�ni and apply (2.13)

to P (x)T

l

(x=a

m

) 2 P

m

. We obtain for x > 1,

jPW j

p

(a

m

x) � T

l

(x)

�p

1

�

2x

x� 1

1

Z

�1

jPW j

p

(a

m

t)dt:

Replacing a

m

x by y, and integrating from a

m

0

gives

1

Z

a

m

0

jPW j

p

(y)dy �

0

@

a

m

Z

�a

m

jPW j

p

(s)ds

1

A

0

B

@

2

�

1

Z

a

m

0

y

y � a

m

T

l

�

y

a

m

�

�p

dy

a

m

1

C

A

:

Here using (2.15),

1

Z

a

m

0

y

y � a

m

T

l

�

y

a

m

�

�p

dy

a

m

=

1

Z

a

m

0

=a

m

x

x� 1

T

l

(x)

�p

dx

� C

0

B

@

9=8

Z

a

m

0

=a

m

1

x� 1

exp

 

�

lp

p

2

p

x� 1

!

dx+

1

Z

9=8

x

�lp

dx

1

C

A

� C

1

 

log

 

8

a

m

0

a

m

� 1

!

exp

 

�C

2

l

�

a

m

0

a

m

� 1

�

1=2

!

+

�

9

8

�

�lp

!

� C

3

exp

�

�C

4

nT (a

n

)

�1=2

�

:

14



Here we have used (2.7) and our choice of l. Now if � is small enough,

m

0

� sn. Then (2.12) follows easily, and in turn yields (2.11). The proof for

p =1 is similar but easier. 2

3 Technical lemmas on �

t

In this section, we present various estimates involving the functions � and

�

t

. Throughout, we assume that W = e

�Q

2 E

1

. Recall that

�(t) := inf

�

a

u

:

a

u

u

� t

�

; t > 0;

�

t

(x) =

v

u

u

t

�

�

�

�

�

1�

jxj

�(t)

�

�

�

�

�

+ T (�(t))

�1=2

; x > 0:

Lemma 3.1

(a) There exists s

0

; v

0

such that for s 2 (0; s

0

), we can write s =

a

v

v

, where

v � v

0

. Moreover, we can write

�(s) = �

�

a

v

v

�

= a

�(v)

(3.1)

where

1 � �

�

a

v

v

�

.

a

v

= a

�(v)

/a

v

� 1� C/T (a

v

): (3.2)

In particular,

lim

v!1

�(v)

v

= 1: (3.3)

(b) There exist C

1

, C

2

> 0 such that for

s

2

� t � s, and s � C

1

,

1 �

�(t)

�(s)

� 1 +

C

2

T (�(t))

: (3.4)

(c) There exist C

1

; C

2

independent of s; t; x, such that for 0 < t < s � C

1

,

�

s

(x) � C

2

�

t

(x); jxj � �(s): (3.5)
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(d) There exists C

1

, such that for 0 < s � C

1

, and

s

2

� t � s,

�

s

(x) � �

t

(x); x 2 R: (3.6)

(e) Uniformly for x 2 R, and n � 1,

�

a

n

n

(x) �

v

u

u

t

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

�

+ T (a

n

)

�1=2

: (3.7)

Proof

(a) The existence of v for the given s, follows from the fact that u! a

u

is

continuous and

a

u

u

! 0; u!1:

The latter in turn follows from the faster than polynomial growth of Q

and (2.5), which implies Q(a

u

) = o(u). The continuity of a

u

allows us

to write �(s) = a

�(v)

, some �(v). Since

�(s) = �

�

a

v

v

�

� a

v

the left inequality in (3.2) follows. For the other direction, we note that

by de�nition of �

�

a

v

v

�

and �(v), we have �(v) � v and

a

�(v)

�(v)

�

a

v

v

so

1 �

v

�(v)

�

a

v

a

�(v)

�

 

Q(a

v

)

Q(a

�(v)

)

!

1=2

for large enough v, by (2.1). Using (2.5), we obtain

1 �

v

�(v)

� C

 

vT (a

v

)

�1=2

�(v)T (a

�(v)

)

�1=2

!

1=2

� C

1

 

v

�(v)

!

1=2

:

It follows that v � C

2

�(v) and so v � �(v). Then

1 �

v

�(v)

�

a

v

a

�(v)

! 1; v !1;

by (2.7), so we have (3.3). Then (2.7) also gives the right inequality in

(3.2).
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(b) Write s =

a

u

u

and t =

a

v

v

. Then as � is decreasing,

1 �

�(s)

�(t)

=

a

�(u)

a

�(v)

If we can show that

u � v (3.8)

which in turn implies that

�(u) � �(v);

then (2.7) gives

1 �

�(s)

�(t)

� 1�

C

T (a

v

)

which together with (2.6) gives the result. We proceed to establish

(3.8). Suppose that it is not true, say, for example, we can have

u

v

!1:

For the corresponding s, t, our hypothesis is

1

2

�

t

s

=

a

v

a

u

u

v

� 1:

Then

a

v

a

u

! 0 (3.9)

and (2.1) gives

Q(a

u

)

Q(a

v

)

�

�

a

u

a

v

�

C

2

T (a

v

)

�

�

a

u

a

v

�

2

;

for large u, v. But from (2.5),

�

a

u

a

v

�

2

�

Q(a

u

)

Q(a

v

)

�

uT (a

u

)

�1=2

vT (a

v

)

�1=2

� C

u

v

� C

a

u

a

v

;

again by our hypotheses on s; t. This contradicts (3.9). So we have

(3.8) and the result.
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(c) Let � > 0 be �xed. Firstly for 1� jxj=�(s) � �=T (�(s)),

�

s

(x) �

v

u

u

t

1�

jxj

�(s)

�

v

u

u

t

1�

jxj

�(t)

� �

t

(x):

Next, for j1� jxj=�(s)j � �=T (�(s)),

�

s

(x) � T (�(s))

�1=2

:

This is bounded by C�

t

(x) if j1�jxj=�(t)j � �=T (�(s)), for a �xed � >

0. Otherwise, we have j1� jxj=�(s)j � �=T (�(s)) and j1� jxj=�(t)j �

�=T (�(s)), so

�

�

�

�

�

1�

�(t)

�(s)

�

�

�

�

�

=

�

�

�

�

�

 

1�

jxj

�(s)

!

�

jxj

�(s)

 

�(t)

jxj

� 1

!

�

�

�

�

�

� C

1

�=T (�(s)):

If � is small enough, we deduce from (2.7) and (2.6) that

T (�(t)) � T (�(s))

and again (3.5) follows.

(d) Write s =

a

u

u

and t =

a

v

v

. Then we have (3.8), so

�

�

�

�

�

1�

jxj

�(t)

�

�

�

�

�

=

�

�

�

�

�

1�

jxj

�(s)

+

"

jxj

�(s)

� 1 + 1

# 

1�

�(s)

�(t)

!

�

�

�

�

�

�

�

�

�

�

�

1�

jxj

�(s)

�

�

�

�

�

"

1 +O

 

1

T (�(s))

!#

+O

 

1

T (�(s))

!

:

Then we obtain for x 2 R,

�

�

�

�

�

1�

jxj

�(t)

�

�

�

�

�

1=2

� C�

s

(x):

Also T (�(t)) � T (�(s)), so

�

t

(x) � C�

s

(x):

The converse inequality follows similarly.
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(e) By (a), we can write

�

�

a

n

n

�

= a

�(n)

= a

n(1+o(1))

:

Recall that

�

a

n

n

(x) =

v

u

u

u

t

�

�

�

�

�

�

1�

jxj

�

�

a

n

n

�

�

�

�

�

�

�

+ T

�

�

�

a

n

n

��

�1=2

:

Here by (2.6) and (a) of this lemma,

T

�

�

�

a

n

n

��

� T (a

n

)

and much as in (d),

�

�

�

�

�

�

1�

jxj

�

�

a

n

n

�

�

�

�

�

�

�

�

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

�

for large n and jxj � a

n=2

or jxj � a

2n

. In the range a

n=2

� jxj � a

2n

,

both the left and right-hand side of (3.7) are � T (a

n

)

�1=2

. 2

Lemma 3.2

(a) Let L > 0. Uniformly for u � 1, and jxj, jyj � a

u

, such that

jx� yj � L

a

u

u

v

u

u

t

�

�

�

�

�

1�

jyj

a

u

�

�

�

�

�

; (3.10)

we have

W (x) � W (y) (3.11)

and

1�

jxj

a

2u

� 1�

jyj

a

2u

: (3.12)

(b) Let L;M > 0. For t 2 (0; t

0

), jxj, jyj � �(Mt) such that

jx� yj � Lt�

t

(x); (3.13)

we have (3.11) and

�

t

(x) � �

t

(y): (3.14)
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Proof

(a) It su�ces to prove (3.11), (3.12) for large u. Moreover, (3.11) and

(3.12) are immediate for jxj � C, and large u. Let us suppose that

C � x � y � x + L

a

u

u

r

�

�

�1�

jyj

a

u

�

�

�. Then as Q

0

(s) is quasi-increasing for

large s,

0 � Q(y)�Q(x) � C

1

Q

0

(y)(y � x):

We have then (3.11) for

y � x = O

 

1

Q

0

(y)

!

: (3.15)

We shall show that

a

u

Q

0

(y)

s

�

�

�

�

1�

y

a

u

�

�

�

�

� C

2

u; (3.16)

so that (3.10) implies (3.15) and hence (3.11). If �rstly, 0 < y �

a

u

2

,

then

a

u

Q

0

(y)

s

�

�

�

�

1�

y

a

u

�

�

�

�

� C

3

a

u

Q

0

(y)

1

Z

1=2

dt

p

1� t

2

� C

4

1

Z

1=2

a

u

tQ

0

(a

u

t)

dt

p

1� t

2

� C

5

u:

If on the other hand,

a

u

2

� y � a

u

,

a

u

Q

0

(y)

s

�

�

�

�

1�

y

a

u

�

�

�

�

� C

6

1

Z

y=a

u

a

u

tQ

0

(a

u

t)

dt

p

1� t

2

� C

7

u:

So we have (3.16) in all cases. Next from (3.10) and as y � a

u

,

1 �

1�

x

a

2u

1�

y

a

2u

= 1 +

y � x

a

2u

�

1�

y

a

2u

�

= 1 +O

0

@

1

u

q

1�

y

a

2u

1

A

= 1 +O

0

@

1

u

q

1�

a

u

a

2u

1

A

= 1 +O

 

T (a

u

)

1=2

u

!

= 1 + o(1);

by (2.7) and (2.8).
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(b) WriteMt =

a

u

u

, so that jxj, jyj � �(Mt) � a

u

, and we can recast (3.13)

as

jx� yj � C

1

a

u

u

2

4

s

1�

jxj

a

u

+ T (a

u

)

�1=2

3

5

� C

2

a

2u

2u

s

1�

jxj

a

2u

by (2.7), (3.6) and (3.7). Then (a) gives (3.11), and (3.14) follows easily

from (3.12). 2

4 Polynomial Approximation of W

�1

The result of this section is:

Theorem 4.1 For n � 1, there exist polynomials G

n

of degree at most

Cn, such that

0 � G

n

(x) � W

�1

(x); x 2 R; (4.1)

and

G

n

(x) � W

�1

(x); jxj � a

n

: (4.2)

We remark that this does not follow from existing results in the literature

on approximation by weighted polynomials of the form P

n

(x)W (a

n

x) [14],

[26] as our weights do not satisfy their hypotheses. The methods of Totik

[26] can be applied to give sharper results but we base our proof on:

Lemma 4.2 There exists an even entire function

G(x) =

1

X

j=0

g

j

x

2j

; g

j

� 0 8j; (4.3)

such that

G(x) � W

�1

(x); x 2 R: (4.4)

Proof Set

Q

1

(r) := Q

�

p

r

�

;
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and

 (r) := rQ

0

1

(r) =

1

2

p

r Q

0

�

p

r

�

:

Then  is increasing in (0;1), and if � > 1, r � r

0

, the quasi-increasing

nature of Q

0

gives for some C 6= C(�),

 (�r)�  (r) �

1

2

p

r Q

0

�

p

r

� �

p

�C � 1

�

� 1

if � is large enough. Moreover, �(r) := e

Q

1

(r)

admits the representation

�(r) = �(1) exp

0

@

r

Z

1

 (s)

s

ds

1

A

; r � 1:

By a theorem of Clunie and K�ovari [2,Thm4,p.19], there exists entire

G

1

(r) =

1

X

j=0

g

j

r

j

; g

j

� 0 8 j

such that

G

1

(r) � �(r) := exp

�

Q

�

p

r

�

=

�

; r � r

0

:

Then assuming g

0

> 0 as we can, we see that

G(r) := G

1

(r

2

)

satis�es (4.4). 2

In the analogous construction for Freud weights, the second author and

Z. Ditzian used as the polynomials G

n

the partial sums of G. However in

the Erd}os case, for partials sums of degree O(n), we only have

G

n

(x) � W

�1

(x)

for jxj � q

n

, where q

n

is Freud's quantity, the root of the equation

n = q

n

Q

0

(q

n

):

Although a

n

=q

n

! 1; n ! 1 for Erd}os weights, in e�ect, q

n

is signi�-

cantly smaller than a

n

. (We cannot properly describe, using only q

n

, the
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improvement in the degree of approximation near �a

n

). So we use a more

sophisticated interpolant:

Proof of Theorem 4.1 Let J be a positive even integer (to be chosen

large enough later) and let T

n

(x) denote the classical Chebyshev polynomial

on [�1; 1]. Let G

n

denote the Lagrange interpolant to G at the zeros of

T

n

(x=a

n

)

J

so that G

n

has degree at most Jn � 1, and admits the error

representation

(G�G

n

)(x) =

1

2�i

Z

�

G(t)

t� x

 

T

n

(x=a

n

)

T

n

(t=a

n

)

!

J

dt

for x inside �. We shall choose � to be the ellipse with foci at �a

n

, intersect-

ing the real and imaginary axes at

a

n

2

(�+ �

�1

) and

a

n

2

(�� �

�1

) respectively.

Here we shall choose for some �xed small " > 0,

� := 1 +

 

"

T (a

n

)

!

1=2

:

Since G has non-negative Maclaurin series coe�cients, and satis�es (4.4), we

deduce that

�

n

:= kG

n

=G� 1k

L

1

[�a

n

;a

n

]

� C

1

W

�1

�

a

n

2

(� + �

�1

)

�

(�� 1)

2

1

min

t2�

jT

n

(t=a

n

)j

J

:

Now for t 2 �, we can write t =

a

n

2

(z + z

�1

) where jzj = �, so that

jT

n

(t=a

n

)j =

�

�

�

�

T

n

�

1

2

(z + z

�1

)

�

�

�

�

�

=

�

�

�

�

1

2

(z

n

+ z

�n

)

�

�

�

�

�

1

2

(�

n

� �

�n

) � exp (C

2

nT (a

n

)

�1=2

):

(Recall that nT (a

n

)

�1=2

! 1 as n ! 1 and in fact grows faster than a

power of n). It is important here that C

2

is independent of J . Next

a

n

2

(� + �

�1

) � a

n

 

1 + C

3

"

T (a

n

)

!

� a

2n
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if " is small enough, and n is large enough, by (2.7). Then

W

�1

�

a

n

2

(� + �

�1

)

�

� exp (C

4

Q(a

2n

)) � exp

�

C

5

nT (a

n

)

�1=2

�

where again it is important that C

5

is independent of J . Since (� � 1)

�2

�

T (a

n

) grows no faster than a power of n, we see that choosing J large enough,

gives

�

n

! 0; n!1:

Then (4.4) gives (4.2).

We now turn to proving (4.1). It su�ces to prove

0 � G

n

� CW

�1

for then (4.1) follows on multiplying G

n

by a suitable constant. Firstly,

we can assume n is even (for odd n, we can use G

n+1

) so that H

n

(x) :=

G

n

(

p

x) is a polynomial of degree at most

Jn

2

� 1 (recall T

n

and J are

even) that interpolates to the entire function H(x) := G (

p

x) at the

Jn

2

zeros of T

n

�

p

t

a

n

�

J

that lie in (0; a

2

n

). Thus H

n

(x) is determined entirely by

interpolation conditions. Let 


n

denote the leading coe�cient of T

n

�

x=

p

a

n

�

.

Then the usual derivative-error formula for Hermite interpolation gives for

x 2 (0;1) and some � = �(x) 2 (0;1),

(H �H

n

)(x) = 


�J

n

T

n

 

p

x

a

n

!

J

H

(

Jn

2

)

(�)

�

Jn

2

�

!

� 0:

(Recall that H is entire and has non-negative Maclaurin series coe�cients).

So in R

G

n

� G � CW

�1

:

To show that G

n

� 0 in R, we note that it is true in [�a

n

; a

n

] and we

must establish it elsewhere. We use an idea employed in the Posse-Markov-

Stieltjes inequalities [8,p.30,Lemma 5.3] (There the proof is for (�1;1), but

the proof goes through for (0;1) with trivial changes). Now H is absolutely

monotone in (0;1) and H �H

n

has

Jn

2

zeros in (0; a

2

n

]. If m is the number

of zeros of H

n

(x) in [a

2

n

;1), Lemma 5.3 in [8,p.30] gives

Jn

2

+m � deg(H

n

) + 1 �

Jn

2

:
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So m = 0, that is H

n

has no zeros in (a

2

n

;1). Thus H

n

� 0 there, so G

n

� 0

in R. 2

5 Polynomials approximating characteristic func-

tions

Our Jackson theorem is based on polynomial approximations to the charac-

teristic function �

[a;b]

of an interval [a; b]. We believe the following result is

of independent interest:

Theorem 5.1 Let l be a positive integer. There exist J; C

1

; n

0

such

that for n � n

0

and � 2 [�a

n

; a

n

], there exist polynomials R

n;�

of degree at

most 2lJn such that for x 2 R,

�

�

��

[�;a

n

]

� R

n;�

�

�

� (x)W (x)=W (�) � C

1

0

@

1 +

njx� � j

a

n

q

1�

j� j

a

2n

1

A

�l

: (5.1)

We emphasize that the constants J; C

1

; n

0

are independent of n; �; x.

Remark. The method of proof of Theorem 5.1 in the unweighted case

goes back to an old paper of Brudnyi [1]. We also make heavy use of poly-

nomials from [12] built on the Chebyshev polynomials.

Lemma 5.2 There exist C

1

, B, n

1

such that for n � n

1

and j�j � cos

�

2n

,

there exists a polynomial V

n;�

of degree at most n� 1 with

kV

n;�

k

L

1

[�1;1]

= V

n;�

(�) = 1; (5.2)

jV

n;�

(t)j �

B

q

1� j�j

njt� �j

; t 2 (�1; 1)nf�g: (5.3)

Moreover,

V

n;�

(t) �

1

2

; jt� �j � C

1

q

1� j�j

n

: (5.4)

The constants are independent of n; �; t.
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Proof The assertions (5.2), (5.3) are Proposition 13.1 in [12]. The

estimate (5.4) follows from the classical Bernstein inequality. 2

The polynomials R

n;�

are determined as follows: Let us suppose that,

say,

a

1

� � � a

n

:

Later on, we shall suppose that � exceeds a �xed positive constant. We de�ne

� :=

�

a

2lJn

(5.5)

and if G

n

are the polynomials of Theorem 4.1,

R

n;�

(x) :=

x

R

0

G

n

(s)V

n;�

�

s

a

2lJn

�

lJ

ds

�

�

R

0

G

n

(s)V

n;�

�

s

a

2lJn

�

lJ

ds

: (5.6)

The parameters �

�

> � and J are de�ned as follows: Let A 2 (0; 1] denote

the constant in the quasi-monotonicity of Q

0

, so that

Q

0

(y) � AQ

0

(x); y � x � 1: (5.7)

Let M denote a positive constant such that for say, u � u

0

,

Q

0

(x) � MQ

0

(a

u

); 1 � x � a

2u

: (5.8)

The existence of such an M follows from (2.4), (2.6). We set

H := H(n; �; l) :=

2l n

Aa

n

Q

0

(�)

p

1� �

(5.9)

and if � = a

r

,

�

�

:= �

�

(n; �) := min

�

a

2r

; a

n

; � + 2

a

n

n

q

1� �H logH

�

: (5.10)

The reason for this (complicated!) choice will become clearer later. We

assume that J � 4 is so large that G

n

has degree at most Jn� 1, and also

J � 16M=A (5.11)

where A, M are as above. We also assume that J is a multiple of 4. Note

that then R

n;�

has degree at most Jn+ lJn. We �rst record some estimates

of the terms in (5.6):

Lemma 5.3
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(a) For n � n

1

, and C

1

� � � a

n

, we have

W (�)

�

�

Z

0

G

n

(s)V

n;�

�

s

a

2lJn

�

lJ

ds � C

2

a

n

n

q

1� �; (5.12)

where C

2

6= C

2

(n; �).

(b) For x 2 (�; a

2lJn

),

a

2lJn

Z

x

V

n;�

�

s

a

2lJn

�

lJ

2

ds � C

1

a

n

n

q

1� �

 

1 +

njx� � j

a

n

p

1� �

!

�l

(5.13)

and for x 2 (�a

2lJn

; �),

x

Z

�a

2lJn

V

n;�

�

s

a

2lJn

�

lJ

2

ds � C

1

a

n

n

q

1� �

 

1 +

njx� � j

a

n

p

1� �

!

�l

: (5.14)

Here C

1

6= C

1

(n; �).

Proof

(a) Let us denote the left-hand side of (5.12) by �. By (4.2) and (5.4),

� � C

2

W (�)

�

Z

��C

3

a

n

n

p

1��

W

�1

(s)ds � C

4

a

n

n

q

1� �;

where we have used (3.11) of Lemma 3.2(a).

(b) These follow in a straightforward fashion from the estimates (5.2), (5.3)

and the fact that J � 4, so lJ=2 > l + 1. 2

Now we begin the proof of Theorem 5.1. We �rst show that it su�ces to

consider � in the range [S; a

n

], for some �xed S.

Proof of Theorem 5.1 for j� j � S, where S is �xed

Note �rst that since for such � ,

W (x)=W (�) � W (0)=W (S); x 2 R;
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we must only prove there exists R

n;�

of degree at most n such that

�

�

��

[�;a

n

]

� R

n;�

�

�

� (x) � C

1

0

@

1 +

njx� � j

a

n

q

1�

j� j

a

2n

1

A

�l

;

for jxj � a

2n

, and then our in�nite-�nite range inequality Lemma 2.3 gives

the rest. Setting here � := �=a

n

, and s := x=a

n

, and U

n;�

(s) := R

n;�

(x) =

R

n;�

(a

n

s), we see that it su�ces to show

�

�

��

[�;1]

(s)� U

n;�

(s)

�

�

� � C

2

(1 + njs� �j)

�l

; s 2 [�2; 2]:

We have used here that j�j �

1

2

, for large n. The existence of such polynomials

is classical. See for example [4]. One could also base them on the V

n;�

above.

2

It su�ces to consider � 2 [S; a

n

], where S is �xed

For, once this is done, we have the result for all � 2 [0; a

n

]. With the

result for � � 0, we set

R

n;��

(x) := 1�R

n;�

(�x); x 2 R:

It is not di�cult to check the result for �� from the corresponding result for

� , using the identity

�

[��;a

n

]

(x) = 1� �

(�;a

n

]

(�x); x 2 [a

�n

; a

n

]: 2

In the sequel, we de�ne R

n;�

by (5.5)-(5.10).

It su�ces to prove (5.1) for � 2 [S; a

n

] and jxj � a

2lJn

For then (5.1) for this restricted range implies

























0

B

@

1 +

2

4

n(x� �)

a

n

q

1�

�

a

2n

3

5

2

1

C

A

l

R

n;�

(x)

W (x)

W (�)

























L

1

[�a

2lJn

;a

2lJn

]

� C

3

n

C

4

where C

4

6= C

4

(n; �). Since the polynomial in the left-hand side has degree

at most 2l + Jn + lJn � �2lJn, some �xed � < 1, if l � 2 and n is large
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enough (as we can assume), then the in�nite-�nite range inequality Lemma

2.3 gives

























0

B

@

1 +

2

4

n(x� �)

a

n

q

1�

�

a

2n

3

5

2

1

C

A

l

R

n;�

(x)

W (x)

W (�)

























L

1

(jxj�a

2lJn

)

� C

5

exp(�n

C

6

):

Then (5.1) follows for jxj � a

2lJn

. 2

We can now begin the proof of (5.1) proper. We consider 5 di�erent

ranges of x: [0; �), [�; �

�

], (�

�

; a

n

], (a

n

; a

2lJn

], [�a

2lJn

; 0). Moreover, we set

�(x) :=

�

�

��

[�;a

n

]

� R

n;�

�

�

� (x)W (x)=W (�):

Proof of (5.1) for x 2 [0; �)

Here using (4.1), and then (5.12),

�(x) =

W (x)

x

R

0

G

n

(s)V

n;�

�

s

a

2lJn

�

lJ

ds

W (�)

�

�

R

0

G

n

(s)V

n;�

�

s

a

2lJn

�

lJ

ds

� C

W (x)

x

R

0

W

�1

(s)V

n;�

�

s

a

2lJn

�

lJ

ds

a

n

n

p

1� �

� C

x

R

0

V

n;�

�

s

a

2lJn

�

lJ

ds

a

n

n

p

1� �

by the monotonicity of W . Then (5.14) gives the result. 2

Proof of (5.1) for x 2 [�; �

�

]

Here

�(x) =

W (x)

�

�

R

x

G

n

(s)V

n;�

�

s

a

2lJn

�

lJ

ds

W (�)

�

�

R

0

G

n

(s)V

n;�

�

s

a

2lJn

�

lJ

ds

� C

�

�

R

x

exp (Q(s)�Q(x))V

n;�

�

s

a

2lJn

�

lJ

ds

a

n

n

p

1� �
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by (4.1) and (5.12). Now for s 2 (x; �

�

), the property (5.8) of Q

0

gives (recall

�

�

� a

2r

)

Q(s)�Q(x) �MQ

0

(a

r

)(s� x) �MQ

0

(�)(s� �):

Then using our bounds on V

n;�

in (5.2), (5.3), we have

�(x) � C

1

�

�

R

x

exp (MQ

0

(�)(s� �))min

�

1;

Ba

2lJn

p

1��

n(s��)

�

lJ

ds

a

2lJn

n

p

1� �

= C

1

B

n(�

�

��)

Ba

2lJn

p

1��

Z

n(x��)

Ba

2lJn

p

1��

exp

 

a

2lJn

a

n

2lMBu

AH

!

min

�

1;

1

u

�

lJ

du

� C

2

2

B

H logH

Z

n(x��)

Ba

2lJn

p

1��

g(u)min

�

1;

1

u

�

lJ=2

du

for say n � n

1

= n

1

(J; l) by (5.10), and where

g(u) := exp

 

4lMBu

AH

!

min

�

1;

1

u

�

lJ=2

:

We claim that if J is large enough,

g(u) � C

3

; u 2

�

0;

2

B

H logH

�

;

with C

3

independent of � , n. Firstly we claim that if l is large enough,

H � e; H � e

B=2

(5.15)

uniformly for � 2 [S; a

n

] and n � n

0

(J; l). First recall that B; J; A;M are

independent of l (see (5.3), (5.7), (5.8), (5.11)). Then also from (3.16) for

� 2 [S; a

n

]

a

n

Q

0

(�)

s

1�

�

a

2n

� Cn;
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with C 6= C(n; �; l). Then from (5.9),

H �

2l

AC

0

@

1�

�

a

2n

1�

�

a

2lJn

1

A

1=2

:

Here for n � n

0

(J; l), using 1� u � log

1

u

; u 2 (0; 1], we obtain

1�

�

a

2lJn

1�

�

a

2n

= 1 +

�

a

2n

1�

a

2n

a

2lJn

1�

�

a

2n

� 1 +

log

a

2lJn

a

2n

1�

a

n

a

2n

� 1 + C

1

log(lJ);

by (2.7) and the left inequality in (2.10). Thus for n � n

0

(J; l), uniformly

for � 2 [S; a

n

],

H �

C

2

l

p

log lJ

:

So (5.15) follows if we choose l large enough. Then

g(u) � exp

 

4lMB

Ae

!

; u 2 (0; 1]:

Next, by elementary calculus, g has at most one local extremum in [1;1), and

this is a minimum. Thus in any subinterval of [1;1), g attains its maximum

at the endpoints of that interval. In particular, we must only check that

g

�

2

B

H logH

�

is bounded. Note that by (5.15),

2

B

H logH � e > 1. So

g

�

2

B

H logH

�

= exp

 

l logH

�

8M

A

�

J

2

�

�

Jl

2

log

�

2

B

logH

�

!

� 1

as J � 16M=A (see (5.11)) and H � e

B=2

. So we have

�(x) � C

4

1

Z

n(x��)

Ba

2lJn

p

1��

min

�

1;

1

u

�

lJ=2

du

and then (5.1) follows as J � 4. 2
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Proof of (5.1) for x 2 (�

�

; a

n

]

Here

�(x) =

W (x)

x

R

�

�

G

n

(s)V

n;�

�

s

a

2lJn

�

lJ

ds

W (�)

�

�

R

0

G

n

(s)V

n;�

�

s

a

2lJn

�

lJ

ds

� C

1

x

R

�

�

exp (Q(s)�Q(x))V

n;�

�

s

a

2lJn

�

lJ

ds

a

n

n

p

1� �

� C

2

n

a

n

p

1� �

0

B

B

@

e

Q

(

�+x

2

)

�Q(x)

�+x

2

Z

�

�

V

n;�

�

s

a

2lJn

�

lJ

ds

+

x

Z

�+x

2

V

n;�

�

s

a

2lJn

�

lJ

ds

1

C

C

A

� C

3

(

e

Q

(

�+x

2

)

�Q(x)

"

1 +

n(�

�

� �)

a

n

p

1� �

#

�l

+

"

1 +

n(x� �)

a

n

p

1� �

#

�l

)

(5.16)

by (5.3) and (5.13). Here if �

�

>

�+x

2

, the �rst term in the last two lines can

be dropped and we already have the desired estimate. In the contrary case,

we must estimate the �rst term. We note that we can assume that �

�

< a

n

,

for otherwise the current range of x is empty. We consider two subcases

(recall the de�nition (5.10) of �

�

):

(I) �

�

= � + 2

a

n

n

p

1� �H logH

We shall show that

� :=

Q(x)�Q

�

�+x

2

�

l log

�

1 +

n(x��)

a

n

p

1��

�

� 1: (5.17)

Then the �rst part of the �rst term in the right-hand side of (5.16)

already gives the desired estimate; the second part of that �rst term
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can be bounded by 1. By quasi-monotonicity (5.7) of Q

0

,

Q(x)�Q

�

� + x

2

�

� AQ

0

(�)

�

x� �

2

�

:

Setting

u :=

n(x� �)

a

n

p

1� �

;

we have

� �

AQ

0

(�)

a

n

n

p

1� �u

2l log(1 + u)

=

u

H log(1 + u)

:

(Recall that H was de�ned at (5.9)). But

u �

n(�

�

� �)

a

n

p

1� �

= 2H logH:

Recall from (5.15) that H � e. Then since the function

u

log(1+u)

is

increasing for u � 2H logH � e, we obtain

� �

2H logH

H log(1 + 2H logH)

:

Using the inequality 1 + 2t log t � t

2

; t � 2, we have

� �

2 logH

log (H

2

)

= 1:

So we have (5.17) and the result.

(II) �

�

= a

2r

In this case, from (2.7),

�

�

� � = a

2r

� a

r

�

a

r

T (a

r

)

=

�

T (�)

:

Now if �

�

� x � �(1 +

1

T (�)

), then

x� � � �

�

� �
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and the second part of the �rst term in the right-hand side of (5.16)

already gives the desired estimate (the �rst part of the �rst term can

be estimated by 1). If x > �

�

1 +

1

T (�)

�

, then

x

�

x+�

2

�

� 1 +

1

2T (�) + 1

� 1 +

1

3T (�)

for large � , so from (2.1),

Q(x)

Q

�

x+�

2

�

�

 

1 +

1

3T (�)

!

C

2

T

(

x+�

2

)

� C

3

> 1:

(Recall that

x+�

2

> �). Then

e

Q

(

�+x

2

)

�Q(x)

"

1 +

n(�

�

� �)

a

n

p

1� �

#

�l

� e

�C

4

Q(x)

"

1 +

C

5

n�

a

n

T (�)

p

1� �

#

�l

:

This will admit the desired estimate, namely

C

6

"

1 +

n(x� �)

a

n

p

1� �

#

�l

provided

e

C

4

Q(x)=l

�

T (�)

� C

7

(x� �):

But

e

C

4

Q(x)=l

�

T (�)

� C

8

e

C

4

Q(x)=l

T (x)

� C

9

Q(x) � C

10

x > C

10

(x� �)

by (2.5), (2.8) and the faster than polynomial growth of Q, so we have

the desired estimate. 2

Proof of (5.1) for x 2 (a

n

; a

2lJn

]
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Here, much as in the previous range,

�(x) =

W (x)

x

R

0

G

n

(s)V

n;�

�

s

a

2lJn

�

lJ

ds

W (�)

�

�

R

0

G

n

(s)V

n;�

�

s

a

2lJn

�

lJ

ds

� C

2

n

a

n

p

1� �

0

B

B

@

e

Q

(

�+x

2

)

�Q(x)

�+x

2

Z

0

V

n;�

�

s

a

2lJn

�

lJ

ds

+

x

Z

�+x

2

V

n;�

�

s

a

2lJn

�

lJ

ds

1

C

C

A

� C

3

8

<

:

e

Q

(

�+x

2

)

�Q(x)

+

"

1 +

n(x� �)

a

n

p

1� �

#

�l

9

=

;

:

We must show that the �rst term on the last right-hand side admits a bound

that is a constant multiple of the second term on the last right-hand side.

Let us write x = a

v

(so v � n) and

�+x

2

= a

u

(so that u < v). If �rstly u �

n

2

,

then

Q(x)�Q

�

� + x

2

�

� C

4

Q

0

(a

n=2

)(x� �)

� C

5

n

a

n

T (a

n

)

1=2

(x� �)

� C

6

n(x� �)

a

n

p

1� �

� C

7

l log

 

1 +

n(x� �)

a

n

p

1� �

!

by (2.4),(2.7). (Recall that � = �=a

2lJn

:) In this case the result follows. If

u <

n

2

,

Q(x)�Q

�

� + x

2

�

� Q(a

n

)�Q(a

n=2

)

� C

8

Q(a

n

) � C

9

nT (a

n

)

�1=2

� C

10

n

C

11

35



by (2.5), (2.8). Since

"

1 +

n(x� �)

a

n

p

1� �

#

�l

� n

�C

11

the result again follows. 2

Proof of (5.1) for x 2 [�a

2lJn

; 0)

Here using the evenness of W and (4.1), (5.12) as before gives

�(x) =

W (x)

0

R

x

G

n

(s)V

n;�

�

s

a

2lJn

�

lJ

ds

W (�)

�

�

R

0

G

n

(s)V

n;�

�

s

a

2lJn

�

lJ

ds

� C

2

n

a

n

p

1� �

0

B

@

x

2

Z

x

V

n;�

�

s

a

2lJn

�

lJ

ds+ e

Q

(

x

2

)

�Q(x)

0

Z

x

2

V

n;�

�

s

a

2lJn

�

lJ

ds

1

C

A

� C

3

8

>

<

>

:

2

4

1 +

n

�

�

�

x

2

� �

�

�

�

a

n

p

1� �

3

5

�l

+ e

Q

(

x

2

)

�Q(x)

"

1 +

n�

a

n

p

1� �

#

�l

9

>

=

>

;

:

Here

�

�

�

x

2

� �

�

�

� =

jxj

2

+ � � jx� � j. Also, if jxj � � , then � � � + jxj = jx� � j.

Otherwise (recall � � S), we have

e

Q

(

x

2

)

�Q(x)

� e

�C

4

Q(x)

� e

�C

5

jxj

� (C

6

jxj)

�l

:

Again as jxj� � C

8

(� + jxj) = C

8

jx� � j, the result follows. 2

6 The Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Recall that our moduli of continuity

are

!

r;p

(f;W; t) : = sup

0<h�t








W4

r

h�

t

(x)

(f; x; R)










L

p

(jxj��(2t))

+ inf

P2P

r�1

k(f � P )Wk

L(jxj��(4t))
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and

!

r;p

(f;W; t) : =

0

@

1

t

t

Z

0








W4

r

h�

t

(x)

(f; x; R)










p

L

p

(jxj��(2t))

dh

1

A

1

p

+ inf

P2P

r�1

k(f � P )Wk

L(jxj��(4t))

where

�(t) = inf

�

a

u

:

a

u

u

� t

�

:

We need further moduli of continuity. If I is an interval, and f : I ! R, we

de�ne for t > 0,

�

r;p

(f; t; I) := sup

0<h�t

0

@

Z

I

j�

r

h

(f; x; I)j

p

dx

1

A

1=p

(6.1)

and its averaged cousin




r;p

(f; t; I) :=

0

@

1

t

t

Z

0

Z

I

j�

r

s

(f; x; I)j

p

dx ds

1

A

1=p

: (6.2)

Note that for some C

1

, C

2

depending only on r and p, (not on f , I, t)

C

1

� �

r;p

(f; t; I)=


r;p

(f; t; I) � C

2

: (6.3)

It seems that (6.3) �rst appeared in [23]. See also [4] and [24,p.191].

For large enough n, we choose a partition

�a

n

= �

0n

< �

1n

< : : : < �

nn

= a

n

(6.4)

such that if

I

kn

:= [�

kn

; �

k+1;n

]; 0 � k � n� 1; (6.5)

then uniformly in k and n,

jI

kn

j �

a

n

n

s

1�

j�

kn

j

a

2n

: (6.6)
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(jIj denotes the length of the interval I). We also set I

nn

:= ;. There are

many ways to do this. For example, one can choose �

0;n

:= �a

n

and for

1 � k � n, determine �

k;n

by

�

k;n

R

�

k�1;n

1

q

1�

jsj

a

2n

ds

a

n

R

�a

n

1

q

1�

jsj

a

2n

ds

=

1

n

:

Let us set

I

n

: = [�a

n

; a

n

] =

n�1

[

k=0

I

kn

; (6.7)

�

kn

(x) : = �

[�

kn

;a

n

]

(x) = �

[

n�1

i=k

I

in

(x) (6.8)

and

I

�

kn

:= I

kn

[ I

k+1;n

; 0 � k � n� 1: (6.9)

By Whitney's theorem [24,p.195], we can �nd a polynomial p

k

of degree at

most r, such that

kf � p

k

k

L

p

(I

�

kn

)

� C

2

�

r;p

(f; jI

�

kn

j; I

�

kn

) (6.10)

with C

2

6= C

2

(f; n; k; I

�

kn

).

Now de�ne an approximating piecewise polynomial/spline by

L

n

[f ](x) := p

0

(x)�

0n

(x) +

n�1

X

k=1

(p

k

� p

k�1

)(x)�

kn

(x): (6.11)

We �rst show that L

n

[f ] is a good approximation to f :

Lemma 6.1 Let 	

n

: [�a

n

; a

n

] ! R be such that uniformly in n, and

x 2 [�a

n

; a

n

],

	

n

(x) �

s

1�

jxj

a

2n

: (6.12)

Then for 0 < p <1,

k(f � L

n

[f ])Wk

p

L

p

(R)

38



� C

1

(

n

a

n

C

2

a

n

n

Z

0








W�

r

h	

n

(x)

(f; x; R)










p

L

p

[�a

n

;a

n

]

dh+ kfWk

p

L

p

(jxj�a

n

)

)

� C

3

 

sup

0<h�C

2

a

n

n








W�

r

h	

n

(x)

(f; x; R)










p

L

p

[�a

n

;a

n

]

+kfWk

p

L

p

(jxj�a

n

)

!

: (6.13)

Here C

j

6= C

j

(f; n); j = 1; 2; 3. Moreover, the constants are independent of

f	

n

g, depending only on the constants in � in (6.12). For p = 1, (6.13)

holds if we remove the exponents p.

Proof

We �rst deal with p <1. Now

k(f � L

n

[f ])Wk

p

L

p

(R)

=

n�1

X

j=0

�

jn

+ kfWk

p

L

p

(jxj�a

n

)

; (6.14)

where

�

jn

:=

Z

I

jn

jf � L

n

[f ]j

p

W

p

: (6.15)

Note that in (�

jn

; �

j+1;n

), L

n

[f ] = p

j

, so that

�

jn

=

Z

I

jn

jf � p

j

j

p

W

p

� kWk

p

L

1

(I

jn

)

C

p

2

�

p

r;p

�

f; jI

�

jn

j; I

�

jn

�

(by (6.10))

� kWk

p

L

1

(I

�

jn

)

kW

�1

k

p

L

1

(I

�

jn

)

C

3

jI

�

jn

j

jI

�

jn

j

Z

0

Z

I

�

jn

�

�

�W�

r

s

(f; x; I

�

jn

)

�

�

�

p

dx ds;(6.16)

by (6.2), (6.3). Now from (3.11) of Lemma 3.2(a),

kWk

p

L

1

(I

�

jn

)

kW

�1

k

p

L

1

(I

�

jn

)

� 1 (6.17)

uniformly in j and n. Moreover, uniformly in j, n, and x 2 I

�

jn

,

jI

�

jn

j �

a

n

n

s

1�

jxj

a

2n

�

a

n

n

	

n

(x):
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Then we can continue (6.16) as

�

jn

�

C

4

jI

�

jn

j

Z

I

�

jn

jI

�

jn

j

Z

0

�

�

�W�

r

s

(f; x; I

�

jn

)

�

�

�

p

ds dx

=

C

4

jI

�

jn

j

Z

I

�

jn

	

n

(x)

jI

�

jn

j=	

n

(x)

Z

0

�

�

�W�

r

t	

n

(x)

(f; x; I

�

jn

)

�

�

�

p

dt dx

� C

5

n

a

n

C

6

a

n

n

Z

0

Z

I

�

jn

�

�

�W�

r

t	

n

(x)

(f; x; I

�

jn

)

�

�

�

p

dx dt: (6.18)

Adding over j gives

n�1

X

j=0

�

jn

� C

5

n

a

n

C

6

a

n

n

Z

0

Z

I

n

�

�

�W�

r

t	

n

(x)

(f; x; R)

�

�

�

p

dx dt:

This and (6.14) give the result. Note that we have also e�ectively shown that

n�1

X

j=0




p

r;p

�

f; jI

�

jn

j; I

�

jn

)W

p

(�

jn

�

� C

5

n

a

n

C

6

a

n

n

Z

0

Z

I

n

�

�

�W�

r

t	

n

(x)

(f; x; R)

�

�

�

p

dx dt:

(6.19)

For p =1, the proof is similar, but easier: We see that

k(f � L

n

[f ])Wk

L

1

(R)

� max

�

max

0�j�n�1

k(f � p

j

)Wk

L

1

(I

jn

)

; kfWk

L

1

(jxj�a

n

)

�

:

The rest of the proof is as before. 2

Now we can de�ne our polynomial approximation to f :

P

n

[f ] := p

0

(x)R

n;�

on

(x) +

n�1

X

k=1

(p

k

� p

k�1

)(x)R

n;�

kn

(x): (6.20)

Note that this has been formed from L

n

[f ] of (6.11) by replacing the char-

acteristic function �

kn

(x) = �

[�

kn

;a

n

]

(x) by its polynomial approximation

R

n;�

kn

(x) formed in the previous section.

40



Lemma 6.2 Let f	

n

g

n

be as in the previous lemma. Then for 0 < p <

1,

k(L

n

[f ]� P

n

[f ])Wk

L

p

(R)

� C

(

�

n

a

n

C

1

a

n

n

Z

0








W�

r

h	

n

(x)

(f; x; R)










p

L

p

[�a

n

;a

n

]

dh

�

1

p

+kfWk

L

p

(I

�

0n

)

)

: (6.21)

For p = 1, this remains valid if we replace the pth powers by appropriate

sup norms.

Proof

We see that if we de�ne p

�1

(x) � 0,

(L

n

[f ]� P

n

[f ])(x) =

n�1

X

k=0

(p

k

� p

k�1

)(x)(�

kn

(x)� R

n;�

kn

(x)): (6.22)

We shall make substantial use of the following inequality: Let S be a poly-

nomial of degree at most r, and [a; b] be a real interval. Then for all x 2 R,

jS(x)j � C(b� a)

�1=p

 

1 +

minfjx� aj; jx� bjg

b� a

!

r

kSk

L

p

[a;b]

: (6.23)

Here C 6= C(a; b; x; S) but C = C(p; r). This follows from standard Nikolskii

inequalities and the Bernstein-Walsh inequality. See for example [24,p.193].

Hence for x 2 R, and 1 � k � n� 1,

jp

k

� p

k�1

j (x) � CjI

kn

j

�1=p

 

1 +

jx� �

kn

j

jI

kn

j

!

r

kp

k

� p

k�1

k

L

p

(I

kn

)

:

This is still true for k = 0 if we recall that p

�1

� 0. Now for 1 � k � n� 1,

(6.10) gives

kp

k

� p

k�1

k

L

p

(I

kn

)

� C

1

k

X

i=k�1

�

r;p

(f; jI

�

in

j; I

�

in

)
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where C

1

6= C

1

(f; k; n). This remains true for k = 0 if we set

jI

�1;n

j := jI

0n

j; jI

�

�1;n

j := jI

�

0n

j; �

�1;n

:= �

0n

;

and

�

r;p

(f; jI

�

�1;n

j; I

�

�1;n

) := kfk

L

p

(I

�

0n

)

=: 


r;p

(f; jI

�

�1;n

j; I

�

�1;n

)

Since (see (3.6), (3.7), (6.6)) uniformly in k, n, and x 2 R,

1 +

jx� �

kn

j

jI

kn

j

� 1 +

jx� �

k�1;n

j

jI

k�1;n

j

we obtain from (6.23) and Theorem 5.1, uniformly for 0 � k � n � 1 and

x 2 R,

�

�

�(p

k

� p

k�1

)(x)(�

kn

(x)� R

n;�

kn

(x))

�

�

�

W (x)

W (�

kn

)

� C

2

k

X

i=k�1

jI

in

j

�1=p

 

1 +

jx� �

in

j

jI

in

j

!

r�l




r;p

(f; jI

�

in

j; I

�

in

): (6.24)

We consider three di�erent ranges of p:

(I) 0 < p < 1

Here from (6.22) and then (6.24),

Z

R

�

jL

n

[f ]� P

n

[f ]jW

�

p

�

n�1

X

k=0

Z

R

�

jp

k

� p

k�1

j j�

kn

� R

n;�

kn

jW

�

p

�

n�1

X

k=�1

jI

kn

j

�1




p

r;p

(f; jI

�

kn

j; I

�

kn

)W

p

(�

kn

)�

�

Z

R

 

1 +

jx� �

kn

j

jI

kn

j

!

(r�l)p

dx: (6.25)

Here if (r � l)p < �1,

jI

kn

j

�1

Z

R

 

1 +

jx� �

kn

j

jI

kn

j

!

(r�l)p

dx =

Z

R

(1 + juj)

(r�l)p

du =: C

3

<1:
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So

Z

R

�

jL

n

[f ]� P

n

[f ] = bigjW

�

p

� C

4

n�1

X

k=�1




p

r;p

(f; jI

�

kn

j; I

�

kn

)W

p

(�

kn

):

This is the same as our sum in (6.19) except for the term for k = �1.

So the estimate (6.19) gives the estimate (6.21), keeping in mind our

choice of 


r;p

(f; jI

�

�1;n

j; I

�

�1;n

).

(II) 1 � p <1

From (6.22) and (6.24) and then H�older's inequality,

n

jL

n

[f ]� P

n

[f ]j(x)W (x)

o

p

� C

8

<

:

n�1

X

k=�1

jI

kn

j

�1=p

 

1 +

jx� �

kn

j

jI

kn

j

!

r�l




r;p

(f; jI

�

kn

j; I

�

kn

)W (�

kn

)

9

=

;

p

� C

n�1

X

k=�1

jI

kn

j

�1

 

1 +

jx� �

kn

j

jI

kn

j

!

(r�l)p=2

�

�


p

r;p

(f; jI

�

kn

j; I

�

kn

)W

p

(�

kn

) � S

n

(x)

p=q

(6.26)

where q := p=(p� 1) and

S

n

(x) :=

n�1

X

k=0

 

1 +

jx� �

kn

j

jI

kn

j

!

(r�l)q=2

:

We shall show that if (r � l)q=2 < �1, then

sup

n�1

sup

x2R

S

n

(x) � C

1

<1: (6.27)

Note that S

n

(x) is a decreasing function of x for x � a

n

= �

nn

, so it

su�ces to consider x 2 [0; a

n

]. Recall that

jI

kn

j � jI

k+1;n

j �

a

n

n

s

1�

j�

kn

j

a

2n

:

It is then not di�cult to see that

S

n

(x) � C

2

n

a

n

a

n

Z

�a

n

0

@

1 +

n

a

n

jx� uj

q

1�

juj

a

2n

1

A

(r�l)q=2

du

q

1�

juj

a

2n

� C

3

n

1

Z

�1

 

1 + n

jx� sj

p

1� s

!

(r�l)q=2

ds

p

1� s
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where x := x=a

2n

, so that

1� x � 1� a

n

=a

2n

� C

4

T (a

n

)

�1

� C

5

n

�2

:

We make the substitution (1� s) = (1� x)w to obtain

S

n

(x) � C

3

n

p

1� x

2

1�x

Z

0

 

1 + n

p

1� x

jw � 1j

p

w

!

(r�l)q=2

dw

p

w

� C

4

n

p

1� x

8

>

<

>

:

1=2

Z

0

"

1 +

n

p

1� x

p

w

#

(r�l)q=2

dw

p

w

+

3=2

Z

1=2

h

1 + n

p

1� xjw � 1j

i

(r�l)q=2

dw

+

2=(1�x)

Z

3=2

�

1 + n

q

(1� x)w

�

(r�l)q=2

dw

p

w

9

>

=

>

;

:

(We can omit the third integral if 2=(1� x) � 3=2.) We now make the

substitutions w = n

2

(1�x)v in the �rst integral, v = n

p

1� x(w�1) in

the second integral, and v = n

2

(1�x)w in the third integral. It is then

not di�cult to see that the resulting terms are bounded independent

of n and x if l is large enough. (The least obvious is the �rst integral:

there we need to ensure that (r� l)q=4�1=2 � 0, so that the integrand

is bounded after the substitution). So we have (6.27). Then integrating

(6.26) and using (6.19) gives our result.

(III) p =1

Now

jL

n

[f ]� P

n

[f ]j (x) � C

n�1

X

k=0

jp

k

� p

k�1

j(x)j�

kn

� R

n;�

kn

j(x)W (x)

� C max

�1�k�n�1




r;p

(f; jI

�

kn

j; I

�

kn

)W (�

kn

) �

n�1

X

k=0

 

1 +

jx� �

kn

j

jI

kn

j

!

(r�l)

:

As before, the sum is bounded if l is large enough. Then we can continue
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this as

� C

1

8

<

:

sup

0�k�n�1

sup

0<h�jI

�

kn

j

k�

r

h

(f; x; I

�

kn

)Wk

L

1

(I

�

kn

)

+ kfWk

L

1

(I

�

0n

)

9

=

;

� C

2

(

sup

0�k�n�1

sup

0<h�Ca

n

=n








�

r

h	

n

(x)

(f; x; I

�

kn

)W










L

1

(I

�

kn

)

+ kfWk

L

1

(I

�

0n

)

)

� C

3

(

sup

0<h�Ca

n

=n








�

r

h	

n

(x)

(f; x; R)W










L

1

(�a

n

;a

n

)

+ kfWk

L

1

(I

�

0n

)

)

: 2

We can now turn to the

Proof of Theorem 1.2

Now recall that R

n;�

has degree at most 2lJn, where J is as in the proof

of Theorem 5.1. So P

n

[f ] has degree at most 2lJn + r. So, if M := 3lJ , we

have for large n,

E

Mn

[f ]

W;p

� k(f � P

n

[f ])Wk

L

p

(R)

� C

�

k(f � L

n

[f ])Wk

L

p

(R)

+ k(L

n

[f ]� P

n

[f ])Wk

L

p

(R)

�

� C

1

(

�

n

a

n

C

2

a

n

n

Z

0








�

r

h	

n

(x)

(f; x; R)W










p

L

p

(�a

n

;a

n

)

dh

�

1

p

+kfWk

L

p

�

jxj�a

n

(1�C

2

[nT (a

n

)

1=2

]

�1

)

�

)

: (6.28)

Here we have used Lemmas 6.1 and 6.2, and also (6.6), which implies that

jI

�

0n

j �

a

n

n

s

1�

a

n

a

2n

�

a

n

n

T (a

n

)

�1=2

:

Furthermore, at this stage, the functions f	

n

g are any functions satisfying

(6.12): they will be explicitly chosen later. Next for

Mn � j �M(n + 1) (6.29)

we write

n = �j;
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where � = �(j; n). Note that

� =

n

j

!

1

M

; j !1: (6.30)

We set

t := t(j) :=

Ma

j

3j

:

Note that then

t

a

n

=n

=

1

3

Mn

j

a

j

a

n

=

1

3

(1 + o(1)); n!1: (6.31)

Let � > 3. We claim that for large enough n,

a

n

�

1� C

2

[nT (a

n

)

1=2

]

�1

�

� �(�t): (6.32)

To see this, note from (2.8) that

[nT (a

n

)

1=2

]

�1

= o(T (a

n

)

�1

)

so that by (2.7), if 1 > � > 3=�,

a

n

�

1� C

2

[nT (a

n

)

1=2

]

�1

�

� a

n

 

1� o

 

1

T (a

n

)

!!

� a

�n

� �

�

a

�n

�n

�

= �

�

3t

�

[1 + o(1)]

�

� �(�t);

for large enough j, by �rst (3.2) and then (6.31). Next, we claim that if

0 < 
 < 3, then for n large enough,

a

n

� �(
t): (6.33)

To see this, note that by (6.31) if 1 < � < 3=


�(
t) = �

�


a

n

3n

[1 + o(1)]

�

� �

�

a

�n

�n

�

= a

�n(1+o(1))

� a

n

:

Here we also used the fact that � is decreasing, and also (3.2), (3.3) with n

large enough. Since also a

n

=n � 4t for large enough n, we can recast (6.28)
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as

E

j

[f ]

W;p

� E

Mn

[f ]

W;p

� C

1

(

�

1

2t

4Ct

Z

0








�

r

h	

n

(x)

(f; x; R)W










p

L

p

(��(2t);�(2t))

dh

�

1

p

+kfWk

L

p

(jxj��(4t))

)

: (6.34)

We now turn to our choice of f	

n

g: we must ensure that (6.12) holds with

constants independent of x; j and n, that is

	

n

(x) �

s

1�

jxj

a

2n

; jxj � a

n

:

But for this range of x,

s

1�

jxj

a

2n

�

s

1�

jxj

a

2n

+ T (a

2n

)

�1=2

� �

a

2n

2n

(x) � �

t

(x)

by Lemma 3.1(d), (e). We choose h

1

:= h=(4C) and 	

n

:= �

t

=(4C) so that

h	

n

= h

1

�

t

, a choice satisfying (6.12). Then we rewrite (6.34) as

E

j

[f ]

W;p

� C

1

(

�

4C

2t

t

Z

0








�

r

h

1

�

t

(x)

(f; x; R)W










p

L

p

(��(2t);�(2t))

dh

1

�

1

p

+kfWk

L

p

(jxj��(4t))

)

:

Replacing f by f � P

0

with a suitable choice of P

0

2 P

r�1

, we have for

large enough j,

E

j

[f ]

W;p

= E

j

[f � P

0

]

W;p

� C

3

(

�

1

t

t

Z

0








�

r

h

1

�

t

(x)

(f; x; R)W










p

L

p

(��(2t);�(2t))

dh

1

�

1

p

+k(f � P

0

)Wk

L

p

(jxj��(4t))

)
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� 2C

3

(

�

1

t

t

Z

0








�

r

h

1

�

t

(x)

(f; x; R)W










p

L

p

(��(2t);�(2t))

dh

1

�

1

p

+ inf

P2P

r�1

k(f � P )Wk

L

p

(jxj��(4t))

)

= C

3

!

r;p

(f;W; t) = C

3

!

r;p

 

f;W;

Ma

j

3j

!

: 2

For use in [3], we record the following form of Theorem 1.2:

Theorem 6.3 For n � 1, let �(n) 2

h

4

5

; 1

i

. Then

E

n

[f ]

W;p

� C

1

!

r;p

�

f;W;C

2

�(n)

a

n

n

�

(6.35)

where C

1

, C

2

do not depend on n or f or f�(n)g. Moreover,

E

n

[f ]

W;p

� C

1

inf

�2[

4

5

;1]

!

r;p

�

f;W;C

2

�

a

n

n

�

: (6.36)

Proof

Obviously (6.36) implies (6.35). The only di�erence to the above proof is

that for � 2

h

4

5

; 1

i

, we choose

t

1

:= �t := �

Ma

j

3j

to replace t above. Then from (6.31),

t

1

a

n

=n

=

�

3

(1 + o(1))

and here

�

3

2

h

4

15

;

1

3

i

. Then as 4� > 3, (6.32) above shows that

a

n

�

1� C

2

[nT (a

n

)

1=2

]

�1

�

� �(4�t) = �(4t

1

)

and as � � 1, (6.33) above shows that

a

n

� �(2�t) = �(2t

1

):
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Moreover, for large enough n, a

n

=n � 3t(1 + o(1)) � 4t

1

. Choosing h

1

:=

h=(4C) and 	

n

(x) := �

t

1

(x)=(4C) we note that (6.12) holds uniformly in �.

We proceed as before to obtain

E

j

[f ]

W;p

� C

1

!

r;p

 

f;W;C

2

�a

j

j

!

with constants independent of �; f; j. 2

7 The Proof of Theorem 1.3

We begin with a technical lemma, which re�nes part of Lemma 3.1:

Lemma 7.1

(a) For 0 < s < t � C,

T (�(t))

 

1�

�(t)

�(s)

!

� C

1

log

�

2 +

t

s

�

: (7.1)

(b) For 0 < s < t � C,

sup

x2R

�

s

(x)

�

t

(x)

� C

2

s

log

�

2 +

t

s

�

: (7.2)

Hence, given 
 > 0,

sup

x2R

�

s

t

�




�

s

(x)

�

t

(x)

� C

3

: (7.3)

Proof

(a) We write s =

a

u

u

and t =

a

v

v

. Note (with the notation of Lemma 3.1)

that

a

�(u)

= �(s) � �(t) = a

�(v)

;
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so �(u) � �(v). Using the inequality

1� u � log

1

u

; u 2 (0; 1]

we obtain

1�

�(t)

�(s)

� log

�(s)

�(t)

= log

a

�(u)

a

�(v)

� C

1

logC

�(u)

�(v)

T (a

�(v)

)

= C

1

logC

�(u)

�(v)

T (�(t))

(7.4)

by (2.10). Next, �(u) = u(1+o(1)), and similarly for �(v), so it su�ces

to show that

log

u

v

� C

2

log

�

2 +

t

s

�

: (7.5)

But from (2.1) for s < t and small t, and then from (2.5),

u

v

.

t

s

=

a

u

a

v

�

 

Q(a

u

)

Q(a

v

)

!

1=2

� C

1

 

uT (a

u

)

�1=2

vT (a

v

)

�1=2

!

1=2

� C

2

 

uT (a

�(u)

)

�1=2

vT (a

�(v)

)

�1=2

!

1=2

� C

3

�

u

v

�

1=2

as �(u) � �(v). So

�

u

v

�

1=2

� C

4

t

s

(7.6)

and we have (7.5).

(b) Now if x � 0,

�

�

�

�

�

1�

x

�(s)

�

�

�

�

�

�

�

�

�

�

�

1�

x

�(t)

�

�

�

�

�

+

x

�(t)

�

�

�

�

�

1�

�(t)

�(s)

�

�

�

�

�

�

�

�

�

�

�

1�

x

�(t)

�

�

�

�

�

+

 

�

�

�

�

�

1�

x

�(t)

�

�

�

�

�

+ 1

!

�

�

�

�

�

1�

�(t)

�(s)

�

�

�

�

�

:

Using (a) of this lemma, we obtain

�

�

�

�

�

1�

x

�(s)

�

�

�

�

�

1=2

� C

12

�

t

(x)

s

log

�

2 +

t

s

�

:
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Since �(s) � �(t), also

T (�(s))

�1=2

� C

13

T (�(t))

�1=2

:

So (7.2) follows. 2

We turn to the proof of Theorem 1.3. We provide full proofs only where

the details are signi�cantly di�erent, and otherwise refer back. We begin

with an analogue of Lemma 6.1 for L

n

[f ] of (6.11).

Lemma 7.2

k(f � L

n

[f ])Wk

L

p

(R)

� C

1

"

sup

0<h�a

3n

=(3n)

0<��L








W�

r

�h�

h

(x)

(f; x; R)










L

p

[�a

n

;a

n

]

+kfWk

L

p

(jxj�a

n

)

#

: (7.7)

Here L is independent of f; n.

Proof

We do this for p < 1. Recall that the crux of Lemma 6.1 is estimation

of

�

jn

: =

Z

I

jn

jf � p

j

j

p

W

p

� C

1




r;p

(f; jI

�

jn

j; I

�

jn

)

p

W

p

(�

jn

)

�

C

2

jI

�

jn

j

Z

I

�

jn

jI

�

jn

j

Z

0

�

�

�W�

r

s

(f; x; I

�

jn

)

�

�

�

p

ds dx: (7.8)

We now choose L > 0 such that for 0 < h � 1,

sup

x2R

h

L

� h

L

(x)

h�

h

(x)

�

1

2

: (7.9)

This is possible by (7.2). Now we choose

�

n;k

(x) := L

1�k

a

3n

3n

�

L

1�k

a

3n

3n

(x); k � 1:
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Note that by (7.9),

sup

x2R

�

n;k+1

(x)

�

n;k

(x)

�

1

2

: (7.10)

In view of (6.6), (3.6) and (3.7), we may assume that L is so large that

uniformly in n, j, x 2 I

�

jn

,

jI

�

jn

j � L

a

3n

3n

�

a

3n

3n

(x) = L�

n;1

(x); jI

�

jn

j � �

n;1

(x):

Then from (7.8),

�

jn

� C

4

Z

I

�

jn

L�

n;1

(x)

Z

0

1

�

n;1

(x)

�

�

�W�

r

s

(f; x; I
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The rest of the proof is as before. 2

The analogue of Lemma 6.2 is

Lemma 7.3
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Proof

This is exactly the same as the proof of Lemma 6.2, except that we

substitute for (6.19) the estimate of Lemma 7.2. 2

Proof of Theorem 1.3

This follows from Lemma 7.2 and 7.3 exactly as Theorem 1.2 followed

from Lemma 6.1 and 6.2. 2

Finally, we brie
y show that under some additional conditions on Q, we

can use the simpler modulus
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We shall assume in addition to W 2 E , that Q

00

exists and is non-negative in

(0;1), and
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; x 2 (0;1): (7.12)

Moreover, we assume that
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Using (7.12) and the methods of proof of Lemma 2.2 in [13,p.209], we obtain
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Since u!
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u
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is then strictly decreasing for large u, we obtain the identity
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Di�erentiating this, and using (7.14), (7.15) leads to
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These last two bounds easily give
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Here " is any �xed positive number. We now estimate �
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a little di�erently

from the way we proceeded after (7.8). Let us make the substitution s =
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by (7.19) and (7.2). In applying (7.19) we must ensure that the range con-

ditions in (7.20) must hold for x 2 I
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by (3.2), (3.3), then (2.7) and then (2.6). Thus
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So under the additional conditions on Q we obtain
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We note that these additional conditions (7.12) and (7.13) are certainly sat-

is�ed for W

k;�

of (1.6).
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