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Abstract

We continue our investigations of mean convergence of Lagrange
Interpolation at the zeros of orthogonal polynomials p,(W?, z) for
Erd6s Weights W? = exp[—2Q)]. The archetypal example is Wy, , =
exp [—Qk,] where,

Qk,a() == expy (|2]%)

a>1,k>1, and exp, = exp (exp(exp...)) is the kth iterated expo-
nential. Following is our main result: Let 1 < p <4 and o € R. Let
L,[f] denote the Lagrange Interpolation polynomial to f at the zeros
of pn, (W?,z) = py, (exp[—2Q)], z). Then for,

(f = Lo/ W@ =0

lim ||
n—-ao0
to hold for every continuous function f : R — R satisfying ,

lim (fW)(z) (1+ Jz))* =0,

|z] —ro0

it is necessary and sufficient that o > ]—1). This is, essentially, an ex-
tension of the Erdés—Turan theorem on L, convergence. In an earlier
paper, we analysed convergence for all p > 1, showing the necessity
and sufficiency of using the weighting factor 1 + @ for all p > 4. Our
proofs of convergence are based on converse quadrature sum estimates,
that are established using ideas of Konig.
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1 Introduction and Results

In this paper, we continue our investigation from [2] of mean convergence
of Lagrange interpolation at the zeros of orthogonal polynomials for Erdos
weights. Recall that ErdSs weights have the form W? = exp[—2Q)], where
@ : R — R is even and faster than polynomial growth at infinity. The
archetypal example is,

Wia(7) = exp (=Qa(2)), (1)

where,
Qio(x) :=exp, (|z|%), k> 1, a>0. (2)

Here exp, = exp (exp(exp...)) denotes the kth iterated exponential.
Given a weight W : R — R such as those above, we can define orthonor-
mal polynomials,

pa(T) = pn(Wz,x) e i S VH(WZ) > 0.

satisfying,
/pn(WQ, L) (W2, 2)W2(2)dz = Oy
R
We denote the zeros of p, by,
—00 < Tppn < Tp-1n-- < Trp < OO
The Lagrange interpolation polynomial to a function f : R — R at {xj,n};l:l
is denoted by L,[f]. Thus if P, denotes the class of polynomials of degree

< m, and l;, € P,_1, 1 < j < n, are the fundamental polynomials of
Lagrange interpolation at the {:cj,n};.lzl satisfying,

lj,n (Ik,n) - 5j,]€7



then,

n

La[f1(@) = > f (@) Lim(2). (3)

j=1
In [2], we investigated mean convergence of L,[ . ] for the following class
of Erdds weights:

Definition 1.1
Let W := exp[—Q)], where @) : R —> R is even, continuous, Q) exists in
(0,00), QY > 01in (0,00), j =0,1,2, and the function,

2Q® (x)
T(ZE) =1+ W (4)
is increasing in (0, 00), with,
Nim T'(x) = o0; T(0+) = IE}H&JFT(I) > 1. (5)

Moreover, we assume that for some C, Cs, C3 > 0,

T
C; < (,x) <Oy x>Cs (6)
<:cQ (w)>
Q(x)
and for every € > 0,
T(x) =0(Q(z)), v — 0 (7)

Then we write W € &;.

The principle example of W = exp[—Q] € & is Wi = exp (—Qka)
given by (2) with o > 1. Another (more slowly decaying) example of W =
exp[—Q)] € & is given by,

Q(z) :=exp (log (A + IQ)ﬁ> , 0 >1, Alarge enough.

The behaviour of T'(x), ect. for these weights is discussed in greater detail in
2, [7].

The first results for mean convergence of Lagrange interpolation for a
class of Erdds weights appeared in [9], and the first “sharp” results appeared
in [2]. Following is the main result of [2]:
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Theorem 1.2

Let W := exp[—Q] € &1. Let L,[ . ] denote the Lagrange interpolation
polynomial to f at the zeros of p,(W?, .). Let 1 <p < oo, A €ER, k> 0.
Then for

lim ||(f = Ll/PW(E+@Q) 2], =0 (8)

n—aoo

to hold for every continuous function f : R — R satisfying,

lim |fW]|(z) (log )™ =0 (9)

|z] —ro0

it is necessary and sufficient that,

A>max{0,§(i—;—)>}. (10)

It was also shown in [2] that even if f vanishes outside a fixed finite
interval, we need a factor like (1 + Q)™ with A large enough, if p > 4. We
remarked there that for p < 4, the weighting factor 1 + () is unnecessarily
strong. After all, () grows faster than any polynomial. Let us recall the
Erdés-Turan theorem, as extended by Shohat (see [3, Ch.2, p.97]). If f :
R — R is Riemann integrable in each finite interval, and there exists an
even entire function G with all non-negative Maclaurin series coefficients
such that,

)
|:L’l|linoo G(r)
and
/G(x)WZ(x)dx < 00
then
it ([ = Lalf) W, = 0. (1)

For nice weights here, a result of Clunie and Kovari [1, Th4, p.19], allows us
to choose G with

G(a) ~» W (2) L+ |2]) " v € R £ > 0.

Here and in the sequel, the notation involving ~ means that the ratio of the
two sides is bounded above and below by positive constants independent of



x. (Later on, the dependence will be on n and possibly other parameters.)
Thus we can ensure that (20) holds provided,

+5 _ ¢

D=

lim (fW)(z) (14 |])
|x|—o0
Thus our result does not extend the classical result for p = 2.
Following is our main result, which does essentially constitute an exten-
sion of the Erdés—Turan result.

Theorem 1.3

Let W :=exp[—Q] € &. Let 1 < p <4, and o € R. Let L,[f] denote the
Lagrange interpolating polynomial to f at the zeros of p,(W?, . ). Then the
following are equivalent.

(a) For every continuous f : R — R with,

Jim [£()| W) (L + )" = 0 (12)
we have,
i [[(F = LalfD) W, gy =0 (13)
(b) a>1

We next show that we cannot insert any positive power of 1 + |z| inside
the L, norm in (13) at least when o > 11—):

Theorem 1.4
Let W :=exp[—Q] € &. Let 1 <p <4 and A € R. Then the following
are equivalent:

(a) For every o > i and every continuous function f : R — R satisfying
(12), we have,

lim || (f = Lalf]) ()W () (1 + |2)

n—-~aoo

=0 (14)

Ly[R]

A <. (15)



We note that with more work, we can replace continuity of f in the above

two theorems by Riemann integrability, and we can replace (1 + |z])*, a > 117,
1

by (1 + |z])? (log (2 + |:c|))%+€, some £ > 0, (and so on).

In [2], it was shown that even for f vanishing outside [—2,2], and p > 4,
we needed (14 Q)™ in (8), with A > 2 (i - %) Following is an analagous
result for p =4 :

Theorem 1.5
Let W := exp[—Q)] € &;. Suppose that a measurable function U : R — R
satisfies,

lim U(z)z 7 (logQ(z)) = oo (16)

T—>00

Then there exists a continuous function f : R — R vanishing outside
[—2, 2] such that,
lim sup Lol fIW U], ) = o0 7)
n—-aoQ

If for example, Q(z) grows faster than exp (z*™¢), some ¢ > 0, then
Theorem 1.4 shows that we cannot choose U = 1 and hope for convergence.
So there is no analogue of Theorem 1.3 for p = 4. However, it seems that a
negative power of log (), rather than the 1 4+ @) required for p > 4, will allow
some analgue of Theorem 1.2 for p = 4.

While the methods of this paper use many techniques and tools of H.
Konig [4], [5], we also use estimates and results from [7], [8]. However the
reader need only have a copy of [2] available for reading this paper.

This paper is organised as follows: In Section 2, we gather technical
estimates from other papers. In Section 3, we prove a converse quadrature
sum inequality using the same methods as H. Ko6nig in [4], [5]. In Section 4,
we prove the sufficiency conditions of Theorem 1.3 and 1.4, and in Section
5, we prove the necessity conditions of Theorems 1.3, 1.4, and also prove
Theorem 1.5. At a first reading, it is best to skip the technical Section 2,
and concentrate on Section 3. Then read Sections 4 and 5, and finally return
to Section 2.

We close this section by introducing some more notation. Given @) as
above, the Mhaskar—Rhamanov—Saff number a, is the positive root of the

equation,
2 /1 10 (at) —2 >0 (18)
u=— [ ay ayt) ———, u
wJo V1—2?



For example, for ) = Q.o of (2),

Q=

ay ~ (logy u)

(see [2], [7]). To the unfamiliar, one of the uses of a, is in the identity [10],

EW ez = 1PW a0 an)s - £ € P

Here and the sequel, P,, denotes the polynomials of degree < n.

(19)

In the sequel, C, CY, Cs... denote constants independent of n, x and P €
P,..The same symbol does not necessarily denote the same constant in dif-

ferent occurrences.
The nth Christoffel function for a weight W? is,

o ) . (PW)2dt
wio = () = [ S

1
iz p3(x)
The Christoffel numbers are,
Ain = A, (WQ,xj,n) , 1 <5< n.

The fundamental polynomials l;, of (4) admit the representation,

Tn—1 Pn (I)
Lin(z) = )\jnTPn—l (%j,n) T — Tin
We define the Hilbert transform of g € L;(R) by,
Hlg|(z) :== lim 9(t)

e—0+ Jjz—t/>e T — 1

dt,

(this exists ae. [12]).
Finally, we define some auxiliary quantities:

Oy = (nT (an))_g, n>1.

(20)

(21)

(22)

(23)

(24)

This quantity is useful in describing the behaviour of p, (exp[—2@Q)], . ) near

Z1p- For example,
Lo,
5

T1n

@

<

(25)



Here L is independent of n. We often use the fact that J,, is much smaller
than any power of ——, see Section 2. We also use the function,

T(an)’
{ "
U, () :==max < 4/1 — Ja] + Loy, |T (an) /1 — Ja| + L6, , 2| < ay
a L0 o T
(26)
and set
U, (z) =T, (an), || > a, (27)

This function is used in describing spacing of zeros of p,, behaviour of
Christoffel functions and so on. Finally, we set

Topm =T (L4 L0y); Tpt1pn = Tnn (1 + Léy); (28)

and
Lin = (@jm; j1n) 5 Wjnl =25 1m = @jn, 1< 7 <m0 (29)

J,m

Also, in proving our quadrature estimates, we use

L Ll i B
fin(x) = mm{ ) . } Hl — — |+ L6, (30)
’ il (z — 250)° iy
Define the characteristic function of I;,,
]_, S Ijn }
Xin(Z) == X1, (T) 1= ’ . 31
o) =)= { 7 T 51)

2 Technical Estimates

In this section, we gather technical estimates from various sources. We begin
by recalling some lemmas from [7]. Throughout, we assume that W :=

exp[—Q] € &;.

Lemma 2.1

(a) Uniformly for n > 1 and |z| < ay,

Ao (W2, 7) ~ %W2($)\Pn($) (32)



(b)

Forn > 1,

Tim _ 1‘ < Cs, (33)

Qn
Uniformly forn > 2 and 0 < j <n —1,

G,
an'_JU+1m/““;;JDn(I$n) (34)

Forn > 1,
P
Tl R (35)

n

sup [p,W| ()
TER

and

D=

sup [paIV] (2) ~ an® (nT (an))

reR

(36)

Let 0 < p < oo, K > 0. There exists C' > 0 such that for n > ny and
PeP,,
[1PW |11 < ClIPW | o[-0 (1- K60) an(1-Ko.)] (37)

Moreover, given r > 1, there exists C'; > 0 such that,

HPW||LPHJ”|EGTTL} S eXp [_ClnT (an)_§:| ||PWHLOO[*an an} (38)
For n > 1,
Tn—1
~ (39)
Tn

Uniformly forn > 2 and 0 < j <n —1,

p kg g Bl s (40)
a’n an
and
v, (Ij,n) ~ W, (xj-l—l,n) (41)

Here, L is chosen so large enough that (25) is true.



(g) Uniformly forn >2and 1 <j <n-—1,

3 | S

_ 3
o) (1= 2220 2,) v )

n

n

1
1 . 4
~ ai [ppaW| () ~ (1 — M + L(Sn) (42)

Proof.

This is Lemma 2.1 in [2], except for (2.3), (2.9) and (2.10) for j = 0,
which follow from the definition of z, and ¥,. O

Lemma 2.2

(a) Let 0 < p < oo. Then for n > 2,

1, p<4
1
(logn)?, p=41. (43)

1
2

1
||an||Lp(R) ~ an

(b) Uniformly forn >1,1<j<n, z€R,

as % 1 P,(x)
)]~ 2 (0,17 (230) ((1 ko) |20 ) e
(¢) Uniformly forn >1,1<j<n, z €R,
i ()| W)W () < C. (45)

(d) Forn>2,1<j<n-—1, 2 € [Zjn Tjt1nl

L (@)W (@)W (@50) + (@)W (@)W (2j010) 2 1. (46)

Proof.
This is Lemma 2.2 in [2]. O
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Lemma 2.3

(a) Given r > 0, there exists x¢ such that for z > x¢ and j = 0,1, 2,

is increasing in (zg, 00).

(b) Uniformly for u > C and j =0, 1,2,

=

aiQ(‘j) (ay) ~ ul (au)ji

(¢) Let 0 < a < . Then uniformly for u > C, j =0,1,2,

T (aau) ~T (aﬁu) ; Q(j) (aau) ~ Q(j) (aﬁu)

(d) Given fixed r > 1,

Moreover,
Uy ~ Gy, U € (1,00).

(e) Uniformly for ¢ € (C, 00),

!
ay 1

Qy ~ tT (at)

(f) Uniformly for u € (C,00), and v € [%, 2u], we have,

a
_“_1‘N
Qy

E_l‘
v

T (ay)
Proof.
This is Lemma 2.3 in [2]. O

Lemma 2.4

(a) Let € > 0. Then,

a, <Cn°, T (a,) <Cn°, n>1.

11

T

QY (x)
xr

(49)

(50)

(51)

(52)

(53)



(b) Given A > 0, we have,

8p < CT (an) ™, n>1. (54)

(c) Let 0 < n < 1. Uniformly for n > 1, 0 < |z| < ayy, || = a,, we have,

Oy < T() (1 . @> < O, logg (55)

Qnp

Proof.
This is Lemma 2.4 in [2]. O
Next, we present a lemma from Kénig [5]: Recall the notation,

1
lollzyian = ([, loPdn)”

for ;1 measurable functions ¢ on a measure space (€2, u).

Lemma 2.5

Let 1 < p < o0 and ¢ := (—piLl). Let (£, ) be a measure space, k,r :
2? — R and,

Tlf(w) = [ Fu,v)f(0)dp(v) (56)

for p measurable f : ) — R . Assume that,
sup | [k(u,0)] r(u, )| du(v) < M. (57)
sup | Jk(u, ) r(u, v)| 7 dpu(u) < M. (58)

Then T}, is a bounded operator from L,(du) to L,(du). More precisely,

||TI<:HLp(du)faLp(du) < M. (59)
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Proof.

We sketch this, as no proof is given in [5], though such lemmas are stan-
dard. First use the dual expression for the L, norm of Tj[f], and then Fubini’s
theorem, and then Holder’s inequality, to show that,

/g ‘/Q b, 0)g (a)dp(u)| du(v>] :

where the sup is taken over all g with ||g||, 4. = 1. Let us call the sup J.
So we must show that .JJ is bounded by M. Using Hélder’s inequality on the
inner integral in J gives,

|| k. v)g(w)dp(u)
< | I o) 1) (o)

Q=

Tl A1y < 1 W2y SuP

q

qa
p

[ ko)l (s o) g du(w)

Q=

< arbsup | [ (a1, 0)]? lg)l* du(w)dia(w)
<MvrMi=M. O

The next lemma essentially already appears in 1970 papers of Mucken-
houpt [11, pp.449-451], and later in H. Konig’s paper [5] and is of course
implied by results on the weighted L, boundedness of Hilbert tranforms
(Muckenhoupt’s A, condition):

Lemma 2.6
Let 1 < p < 4. Then,

with C independent of n and g € L,[R].

Hlg)(x) \1 el

Qn

Ly[R]

Proof.
The proof appears with a, = v/2n in [5], but we sketch the proof from
[5]: Consider the operator T of Lemma 2.5, with




1
Using 7(u,v) := |%|™ ,where ¢ : Lemma 2.5 can be used to show that

= o5
T} is bounded from L,(R) to L,(R). Comparison of 7} and the bounded
operator H show that,

1
U |2

9(u)
e—0+ Jju—v[> UV — U

du

v
is bounded from L,(R) to L,(R). Replacing u by a, + u, and v by a, + v,
easily gives the result. O

Our final lemma in this section concerns bounds on the difference between

ﬁ and the Hilbert transform of a weighted characteristic function. Re-
J,n

call the notation (29-31) for I;,, f;, and x;,. In particular, recall that,

-1
: 1 Ljn |z B
in(2) ;= min , : 1-— + Lo, .
f]7 ( ) {|I7n (I—I‘J’n)Q} [
Lemma 2.7

Uniformly for n > 1 and 1 < j <nand € [Ty, 1],

1 1 1
Tin(x): = an [pn (W27 x) W(x)] p— ‘ | Hxjn] ()
j,n ,n
Proof
The idea already appears in [5]. Note first that,
T — | Z;n]
Hxn =1 2t = —log|l — —L— 2
[Xjnl () = log P— o8l (62)

We consider two ranges:
Case 1: |v —zj,| > 2|,
Using the inequality ]t + log(1 — t)| < 2, \t] < 1, we see that,

- 1 og |1 —
T — xjvn ‘ n‘ [X]an] (I) ,n g l T — xjm,

Ll |2

If,n

(@ — 2j0)°
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Next, the bounds (35), (36) show that uniformly in n and z,

-

n

=1
4

o |paW | (x) < C

+ L(Sn]
So we obtain the result for this range of x.
Case 2: |v —xj,| < 2|,
From the identity,
: - !
ai (paW) (2) = (W) (D)W (250) (¥ = 1) @it (P, V) (250)
(for both j and j — 1) and from (34), (40), (42), (45), we obtain for |z;,| <
2|Ij,n|72 S]S n,
ai [paW1 (2) < C1fjn(@) min{|z — 50l |2 = 2j10]}- (64)

For j = 1, this holds with the minimum replaced by |z — z;,|. Then for
2<)<m,

. 1 T — T,
Tin(2) < Cofjn(z) [1 +min{|z — z;,],|r — zj_1.]} log T ] .
’IJ;"’ Lj1n — T
(65)
Since |I;,| > Csmax {|z — .|, |z — z;_1,,]}, we see that with,
U = B
Tji1p — T

we obtain for both signs of the exponent,
Tim(®) < Cyfin(w) {1 + 2u*t ‘log uﬂH

As either v or w™! lies in [0, 1] and ¢ [logt| is bounded for ¢ € [0, 1], we have
(61). It remains to handle the case j = 1. Note that for = € [x,,, 1,] (it is
only here that we need this resriction) with |z — z1,| < 2|1, we have

|z — 20.n| ~ a0

(See (33), (34), (28), (29)). Then instead of (65), we obtain,

|z — 15| |z — 21,

a0 ]

where o ~ 1 independently of z, j,n. As |v — z1,| < Csa,0d,, the bounded-
ness of u|logu| in any finite interval in [0, 00) again gives our result. O

ij(x) < Cfl,n(l’) ll + O log o

O,
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3 A Converse Quadrature Sum Estimate
The main result of this section is,

Theorem 3.1
Let W :=exp[—Q] € & and 1 < p < 4. There exists C' > 0 such that for
n>1and P € P,,

[PW |z, < C {Z XjnW =2 (@) |[PWP (xj,n)} (66)

J=1

Our proof of Theorem 3.1 follows that of H. Konig. We shall divide the
proof into several steps: In the sequel, we shall use the abbreviation,

fim = NjaW 2 (@50) ~ | Tl = 2510 — Tjin- (67)
(See (32) and (34)).

Step 1: Express PV as a sum of two terms.
Let P € P,. We write,

(PW)(x) = (La[PIW) (x)ZiIP (@) (1 W) ()

— ) 03 |

af (paV) () H [Z iy ] (x)

=

= J(@) + K@), (68)

Here,

Yjm = G W (69)

n

Note that in view of the behaviour of the smallest and largest zeros (see (33))
and in view of the infinite-finite range inequality (37), it suffices to estimate
| PW ||, ] in terms of the right-hand side of (61).

Tn,n L1,n

Step 2: Estimate ||Js|
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(We begin J5 as it is easier to handle). Using our bound (35) for p,, and
then the weighted boundedness of the Hilbert transform in Lemma 2.6 gives,

T =
19212, e 210 < X|Jf | _%
n " Ly[R]
1
_ oﬂz{‘yﬂ”’}/ -
2\ L] an| |

Using the spacing (34) and also (40), one deduces that,

2] | laaal S |F
/ 1— = do~|,||l—-2L2+46,
Ijn n n
Next, from (69) and (42), we see that,
ﬂ
Ljn !
’yj,n’ ~ ’PW‘ (xj,n) ‘[jvn‘ 1- + 671 (70)
Hence,
1
12/l ey < C2 Z! il [PWP %,n)]
< (s Z Ijn) \PW (%n)}
by (62).
Step 3: Estimate J;.
By Lemma 2.7,
[ J1(@)] < Ca Y [Yjnl fin(@), @ € [2np, 210
j=1
Then,

fj,n(x)} dx}

4y g < O {Z [ 1S
=2 " Ik.m Ij:l

17



Using the spacing (34), (40) and the definition (30) of f;,, we see that,

-1
I'n n B
fjm,(x) ~ | > | Hl |Ik | + (5 ] T c [k;my

(@ — Tjm)? an

uniformly in n and j # k. We deduce that,

112, o 1) < C5 (St + 52) (71)
where,
" " I | 17| :
j,n X N
Sl = 04 Z |Ik,n| Z |yj,n I 3 Hl k +(5 ] s (72)
k=2 j=1 (Ikan - $J7n) a/n

i=
2k

and by (30),

’xk nl

TP >
—1—(5] dx} )

Exactly as in the last part of Step 2, we see that (70) gives,

Sy 1= {Z Yl il l

k=2

n

P

Sy < Cs

> Nl xwﬂmmw%m]

To deal with S;, we use Lemma 2.5 with a discrete measure space. Using
(62) and (70), we see that,

1
P

S <Oy {Zn: [Zn: b ; {M}%,nPW (%n)}r} ;

k=1 |7=1
where,
bkt = 0=bxVkand for j # k,
L -1
. 1 =
by i = MA%W&AM%n—mm”[l—%?J+%]lP R7|+5]

18



Note the order: by ; rather than b;j. Defining B := (by;),
that if L)) denotes the usual (little) L, space on R", then,

j1 We see

=

j=1

S1 < Csl|Bllg—1y {Xn: [ PW [P (Ij,n)}

so the result follows if we can show that independently of n,

1Bz —s1n < Co. (73)

Step 4: We prove (73).

This is far more complicated than the analogous proof for the Hermite
weight [5] because of the more complicated behaviour of the spacing of the
zeros of the orthogonal polynomials. We apply Lemma 2.5 with the discreet
measure space  := {1,2,...n} and p({j}) =1, j = 1,2,...n. Moreover,

we set there,
_ L]\ P2
k(k,j) = by ; rij = <|I, |)
| k,n

Note that because of the way we order the variables (by ; rather than b;),
the variable w in (57) — (58) is k, and the variable v in (57) — (58) is j. So
(57-58) become,

1 -1
" . 1 e
sup » Ll (20 — Tpn) Hl _ |zl + (5n] Hl _ ol +0,| <M
Eoj=1 7% Ay
7k
(74)
n % %1
sup S ynl Lion] (210 — )~ Hl _ 2l +5n] H1 _leal] 51T 2
j k=1 an a/n
J#k
(75)
Recall that given fixed g € (0,1), we have uniformly in [ and n,
(1 brl) (76)
n| ™~ T~ - y [ Tln| > Agn
b 7 an, b g
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ay, _ Tin 2
’[l,n‘ ~ ;T (an) 1 (1 — ’al—7 -+ 5n> 5 ‘xlm’ Z Clﬁn (77)

n

(See (26) and (34)). To take account of this dual behaviour of |I;,|, we
consider three ranges of x;,,x;,. It is not difficult to see that we may

consider only @, xx, > 0.
Range 1 : 0 <xj,, 75, < Gz
) 2 4

Using (76), we see that if we restrict summation in the sum in (74) to
Joilzial < @z, then the resulting sum is bounded by a constant times,

=1 1 14
Qp, Tkn\ 4 an
Ill = ]- - 0<t<a 4, 2
n ap, 5 (t — x,m)

We make the substitution,

in this integral, and use (76) again to give,

2
I, < —(1-2n / L
n a/n OSuS(lf a;}n)
—1

- —1(1_Zkn\Z _ lu]
[1—u|>Ci,1n (1 —) (1_u)2du

1 £l B
< 012—<1—‘”’“")2 n(1—$’“—’”>2+1]
n an an

1 L
< 013 |:1 + ET (an)2:| < C114

by (52) and (53). Next, if we restrict summation in (75) to k : [zxn| < asn,
and we use (76), we see that the resulting sum is bounded above by a constant

times,
3
t |4

Un

dt

3
A, Tin\4
112 = (1 - 0<t<a g 2
n (t—zjn)

Ay 5
[t—2j,n|>C15|1j,n]
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The same substitution as before shows that I; o has a similar upper bound
to that for I; ;, and hence is bounded independently of j, n.

Range 2 : z;,, 75, > an
Using (77), we see that after restricting summation in the sum in (74) to
j ¢ |7jn| > axz, then the resulting sum is bounded by a constant times,

3 L
[ jin]* k]

(@jm — Tn)?

>

j:|z]-7n >an

i#k

<Ci Y,

Hesnlzen

i 4
J#k

3 1
[ Lin]® Ln?

(@ — Thn)’

dt
< Cis.

<C . 2
= t:|t*l’k7n|2018|lk,n| (t _gjk,n)2 B

Similarly, after restricting summation in the sum in (75) to k : |z3,| > az,
then the resulting sum is bounded by a constant times,

>

j:|zk7n|2a%

k#j

3 1
il 1 1jin]?

(@ — Thn)”

After swopping the indicies j and k, we see that this is the same as the sum
just estimated.

Range 3 : z;, < azn and wy, > A3n3 OF Tjp > Gsn and xy, < az.

Here,
Qn

T (an)
(See (52)). Also, given fixed small € > 0, we see that,

|Ijan - Ik,n| > a?{Tn — a% > 019

2 . .
|11 < Coon 3%, uniformly in [ and n

(See (24), (53), (76), (77)). Finally,

|=’Ek,n
1 — Zhnl

Qn

1
1 1
< Cyns e,

+5n
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Then we see after suitably restricting the range of summation in (74), we
obtain a sum bounded by,

Coan ™ 2T (a0)* S || < Cosn™ T (a,)? a, = o(1).
J

Similarly the sum arising from (75) is o(1). So we have completed the proof
of (73). O

4 Proof of the Sufficiency Conditions

We begin with the,

Proof of the Sufficiency part of Theorem 1.3
Let f : R — R be continuous and satisfy (12) with o > i. We must
show (13). Let ¢ € (0,1). We can choose a polynomial P such that,

1(f = PY )W (@) (1 + e, ) < =
(Compare [6]). Then for n large enough,

1CF = LalfD) WIp,
< (f = PYWIlp,m+ 1LalP = FIWI L, e

<ell@+la)” H A ILalP - f]W||Lp (78)

The first norm in the right-hand 81de of (78) is of course finite as ap > 1.
Next, Theorem 3.1 shows that for large enough n,

1
P

[ LnlP = fIWlL,m < G {Z AW 2 (20) (P = )W (%n)}
j=1

< Oy {Z [l (1+ |Ij,n|)ap}

i=1

< Gl g™,

Substituting into (78), and noting that the various constants are independent
of e, gives the result. O

Proof of the Sufficiency Part of Theorem 1.4
As (14 |z))® < 1if A <0, the limit (14) follows from (13). O
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5 Proof of the Necessary Conditions
We begin with,

Lemma 5.1
Let 0 < p <oo. Let 0 < A< B < ooand{:R— (0,00) be a
continuous function such that for 1 < s, t < co with % < 7 <2, we have,

¢ (as)
f(at)

For n > 1, let &, C [—a, a,] be an interval containing at least two zeros of
pn (W2, ). Then for n > 1,
__1
4
n 5n>

Here C} depends only on A, B (and not on £ or n or Jy,).

A< < B. (79)

1

=1 t
I WVEl, 5, > Cra i

et ([1- 2

. (80)

Lyp[Sn]

Proof.
From (46), for x € [x;41.2; ],

DO

max {150 ()W (25,0) W (@), Ly (@)W (@751, W)} >
and hence for such =z,

1.
paW(2) 2 S min{|z = zjl P W] (250) s 12 = 210l P,V ] (25410)}

n _ Tjn
> Co—=59," () (‘1 - ’;—’

2 n

4
+ 5n> min {|z — ;.| , |7 — 110/}
an

by (40), (41) and (42). Let,

Sin = |Tjrin + 5 (Tjn — Titin) s Tin + 1 (Tjn — Tjr1a) | 5

4
so that J;,, has length % (0 — j11,0). By (34),

—1
K3
+ (Sn , T € %jyn'
G,

5 _ %]
W (2) = Csan® | |1
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Then using also (40),

+ 5n>% /J €r(t) dt.

ox
J

_p Ti
Z C4an2 (‘1 o | J,n
an

The result follows if we can show that,

J

(The L, norm of &(¢) (‘1 — %‘ + (Sn)T over that part of 3;, near the end-
points of this interval is easily estimated in terms of the rest). To do this if
suffices to show that,

gwa=cy [ e

Jim Ti+1,n

f(t) ~ g(x],n) ) te [xj+1,n xj,n] .

Now in view of (79), it suffices to show that if z;11, = a, and z;, = a,
where s > s, > 0. (Here we use the continuity of the map u :— a,), then,

1<2<o (81)

| »

But if ¢ > 2s, then (48) and (49) give,

T a
1> 251 > g
Tj+1n (s T (as)

while our spacing (2.3) gives,

Tjn Qp \Ijn Tjn
1< OS_M
I ER ) n Tjyin

win

< Oga;"\lfn (an) < Croay (nT (an))”

Our hypothesis shows that T (a,,) is much larger than any negative power
of n, for n large, and we have a contradicton. So (81) and the result follow.
a

We can now proceed with the,

Proof of the necessity parts of Theorem 1.3 and 1.4.
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Fix a, A € R and 1 < p < 4. Assume moreover that we have the conver-
gence (14) for every continuous f satisfying (12). Let n : R — (0,00) be a
positive even continuous function, decreasing in (0, 00), with limit 0 at oo.
We shall assume it decays very slowly later on. Let

X = {f : R —> R continuous with ||f]|x := sup [fW](x) (1 + |z))* n(z)~* < oo} )
TrER

Moreover, let Y be the space of all measurable functions f : R — R with
,_ A
1l = (W) @) @+ )2, < oo
Each f € X satisfies (12), so the conclusion of Thm 1.4 ensures that,

lim [|(f = La[f]D[ly =0

n—aoo

Since X is a Banach space, the uniform boundedness principle gives,

1 = LalfDlly < CllSlx,

with C' independent of n and f. In particular as Li[f] = f(0) (recall that
p1(z) = 71 (x)), we deduce that for f € X with f(0) =0,

1flly < Cllfllx-

So for such f,
ILa[Ally < 2C0FlIx (82)

Choose g, continuous in R, with g, = 0 in [0, 00) U (—o0, Sta,], with,
HgnHX = sup |g, W| (x) (10g (24 ‘x!)(s) =1,
TER
and for z;,, € <_%@n, ()),

W () (log (2 + |zja])” sign (0], (w5))) = 1.
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For example, (gnW(:c) (log (2 + |x|))6) can be chosen to be piecewise linear.
Then for z € {1.%},

L@ = | ¥ o) 2@

2},n€[~ ban 0) P (@jn) (2 — @)

_ ’pn(x)‘ Z (1 + |$j,n )70& n (Ij,n)

) |pInW| (Ij,n) (gj + |Ij,n|)

(L+ |zjal)""
(T + [2jnl)

1
l‘j,nE[*Ean;O

ClaTZ_L ’pn(x)’ n (an) Z ‘[jvn‘

xj n€[—22,—)

v

2z

2|7 (an) / ey

vV
2
e
S
S
3

v
S
e
S
=

3
2
=
=
N
S
o

Then by (83),

20 = 2C||gnllx = ||l Ln [gnllly
Caain (ap) ||paW (2)z>

v

Lp[L.p]

v

C1577 (an) H*’EA_Q

Ly[t.2]
by Lemma 5.1. We may assume that n decays so slowly to 0 that,
n(an) > (logloga,) ™",

(Note that we could have imposed this condition on 7 at the start, but delayed
this for clarity).
Suppose now that A — a > ’71. Then we obtain,

2C > C (loglog (ay)) ™" 10g .

Then for large n, we obtain a contradiction. So we deduce A — a < ’71 is
necessary. Consequently if for a given A € R, we have the convergence (14)
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for every continuous f satisfying (12) and for every o > ]l) then we must have
A < 0. The necessity part of Theorem 1.4 is proved.

Finally, for the necessity part of Theorem 1.3, we take A = 0 in the above
and deduce that o > %. a

Proof of Theorem 1.5
This is similar to the previous proof. We let X be the Banach space of
continuous functions f : R — R vanishing outside [—2, 2|, with norm,

1f1lx = I 2.2
We let Y be the space of all measurable f : R — R with,
1flly := lfWU| L,z < oo

Assume that we cannot find f satisfying (17). Then the uniform boundedness
principle gives (82) for all f € X. Again, when f(0) = 0, we obtain (83).
We now choose g, € X, with

1gnllx =1
(gnW) (gjj,n) Sign (p,n (Ij,n)) =1
in [—1, —%} ,gn = 01in (—o0, —2] U [0, 00) and
gnW (Ij,n) Sign (p;z (Ij,n)) > 0
in [—2,2]. Much as before, we deduce that for x > 1,

Lo [90] (2)] > Cad ‘pna(jx)\

Also by hypothesis, given A > 0, there exists Cy such that,
Ulx) > Azt [log@(x)]fi , v > Ch.
Hence by (83),
2C = 2C||gnllx = [[Ln [gn]lly
> C’lAaé pn(az:)I/V(x)azfTl [log Q(x)]_T1

L4[C3,an]

an Qan
5

> C3Aal [logn] ™ ||an||L4{ }
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by (47) and (53). Now by Lemma 5.1,

-1
=1 t K
IV > Cuat ‘ (e +o)
La I:a%, anj| G, Ly |:a%, (In:l
i 1
o 4
= O4an4 / an (1 + S)_l dS]
ogsg(l—;‘f;)/én

N

v

Csant [log {1 +Cd,, ! (T (“n)_l)”

;1
> Cean' (logn)t.

ST

Here we make the substitution 1 — ;- = 4,5, and also used (52) and (53).

Finally, using (84), we obtain

2C > C7A.

It is clear that C; is independent of A. Of course, this is impossible for

large A. So there must exist continuous f vanishing outside [—2, 2] satisfying
(17). O
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