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Abstract

We investigate mean convergence of Lagrange Interpolation at the
zeros of orthogonal polynomials p, (W2, z) for Erdos Weights W?2 =
exp [—2Q]. The archetypal example is Wy o, = exp (—Qk,q), Where
Qia(r) = exp(Jz|*) « > 1, where exp, = exp (exp (exp(...))) is
the kth iterated exponential. Following is our main result: Let 1 <
p<o0o,A€EREK>0. Let L, (f) denote the Lagrange interpolation
polynomial to f at the zeros of p, (W?,z) = p, (exp[-2Q], ). Then
for,

n—0o0

. —A _
lim |f ~ Lo (W (1 +Q) 2|, =0
to hold for every continuous function f : R — R satisfying,

lim (fW) (z) (log |z])'** = 0

|| =00

it is necessary and sufficient that,
2/1 1
A > 0,-(-—~-
w03 (5-3)}
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1 Introduction and Results.

In the past twenty years, there has begun to develop a general theory of
orthogonal polynomials, and associated approximation theory, for weights
on R [8,18]. In several aspects of the investigations, it has been helpful to
distinguish between Erdds weights and Freud Weights.

Freud weights have the form W? = exp [-2Q)], where @ : R — R is even
and of polynomial growth at infinity. The archetypal example is,

1

Wi(r) = exp (=Qs(x)) , Qp(w) = S 2I”, B> 0. (1)

Erdos Weights have the form W? = exp [-2Q)], where @ : R — R is even and
of faster than polynomial growth at infinity. The archetypal example is,

Wia(®) = exp (=Qk,a(r)) - (2)

where
Qio(x) :=exp, (|z|%), k> 1, a>0. (3)
Here exp, =expy = exp (exp (exp (...))) is the kth iterated exponential.

Given a weight W : R — R such as those above, we can define orthonormal
polynomials,

pn(x) =DPn <W2,$) = fYnxn TV ="n (W2> >0,
satisfying,
/ Dn (W2, x) Dm (W2, x) W2 (2) do = n
R
To those unfamiliar with the theory of weights on R, writing W2, rather
than say w for a weight might seem strange. However the square reflects the
Ly norm, and facilitates formulation of theorems. We denote the zeros of p,

by,
=00 < Tpp < Tp—1p- < Ton < T,y < OO

The Lagrange Interpolation polynomial to a function f : R — R at the
zeros {7, };_, is denoted by L, (f). Thus if P, denotes the class of poly-
nomials of degree < m and lj;, € P\_o, 00 < | <\, are the fundemental
polynomials of Lagrange interpolation at {xm}?:l satisfying,

Lin (xj,n) = 0jk
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then,

n

Ly (f) () = > f (wjn) ljn(@) (4)

j=1

For a large class of Freud Weights, mean convergence of Lagrange Interpo-
lation was investigated by several authors [1], [4], [11], [17]. The possiblity of
obtaining identical necassary and sufficient conditions for mean convergence
of L, arises from bounds obtained for p, (W2, z) by A.L. Levin and the sec-
ond author [6]. For notational simplicity, we recall the result of Matjila and
the second author only for W5, > 1.

Theorem 1.1. Let Ws(z) := exp <—%|x|ﬁ), g > 1. Given f : R = R,
let L, [f] denote the Lagrange Interpolation polynomial to f at the zeros of
pn (W2, ). Let 1 <p<oo, A€ER, a>0,and

T::%—min{l,a}—{—max{o,%(1—%)}.

. —A o
Jim |7 = L, (W (1 +1el) 2], -
to hold for every continuous function f : R — R satisfying,

A (fW) () (L+ |2])" =0

Then for,

it is necessary and sufficient that,

A>Tifl<p<4
A>rTifd<pand a=1
A>r7if4 <pand a# 1.

In describing analogous results for Erdés Weights, we need a class of
weights W? for which suitable bounds are available for p, (W?,.). These
were found in [7] and L, analoges were found in [10]. For our purposes, the
folowing subclass of weights from [7] is suitable:

Definition 1.2. Let W := exp[—@Q)], where ) : R — R is even, continuous,
Q@exists in (0,00) and the function,
2Q® (x)

T(x):=1+ 00 () (5)



is increasing in (0, co) with,

lim 7'(z) = oo, T(0+) := lim T'(z) > 1. (6)

T—00 z—0+

Moreover, we assume for some C4,Cy, C3 > 0,

T(x
Cl S xQ((l)(zr) S 027 x Z C13 (7)
Q(x)
and for every € > 0,
T(r)=0(Qz)),r — 0 (8)

Then we write W € &;.

The new restrictions over those in [7] are (8) and @@ > 0. The latter
is easily achieved by replacing @ by @ + |Q(0)|. The former is needed in
simplifing the formulation of our theorems. The principal example of W =
exp[—Q] € &1 is Wi o = exp (—Qk) given by (3) with o > 1. For this W,

ko1
T(x) = Thalr) = |1+ 2 [] exp, (z*), > 0. (9)

1=1j=1

Here (7) holds in the stronger form,

. T(x)
2, sgu = ! (10)
Q(=z)
and (8) holds in the stronger form,
T
lim (z) =« (11)

7% (M) log; Q(a)]

Here, and in the sequel, log (log (...))denotes the kth iterated logarithm.
For a@ < 1, the second part of (6) fails, but this can be circumvented by
considering W a (A + %), with A large enough to guarantee T(0+) > 1.

Another (more slowly decaying) example of W = exp[—Q] € &; is given
by,

Q(x) := exp [log (A + :(;2)6 , 0 >1, Alarge enough, (12)

4



for which,

212 g—1 A1 2A
R e R CICRNY) R s

Again (7) holds in the stronger form (10), while (8) holds in the stronger
form,

T(x)logx

im ————

The first results for mean convergence of Lagrange interpolation for a

class of Erdos weights appeared in [13]. However the restrictions there both

on W and on the growth of f are more severe, because the correct bounds
on p, (W?.) were not available.
Following is our main result:

=0 (14)

Theorem 1.3. Let W := exp[—Q] € &. Let L,[.] denote the Lagrange
Interpolation to fat the zeros of p, (W?2,.). Let 1 <p < o0o,A €R, x> 0.
Then for,

lim H(f—Ln[f])W(HQ)*AHLP(R) =0 (15)

n—0o0

to hold for every continuous function f : R — R satisfying,

lim|£17](a) (log Jal) " = 0 (16)

it is necessary and sufficient that,

A > max {o% G - %)} (17)

At first, the choice of the extra weighting factor (1+ @) in (15) may seem
rather severe. After all () grows faster than any polynomial. However, even
if f vanishes outside a fixed finite interval, we need such a factor if p > 4:

Theorem 1.4. Let W, L,, be as above and p > 4. Suppose that measurable
U : R — R satisfies,

lim inf U(z)z G5 Q)3 (i7) > 0 (18)

T—00



Then ther exists continuous f : R — R vanishing outside [—2,2] such
that,
lim sup || Ln[fIWU||p ey = 00 (19)

So for p > 4, no growth restriction on f, however severe, allows us a
weighting factor weaker than a power of 1 4+ (). One can formulate versions

of Theorem 1.3 for p > 4 that involve A = % G — %), and then one has to

introduce extra factors in (15), such as negative powers of 1+ |z| and negative
powers of T or log (2 + @)). Unfortunately one then needs extra hypotheses on
T to avoid very complicated formulations. One of the complicating features
here is that 7" may grow faster than any power of |z| (as in (9) for k£ > 2),
like a power of z (as in (9) for k = 1), or slower than any power of |z| (as
in (13)). Moreover, one has to compare T to log Q. We spare the reader the
details.

For p < 4, the weighting factor 1 + () is unnessesary strong. Let us
recall the Erdés—Turan theorem, as extended by Shohat (see [3,Ch.2,p.97]).
If f: R — R is Riemann integrable in each finite interval, and there exists
an even entire function GG with all non—negative Maclaurin series coefficients
such that,

o fHE)
|;1:l|1£>noo G(z)
and
/G(x)WQ(x)dx < 00
then

lim ||(f — La[f]) WHLz[R] =0

n—oo

For nice weights here, a result of Clunie and Kovari [2,Th4,pgl9], allows us
to choose G with

Gx) ~ W2 @) (L + o))" z€R k>0,

Here and in the sequel, the notation involving ~ means that the ratio of the
two sides is bounded above and below by positive constants independent of
x. (Later on, the dependence will be on n and possibly other parameters).
Thus we can ensure that (20) holds provided,

+5_ ¢

D=

lim (fW)(z) (1 + |2[)

|z| =00



Thus our result does not extend the classical result for p = 2.

Actually, the extension from continuous functions to Riemann integrable
ones can be completed in the context of the present paper, but would sub-
stantially lengthen the proofs, so is ommited. Our main emphasis in any
event, is the weighting factors required on L, or f.

By modifying the proofs presented below, we can prove results of the
form,

lim [|(f = Lo[f]) Wi,z = 0 (20)

n—00

with p < 4, but under severe growth conditions on f. For example, we need
to assume,

lim |fW|(z)T(z)*|z|" =0

|x|—o0
with suitable choices of a,b > 0. Of course T should not really be there. For
p = 4, a weighting factor is needed in (21). We hope to improve these results
to include the Erdos—Turan result in a future paper.

Thiis paper is organised as follows: In section 2, we gather technical
estimates from other papers. In section 3, we present some quadrature sum
estimates. In section 4, we prove the sufficiency part of Theorem 1.3, and in
section 5, we prove the necessity part of Theorem 1.3 and also prove Theorem
1.4.

We close this section by introducing some more notation. Given @ as
above, the Mhaskar—Rhamanov—-Saff number a, is the positive root of the

equation,
: /1 1 (ayt) =2 >0 (21)
u=— [ a, ayt) —/——, u
T Jo V1—2z?

For example, for W3, a, = C’(ﬁ)u%, u > 0. It is instructive to see how
ay. T (ay), Q (ay,) grow for the example @ = Qg o of (3). Here,

@, ~ (log, 1) (22)
T (a,) ~ 1:[ log; u (23)

M

Q) ~ {H g, u} 1)

7=1



To the unfamiliar, one of the of a, is in the identity [14],
IPW | Loefz) = 1PW | Loc-an an)s P € P (25)

Here and the sequel, P\ denotes the polynomials of degree < n. There
are also several L, analouges [15], [6], [7], for example, given £ > 0, there
exists C' > 0 such that for n > 1 and P € P, [6], [7]

||PWHLP[R] S CHPWHLOO[*an anb (26)

In the sequel, C, 4, Cs... denote constants independent of n,z and P €
P\. The same symbol does not necessarily denote the same constant in
differences occurrences.

The nth Christoffel function for a weight W? is,

o 2 N . (PW)2dt
A(x) 0 =X (W ,x) = Pelgf,l . Pia) (27)
B 1
Y% pi()
The Christoffel numbers are,
Ain = (W j0) 1<j<n. (28)
The fundamental polynomials /;, of (4) admit the representation,
Lin(2) = Ain 221 (270) Pu(2) (29)
’ ™ Y e -,
The reproducing kernel for W2 is,
n—1
Ky(z,t) : =K, (WQ,x,t) => pi(z)p;(t) (30)
=0

Yn—1Pn (gj)pn—l(t) — Pn (t)pn—l(gj)
V(T — 1)

(the Christoffel-Darboux formula).



Given measurable f : R — R with f(z)2/W? € Li(R) Vj > 0, the nth
partial sum of its orthonormal expansion with respect to W? is denoted by
Sn|f](x), and admits the representation,

Sulfl(a) = [ Kula. ) FOW ()t (31)
If we introduce the Hilbert Transform of g € L, (R) by,

Hlg|(z) := lim 9()

=0+ Jjg—t|>e T —

dt, (32)

(this exists a.e. [20]), then we may use the Christoffel-Darboux formula for
K, (x,t) to rewrite (32) as,

Sulf) = 22 {puH [ fpasW?] = pucaH [fpa?]} (33)

n

Finally, we define some auxillary quantities:

wino

O = (nT (an)) 2, n > 1. (34)

This quantity is useful in describing the behaviour of p, (exp[—2Q)], )
near x,. For example,

LS,
S =5

Tin
an(Q)

Here L is independent of n. We often use the fact that §,, is much smaller
than any power of —+—, see section 2. We also use the function,

(35)

T(an)’
— _ _
U, (x) ;== max < /1 + Loy, |T (an) /1 + Lé, , 2| < ay
Ap, G,
(36)
and set
U, (z) =T, (an), || > a, (37)

This function is used in describing spacing of zeros of p,, behaviour of
Christoffel functions and so on.



2 Technical Lemmas

In this section, we gather technical estimates from various sources. We begin
by recalling a number of estimates from [7]. Throughout, we assume that
W = exp[—Q)] € €.

Lemma 2.1.

(a) Uniformly for n > 1 and |z| < a,,

2 p 1179
~— v 1
A (W2, ) W (@)W () (1)
(b) Forn >1,
“nyf < o, (2)
G,

Uniformly forn > 2 and 1 < j <n —1,

ap,

Ljn = Ljtin ™ ;\Pn (75n) (3)
(c) Forn>1,
1
Ll
sup |p, W] (z) |1 — — an® (4)
TER mn
and

D=

sup [paW | (2) ~ an? (nT (a,))

TER

(5)
(d) Let 0 <p < oo. There exists C' > 0 such that for n > 1 and P € Py,

Moreover, given r > 1, there exists C; > Osuch that,

[PW L, ) < exp [=Cin] |[PW | ~a, an) (7)
(e) Forn>1,
Tn—1
~ 8
Tn ®)

10



f) Uniformly forn >2and 1 <j<n-—1,
( y j

1 — |I]an| + L(Sn ~1— |$j+17n
(7% Qnp,

+ L,

and
Vo (2j0) ~ U (Tj41,0)

Here, Lis chosen so large enough that (36) is true.

(g) Uniformly forn >2and 2 <j<n-—1,

. 2
o) (1 222h 1) 1 030

n

s | S

l %] !
~ ah |[pnaW| (@) ~ |1 — ==+ LJ,

Qnp,

Proof.

(a) This is part of Theorem 1.2 in [7].

(10)

(11)

(b) (40) is part of Corrolary 1.3 in [7] and (41) is Corrolary 1.3 in [10] (A

weaker form of (41) appears in Corollary 1.3 in [7]).

(c) This is Corolary 1.4 (a) in [7].

(d) (44) is a special case of Theorem 1.5 in [7] and (45) is a special case of
Lemma 2.5 in [7]. This is (10.33) in [7]. (47) is (9.9) in [7] and (48)

follows immediately from (9.9). This is Corollary 1.4 (b) in [7]. O

Next, we recall some results from [9], [10], involving mostly the funda-

mental polynomials of Lagrange interpolation:

Lemma 2.2.

11



(a) Let 0 < p < oco. Then for n > 2,

ISESHT
D=

||an||Lp(R) ~oa (12)

i p=4

(b) Uniformly forn >1,1<j<n,x €R,

Ué |$n % Pn(gj)
()] ~ 2 (W) () (1 _ Jzial | Lan) ) )
J n J ap, T —Tjn
(¢) Uniformly forn>1,1<j<n, x € R,
(@) W (@)W (250) < C (14)

(d) Forn>21<j<n-1, z€xj,Tj1nl

Lin (@)W (@)W (250) + L (@)W (@)W (2)410) 2 1 (15)

Proof.
(a) This is Theorem 1.1 in [10].
(b),(c) These are Theorem 1.2 in [10].

(d) is a special case of the main result in [9]. O

Next, some technical estimates on the growth of a,, @ (a,),T (a,)ect:

Lemma 2.3.

: . . ®)
(a) Given r > 0, there exists xy such that for x > zp and j = 0,1, 2, %ﬁ
is increasing in (z,, 00).

12



(b) Uniformly for v > C and j = 0,1, 2,

=

aiQ(‘j) (ay) ~ ul (au)ji

(c) Let 0 < @ < . Then uniformly for u > C, j =0,1,2,

T (aau) ~T (aﬁu) ) Q(j) (aau) ~ Q(j) (aﬁu)

(d) Given fixed r > 1,

Gy log r
s 4
ay, T (ary,)

Moreover,
Ay ~ Ay U € (1,00).

(e) Uniformly for ¢ € (C, o0),

/
ay 1

ay ~ tT ((lt)

(f) Uniformly for u € (C, 00, and v € [%, 2u], we have,

1
T (au)

NE_1‘

Proof.
(a) This is Lemma 2.1 (3) in [7].

(b)—(f) are part of Lemma 2.2 in [7]. O

, u € (0,00).

(18)

(19)

(20)

Our final lemma in this section concerns estimates that specifically follow

from (1.8):
Recall that 0, was defined by (35).

Lemma 2.4.
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(a) Let £ > 0. Then,

an, < Cn®, T (a,) < Cn®, n > 1. (22)

(b) Given A > 0, we have,

8p < CT (an)™", n>1. (23)
(c) Let 0 <n < 1. Uniformly for n > 1, 0 < |z| < ayy, |2 = a,, we have,

Cy < T(x) (1 - @> <Oy logg (24)

n

Proof.

(a) From (54) for j = 0, we have,

D=

Q (an) ~ nT (an)"? < nT (a1)

Since ) grows faster than any power of « (Lemma 2.3 (a)), we deduce,

a, <n°,

for n large enough. Also (8) then shows that,
T (a,) = O (Q (a,)?) < COn®.
(b) This follows as,
2
571 S n_gj_y(al)ig )

that is 0, decays faster than a power of n, while T (a,) grows slower
than any power of n.

(c) Firstly if % < 1, then,



, write |z| = as, so that s < nn,

T(x)( —f—') > T (a,) (1— Z) > O,

by Lemma 2.3 (d). So we have the lower bound in (2.24). We proceed
to the upper bound. We can assume that © = a;, s > 1, and n > ny.
Then using the inequality

1—u<|logu|, ue(0,1).

we obtain,
!

(2] = b L2
(07% s Ay
log —.0O0

= C/ tT (@) = Tlay) %85 = Ty %8

lo

3 Quadrature Sum Estimates

We present two quadrature sum estimates, the first of which is really part
of a Lebesgue function type estimate. The second involves quadrature sums
for polynomials.

Lemma 3.1. Let € ( )and

(@)= 3 lea@)| W (@r0).- (1)

‘xk,n‘zaﬂn
We have for |z| < ag. and |z] > agy,
(S, W) (z) < C (2)

Moreover, for as. < |z| < agy,
2

(S.V) (2) < C (logn +ab |PW] ()T (ap)

el

SN———
—
w
~
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Proof.
Let ¥, ;(z) denote the sum X, (x) omitting those terms xj, for which
T € [Thion , Th—24), (if there are any such k). Here and the sequel, we set
forl > 1,
Ti-in = T1n + l(sna Tprin - — Tpn — l(sn (4)
Of course the sum ¥, — ¥, ; consists of at most 8 terms. Each of these 8
terms admits the bound in Lemma 2.2 (c). So,

(X = Xn1) W(a)| < Ch. (5)
Next, by Lemma 2.2 (b) and Lemma 2.1 (b),
(1)

1
- 4
(SaaW) (@) ~ ad [PV ] (z) S o Z i) () Joeal g5
| |I_$k,n ap,
(6)

Here the (1) indicates that the sum omits those & for which x € [0, Tg_2.4)-
Now (cf. (47)),

|xk,n | Zaﬁn

t n
1—£i+&%~1—EﬁJ+L%7“ﬂﬂﬂﬂ%A’ 0

Qnp

uniformly in k£ and n. Next, if © € [Tpt0, Th—2,], and t € [Tht10 il

x—1 L — Tpp

Trn — Tk4+1,n <.

_1‘:

T — Ty, T —Tpp|  |Thion — Ten| ~

Similarly we bound % So,

[z —t] ~ v —2pnl, t € [ThiinThnls T E [Thion Th-2n] - (8)

In view of the spacing of the zeros (Lemma 2.1 (b)), we deduce that,

_ i
v N 1 P (1 - +L(5n) p
(X W) () ai |[P,W| (2) agn<Iti<an t  (9)
|t—a]> 028w, () |t — |
1
(1 —|s[+ Ldn)"
‘S e ds

an

;
= an |P,W| (x)/ Ln <511

‘s—ﬁ’ZC%\Ifn(x)

16



1
T(an)’

Note that since §,, is much smaller than

A gn 1
< _ O <o
1+5+L5n_(]2<1 aﬂ)_ogT(an)

(See Lemma 2.3 (f)). Then we obtain the bound,

(S0aW) (1) < Cai [PV (T () ¥ [ oas _ds

Now if 0 < x < agn or x > a9y, then for n > n, ?77? we can bound the
2
integral by,

S

4 % Qop | % agn -

2 (1——>max ‘1—— - = ) <,
G, G Qn, Qn,

by Lemma 2.3 (f). In this case the bound (42) gives,

N

(SW) (@) < Cs (\1 N

)SCG.

so we have (64). Now let us turn to to the more difficult case where as. < ag,.
2
We bound the integral in (71) as follows:

LBn <5<t ~zf

an
Qn

‘s—%‘ZC%\Pn(m)

/ (L ||+ L)%

s

1 1
(1 - S)Z ((sn)Z
< 07[/ Ln cjs1<a ‘S N ds +/ 2n e s _ Lol lds

[s—Z 20w I o [s=an [2C 5 ¥n (@)

= [+ L.

n

Now since %\I!n(:c) is bounded below by a power of n, we see that,
1
_[2 S 0857% IOg n.

17



If x > a,, we estimate,

=

(1—s)3 _
Il S /aﬂ_n WCZS S OgT (CLn)

an

T\ 1 ik
e (I
' Qp ve|:0,(1 aﬁn):| ‘U-l’ v

1
ve[0,2] w1l dv +
lv—1|>C —Xnle) _ ’U - ‘
> -

A
S
=}

7N

—_

|
Sk
N————
NP
—_
—

N
—

1
< Cu (1 - £) ' logn + T (an)”
Qn,
Combining our estimates for 1, I, and using the bound,
1 1
ai |paW(x)| 04 < C,

which follows from (43), we deduce (65) from (79). O
In our second quadrature sum estimate, we need the kernel function for

the Chebyshev weight,

v(t) == (1-#2)

If pj(v,z) = \/ETJ (x)is the jth orthonormal polynomial for v (at least for
j > 1), then,

(M

, te(—-1,1) (10)

n—1

Kp(v,x,t) = ij(v,x)pj(v,t) (11)

7=0
admits the following results [19,p36], [16,p108]:

Ky(v,zx) ~n, |z| <1. (12)

18



Also,

V1I—a22+V1-12
|z — 1|

| Ky (v, 2,t)] < Cmin {n, } , x,te[—1,1]. (13)

Lemma 3.2. Let 0 < < 1. Let ¢ : R — (0,00) be a continuous function
with the following property: For n > 1, there exist polynomials R,, of degree
< n such that,

(t)
) < < Oy, |t| < ayy,. 14
Then for n > ng and P € P,
Q4n
Z )‘j,nPW_l (gjj,n) d’ (gjj,n) <C |PVV|§ZS (15)
|Zj,n|<ann T an

Proof.
Essentially the proof is the same as in [13], and the ideas appeared much
earlier [16], [17] but we include the details.

Step 1: Christoffel function type estimate
We first note that for P, € Py,

(PP (2) < Ayt (W2e) /R (PLW)2 ()dt
< O ()™ [ (PP @t

by Lemma 2.1 (a), (d). We deduce that,

1|12 G4n _1 1
‘letlfjn <ot P1\If4n’2W(t)dt‘ ‘ PWVWE,
Loo [701471 a4n} Ap J—a4n Loo[*a4n a4n]
and hence that for |z] < a4,
1 n A4n 1
PULW ()| < O [ P1\114n2W(t)dt‘
Ay J—a4y

19



Now we apply this for fixed |z| < a4, to

Py(t) := Py(t)K? (U, L L)

Q4pn  Q4n

where Py € Psy,,. We obtain, using (74) that,

]_ Q4n
< Cy— /
nay, J—aan
In particular, applying this to P, := PR,,, where P € P,, and using (76), we
obtain,

1
P2 W(x)

_1 t
P2\1/4T§W(t)‘ K? <y, = —) dt

Q4pn  Q4n

‘qu%nWop(x) <ot /

na, Q4n

P¢\11;§W(t)‘ K? (v, v i) it (16)

Q4n  Q4n

Step 2: The general quadrature sum bounded in terms of a special
quadrature sum
_1
We take (78) for © = x,,, multiply by \;,,W ™2 (x;,) ¥,,? (2,), and sum
over all |z;,| < a,,. Using our estimate for Christoffel function A, (W?,.) in
Lemma 2.1 (a), we obtain,

> Aim
|37j,n|fann

<af " PW| () (1)dt

Q4n

PW ™! () ® (),0) (17)

1 ot
So) = Y W () W () K (0,222,

Q4pn  G4n

Juim s

|zj,n] <ann
Then the result will follow if we can show

Ea(t) £ Cs, [t] < auy (19)

Step 3: Estimation of (80)
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First note that for |z| < a,y,,

(o) ~ )~ (1- @)%

G
Now since %\Ifn(x) is bounded below by a power of n, we see that,
1
_[2 S 0857% IOg n.

If x > a,, we estimate,

(1—s)3 1
Il S /?_n" st S CgT (Cln) 4.

If x < a,, we make the substitution 1 — s = (1 — é) vto get,

1
T \1 v
W (5 ey
1 an [(L>] v —1]
)
l—1|>C —nlz)

n(1-3%)
C (1——) tf L oas
10 ve[oﬂn(w |U_1| v
&)

N,

[N

|v— 1|>C

[0

< Op (1 — £>Z logn + T (a,)”
Qn

N

}

Combining our estimates for I;, Iy and using the bound,
0 [paW (2)] 84 < C,

which follows from (43), we deduce (65) from (79). O

In our second quadrature sum estimate, we need the kernel function for
the Chebyshev weight,

v(t) = (1 —tz)*%, te(-1,1) (20)
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If pj(v,z) = \/gT](x) is the jth orthonormal polynomial for v (at least for
j > 1), then,

n—1
Kp(v,x,t) = ij(v,x)pj(v,t) (21)
=0
admits the following results [19,p36], [16,p108]:
Ky(v,zz) ~n, |z| <1. (22)

Also,

V1I—a22+V1-12
|z — 1|

| Ky (v, 2,t)] < Cmin {n, } , x,te[—1,1]. (23)

Lemma 3.2. Let 0 < < 1. Let ¢ : R — (0,00) be a continuous function
with the following property: For n > 1, there exist polynomials R,, of degree
< n such that,

t
0 < gf(z) < Gy, ] < aun. (24)

Then for n > ng and P € P,

S A PW T (wg0) 6 (i) < C [ [PW ]S, (25)

|z5,n]<ann ~dan

Proof.
Essentially the proof is the same as in [13], and the ideas appeared much
earlier [16], [17] but we include the details.

Step 1: Christoffel function type estimate
We first note that for P, € Py,

(P (2) < Ayt (W22 /R (PLW)2 ()dt
< O ) [T (R e,

n —Q4n

22



by Lemma 2.1 (a), (d). We deduce that,

1|2 G4n _1 1
‘HW\PE” < 013/ ' P1\114n2W(t)dtHP1W\1/jn
Loo[—a4n aan] Ap, J—aan Loo[—a4n a4n]
and hence that for |z| < a4y,
1 n A4n _1
P2 W () <> / P1\114n2W(t)dt‘
an —Q4n

Now we apply this for fixed |z| < a4, to
r t
Py(t) :== P tK2< — —)
1() 2() n Vs a4n7a4n

where Py € Py,. We obtain, using (74) that,

1 Q4n
ol
nay J—aap

In particular, applying this to P, := PR,,, where P € P, and using (76), we
obtain,
1 Q4n
< C3— /
nay J—aan

Step 2: The general quadrature sum bounded in terms of a special
quadrature sum 1

We take (78) for = x,,, multiply by \;,W 2 (2,,) V4,2 (2,), and sum
over all |x;,| < a,,. Using our estimate for Christoffel function A, (W?2,.) in
Lemma 2.1 (a), we obtain,

1 1 t
PUE W () PZ\IIMZW(L‘)‘ K2 (v, L —) dt

Q4n  Q4n

‘P\I/A%RWQS(x) ng;\ijW(t)‘ K> (v, = i) dit (26)

Q4pn  Q4n

Y A

[zj,n<ann

<af I PW|(4)S, () dt,

Gan

PW | (2j0) ® (37,0) (27)

where,
_1 Tin t _1
Sat) =0 S W (i) W () K7 (0,22 ) W) (28)

a a
(%] <ann 4n Pdn
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Then the result will follow if we can show

En(t) S 057 ’t‘ S A4n

Step 3: Estimation of (80)
First note that for |z| < ap,

(o) ~ W) ~ (1 @)%

Qp
Now since %\Ifn(x) is bounded below by a power of n, we see that,
I, < Cq ,% logn.
If x > a,, we estimate,

1
(1—s)% _
I < /ia% st < CoT (an)

IS

1 1
T\ 4 V4
hoe (25 ey
' Qn ve[o,(l aﬁn):| |U—1| Y

1
velo,2] 71 dv +
|U,1|>C‘1’n7(1) |U - |
- onl1-

T
an

AN
S
o

7N

—

|
=
N———
S
—_
—

N

< Cp (1 — aﬁ)zlogn—i—T(an) }

Combining our estimates for /7, I and using the bound,
1 1
ai |paW(x)| on < C,
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which follows from (43), we deduce (65) from (79). O

In our second quadrature sum estimate, we need the kernel function for
the Chebyshev weight,

v(t) = (1 - tQ)_% Jte(—1,1) (30)

If pj(v,z) = \/gT](x) is the jth orthonormal polynomial for v (at least for
j > 1), then,

n—1

Kp(v,x,t) = ij(v,x)pj(v,t) (31)

7=0
admits the following results [19,p36], [16,p108]:

K,(v,zx) ~n, |z] < 1. (32)
Also,
[—22+VI- P
| K (v, 2,t)| < Cminqn, V-4V , x,te[—1,1]. (33)
|z — 1|

Lemma 3.2. Let 0 <7 < 1. Let ¢ : R — (0,00) be a continuous function
with the following property: For n > 1, there exist polynomials R,, of degree
< n such that,

(1)
< < t| < agp. 4
Ol_Rn(t)_CQJH_(M (34)
Then for n > nyg and P € P,
Z Ajn PV - () ¢ (2j0) < C ' |PW (. (35)

|zj,n|<ann ~aan

Proof.
Essentially the proof is the same as in [13], and the ideas appeared much
earlier [16], [17] but we include the details.

Step 1: Christoffel function type estimate
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We first note that for P, € Py,
(PW)? (z) < A (WQ, x) / (PW)? (t)dt
R

< G- (o) [

n —Q4n

Gan

(PW)* (t)dt,
by Lemma 2.1 (a), (d). We deduce that,

2 A4n
‘ < 013/ 4

1
PWU2,
Loo[*a4n a4n} Qp J—a4n
and hence that for |z] < a4y,

1
W2,

_1
P W(t)dt‘ ‘

Lo [*a4n a4n]

1
P W(z)

n Q4n
< Ol_/

an —Q4n

_1
P1\1/4n2W(t)dt‘
Now we apply this for fixed |z] < a4, to

Py(t) = Py(t) K2 (U, L L)

Q4n Q4n

where Py € Py,. We obtain, using (74) that,

1 ]_ Q4n _1 T t
RLW )| < G [ i k2 (v, )
Ny J —a4n Qan Aan
In particular, applying this to P, := PR,,, where P € P, and using (76), we
obtain,
1 1 asn _1 9 r t
‘P\I/jntb(x) <C— | ng;\l/4n2W(t)‘Kn (v,—,—) dt  (36)
Ny J —a4n Q4n  Qan

Step 2: The general quadrature sum bounded in terms of a special
quadrature sum
_1
We take (78) for © = x,,, multiply by \;,,W ™2 (x;,) ¥, (2,), and sum
over all |x;,| < a,,. Using our estimate for Christoffel function A, (W?2,.) in
Lemma 2.1 (a), we obtain,

> Aim
|37j,n|fann

<af I PW| (1) (1) dt,

Q4n

PW ™! () ® (),0) (37)
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1 ot
So) = Y W () W () K (0222,

Q4p  G4n

Juim 69

|zj,n] <ann
Then the result will follow if we can show

Step 3: Estimation of (80)
First note that for |z| < a,p,,

(o) ~ W) ~ (1 M)%

G,

This follows easily from the fact that 1 — Jﬁ} > C4T (ay) for this range.
Moreover,

1 2
Wonlt) > <1 S L6n>
Q4
for |t| < aygy. Let us set,
Tin t
Yjn = R T = —
Q4p Q4p

Then we have, using also (75) and the spacing in Lemma 2.1 (b), that,

N

1
t : C Tinl) T
50 (1-Bazs) < 5 e (- 220) T (022
an, Ny, ). | <an Qan Q4n  Q4n
_1
< Cen™' D (Yim = Yira) (1= 1ynl) 7"
[Yj,n]<ann
2
\/1 —yj,n2 + \/1 -T2
X min < n,
[Yjm — T

A

\/1—y2—|—\/1—T2}2
dy

1 1
ot [0 win
on” [ (1 —1y|)” % min {n —

27



In bounding the sum in terms of the integral, we have used (47). Let us
assume that 1 —n~2 > T > 0. Then we can continue the above as,

2 _1
" ny[O,l]:\y—T|§%(1_T)% (1 - y) 4dy

1 -1
Spt)(1=T)1 < Cion | —y) tluElT gy

ny[O,l}:|y7T\2%(1fT)% ( ly—T?
) i 3 _1
| n*(1 T)4fw:\1—w|§%(1—T)_%w tdw
— 10 _1 _1 14w
+(1 - T) 4 fw:|1*’w‘Z%(1*T)_% w 4 [1—w|? dw

(substitution 1 —y = (1 — T)w)

< On(l-T)%

Here we have used the fact that,
1

“1-T): <1,
n( ) 2 <

So in this case, we have (81). In the remaining case where 1 —n™2 < T < 1,
we continue (82) as,

N

S, (t) (L6, (Ll Ly
(8) (£6) I (1 - y) iy

2 1
< 01271_1{ " yE[O,l]:ly—T‘§4n_2(1 —y) idy }

(M

< Cizn:

1
Since 64 decays scarcely faster than n~s we again have (81). O

4 Proof of the sufficiency conditions

In proving the sufficiency conditions, we split our functions into pieces that
vanish inside or outside {—a%, a%}. Throughout, we let xg denote the char-
acteristic function of a set S. Also, we set for some fixed k > 0,

o(z) = (log (2 +22)) ", (1)

Throughout, we assume that W = exp[—Q)] € &1, that 1 < p < oo, and,

A>max{0,§(i—;—)>}. 2)
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Lemma 4.1.
Let {f}22, be a sequence of measurable functions from R — R such that
forn > 1,

fulz) =0, |7 < az; (3)
1, W(z) < @(x), v €R (4)

Then,
Jim Lo (LW A+ Q72 =0 (5)

Proof.

Firstly for [z| < an or [z > agy, Lemma 3.1 (with 8 = §) and (86), (87)
show that,

Lalfd W) < @ (az) D |len(@)| W (2r0) W(2)

‘mk,n ’2“%

).

A

Cl¢ (CL

©ol3

So,
HLn [f] W1 +Q) 2 HLP <(|x|ga%)u(|x|za2n))

< G (ag) |0+ Q)iAHLP[R] < a0 (03)

Here we have used the fact that @) grows faster than any power of 2 (Lemma
2.3 (a)). Next, for an < |z[ < ay,, Lemma 3.1 gives,

L [f:] W1 (@) < Cs6 (az) {logn vl |PW|(2) T (an)%}

Also for this range of x,

=

Qz) ~ Q(a,) ~nT (a,) 2.
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So,

1y —A 1
+Cs0 (a%) (nT (an)_5) T (a,) %an < 1 1 ,p <4
(ognm)i  p=4
L nT (an)%(%fz%) ,p >4

by Lemma 2.2 (a) and Lemma 2.3 (f). Since T (a,,) and a,, grow slower than
any positive power of n (Lemma 2.4 (a)), we see that the right hand side is

0 (gf; (a%)) = 0(1), because of (84). O

Next, we deal with functions that vanish outside [—a%,a%]. We sepa-
rately estimate the weighted L, norms of their Lagrange interpolants over
[—aa,aa] and R\ I:—aﬂ,(lﬂ].

8 8 8 8

Lemma 4.2.
Let {g,}.-, be a sequence of measurable functions from R — R such that
forn > 1,

gn(z) =0, |z| > ax; (6)
9. W] (2) < ¢(2), z € R (7)
Then,
. —A .
Jig [l W1+ Q8 g =0 0
Proof.
For > az,
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1kl gg,)

¢ (Ik,n)

xr >

< Ciad pn(2)] Y (Thm — Thyin)
|Ik,n|§a%
(by Lemma 2.2 (b) and (2.3))
1 a% (]__gl'_FL&n)Z
< Caai [pa(w)] " o(t)dt.
—an |z — ¢
Here we have used the monotonicity of ¢ and (69). Next, for t € {0 an]
a%, . .
n—1 dn 1 an
(R S Tt SN0
x—1 11— 1-—=
%
by Lemma 2.3 (f). Moreover
It 1
>C >> 0y
an, 4T(an)
So,
; § (an = 0)1
Lalond @) < Csai lp(a)] [ —o(ds
< Coad [pa(s Iy - te()dt
Here if t = a,, § > 5> 1, we havefoerag
t Qs a
— 1= 1— - ar |1 — > C =
! x( x)— ( ags)_ T (a)
So,
L an 3
Lalga) (@) < Csa® [pa(@)] [ " T ()t
Thus,
- §
_1 an 3 —A
< o’ [ /0 EAORTC >dt} Q ( 8 15l
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It is easy to see that the integral involving ¢ in the last right hand side grows
slower than any power of n. Then using (84) and the estimate on |[p, W{|,
provided by Lemma 2.2 (a), we obtain (90). O

We now turn to the most difficult part of the sufficiency proof, namely the
estimation of HL” [gn) W (1 + Q)‘AHL . We present the most technical

<
P |x|7a%

part of this as a seperate lemma. Recall the notation (31-34) for partial sums
Syl -] of orthonormal expansions with respect to W2

Lemma 4.3.
Let 0 : R — R be a bounded measurable function. Then,

|n [ow =] W +Q)‘AHLP[ < Cllo g, (9)

el<ay ]
for n > 1. Here C' is independent of ¢ and n.

Proof.

We split this into several steps. Part of the difficulty lies in that we
cannot simply estimate Hilbert Transforms in L, with the weight (1+Q)™>
as it does not satisfy Muckenhoupts A,condition [20]. We may assume that
ol ooy = 1-

Step 1: Split S,[.](z) into several terms depending on the location
of z
First note that by (34) and by our estimates for =% and p,, (see Lemma

2.1 (c), (e)),

S [ooW ] W(z) < Cral (1— @>_Z Z H [o¢p;W] (z) (10)

Now let us choose [ := [(n) such that,
2l S g S 2l+1 (11)

Note that us choose [ = [(n) guarantees that,

213 < . (12)
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Define,
%k = [azk, a2k+1], k Z 1 (13)

The reason for this choice of intervals is that,
Q(z) ~ Q (as) ~ 2T (ax), = € Iy, (14)

uniformly in k. For j =n — 1,n and z € Sy, we split,

Hloop,W](z) = [/OOO+/O%'“_1 +PV. /k+ +/aoo ]Mdt(lf))

ok—1 ok+2 T —
= L1 (2) + L(z) + I(z) + Lu(2).
Here P.V stands for principle value.

Step 2: Estimation of I; and I, for = € &
We see that (recall x > ay),

L ()] S/ ;W ( )dt
0 t+x
-1 % 0() -1 [
<Cn2/ dt +C. / W (£)dt
< Gn® | + Caa,, %&!Pg | ()
S CgCLT_L%.

Here we have used the bound (42), the bound for ||p,W/||; 5 in Lemma
2.2 (a), and also the form of ¢ (recall (83)), which guarantees that,

/Ooo f(—j)tdt < o0. (16)

Next the bound (42) gives,

|IQ(SL‘)| < / k-1 ’pJW¢’ (t) dt
0 r—1
1
1 T\ "1 for-1 dt
< cat(1-2)"
- 1 (% 0 T —1
1 r\ "1 Qgr-1\ 7t
= Cyan? (1 — —) log (1 — )
an, T
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Now

a2k—1 alec—l 1 ]_
>1- > ()
x age T (ag) —  °T(z)

1—

Thus,

()] < Cran (1= ) P log (GaT (@),

n

W=

Step 3: Estimation of I, for z € &
Now using our bound (42) again gives,

o |pWe|(t
L) < [T Ao,
a2k+2 t—ZE
1 L2054 t -1 dt 1 rmaxq2a,p19,%R t
< C’g[anZ/ ok+2 1ot 4 +an2/ { 2k +2 z}mdt
a2k+2 (ln t — T 2a2k,+2 t
LI,
4n t
_1
< Cyan*[1+ J]
where,
Jo_ /2a2k+2 1_i*i dt
oht2 a, t—x

(We have used (98) and the bound on the L; norm of p,,W.) Here if ‘1 - é‘ <
1 (1 - —) then,

It — x| = ap

(-2 (- Dl (-2)

Thus,

x\ 1 dt
J < C (1——) [iiopon) T
< Culll= ) Jotao2) T2

t€lasnt2, 2a,k42]

S R
T ( a,) JaEEIE) T,

t€[ayht2 205k12]

4
dt

34



1
< C’12[<1—£> 4log (14—%)
an, Agh+2 — &
-1
+(1—£> / 11— s|"tds]
p 1-s|<i(1-2)

< Cis (1 - a£> "log (CaT'(x)) .

Step 4: Estimation of [[S,[][|; s,
Combining our estimates for I; j = 1,2, 4 gives,

1
_1 T\ 4
L+ I + L] (2) < Craan® (1 - a—) log (C1sT(x)).
Together with (92, 96 and 97), this gives,

[s: foomw =W @], o

AN
O
—

S
N

B
~—

|
>
N
—_
|
S
[~}
B
s
N———
N

a’n
_1 1
(1 — aif—n“) *log (CisT (age+1)) (agerr — age)?

W(t
Fai Xy [PV [ 20 gy

‘Lp[%k}

We use M. Riez’ theorem on the boundedness of the Hilbert transform from
L,(R), to L,(R) [20] to deduce that,

HPV/ iz oopWH)
r—t

Lp[Sk]

ok+2
< 017/ |odp; W I (t)dt
a2k_

) ! (02k+2 — (12]9—1) .

A9k+2

_b
< Ciran? (1 -

G,

Next, note that, in view of (94), n > 2¥3 for k < I, so,

(1 _ a/2k+1> Z (1 _ (12]9+2> Z 1 _ Aok+2 Z 018 1
ap ay, Qok+3 T (ag)
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Similarly by using the triangle inequality (if necessary) and (59) we can
1
bound (agr+2 — agr-1) and (agr+1 — agr)? to yield,

< 020Q(CLQ’“)_AT(CLQk)%10g(015T(a2k+1))( Aok >p

Sy [ooW ] W1+ Q)*AHLPM] (17)

Step 5: Completion of the proof

The estimation of S, [.] (z) for # € =) = [—age+1 — agr] is exactly the
same as for x € Jy. Since we have (96), and since agr, 1" (ayr) grow much
slower than @ (ayr) (Lemma 2.4 (a)), we obtain,

4
< kz_:l HS" [aquW_l] W(l+ Q)_AHLP[S,J

Su [ooW T W1+ Q)2

Lp {azg\w\ga%]

—kpA

I
< Cyn ) 272 <Oy
k=1

The estimation of ‘Sn (oW =W (1 + Q)‘AHL fol<as] is similar but easier.
Pl|T[Sa2
We split,
—2as 2a2 00 W t
HloopWI@) =1 " +rv. [ "+ ]Lf ’ t( at.
—0o0 —2a9 2a2 —

The first and third integrals may be estimated as we did before, and the
second is estimated as we did [3. O
Armed with this lemma, we can complete the estimation of L, [g,] over

[_aﬁn ?aﬂn] :

Lemma 4.4.
Let € € (0,1). Let {g,} be as in Lemma 4.2, except that rather than
(89), we assume that,

gaW | (2) < e¢(x), T €Rn > 1. (18)
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Then,
lim sup HL" [ga] W (1 + Q)_AH

n—00 Lp |:|37|S‘1%:| -

where Cfis independent of n,{g, } and «.

Proof.
Let,

o i=x [og, az]iou = sign Syl
We shall show that,

|Lalgd W+ @72, [

Then Lemma 4.3 gives the result. Let,
hn = sign (L [94)) | Ln [92) P~ xaWP2(1 4+ Q) 2.

Then using the orthogonality of f —S,[f] to P,_1, and the Guass quadrature
formula, we see that,

|Zanlgad W1+ Q)2

]g(]s(

sisag Sh [UQSW*} W(l+ Q)_AHLP {MS(I%}

R

<
Lp |:|x|7a%j|

B /RL” [9n] S [Fun] W? = zn: Ajnn (Tjn) S [Pn] (,0)

J=1

- Z NjnGn (Tjn) Sn [ha] (75,0

’xk,n‘<a%

< e D Nad (@) W () [Sn [ha] (20)]

’xk,n‘<a%

< Ce [ oW IS, (k]

by Lemma 3.2. Note that it is easy to verify the approximation property in
Lemma 3.2 for ¢ (in fact Jacksons Theorem gives polynomials of degree o(n)
satisfying (76)). We can continue this as,

= C’g/R¢UnW71W2‘Sn (]|
- Cg/RhnSn {¢0nW_l] w?

— Ce [ 1S, [po, W W2

e
oS
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for h,has its support inside {—a%,a%] . Using Holders Inequality with ¢ = p%l,
we continue this as,

1
= P
q

oo (12 vt [

8

Sn [poa W W (1 + Q)”)

= Os‘

Ly [g2] W (1 + Q)—AH’;[ S [poW W (14 Q)72

I\Sa%] Lp [|$|Sa%]

Cancelling the p — 1th power of ||Ly,...|| gives (102). O
We can now turn to the,
Proof of the Sufficiency Part of Theorem 1.3.

Let f: R — R be continuous and satisfy (16). Let ¢ > 0. We can choose
a polynomial P such that,

- Pwve], <

[R]

(Compare (5)). Then for n large enough,

|F =Ll 2|, (20)
|F=Pwa+2|,  +|E-Llmwa+=2|,

< cfoar@ @ -mware |,

The first norm in (103) is finite as A > 0, and as Qfaster than any power
of x.
Next, let

IN

and write,

P—f=F= xn+t = 1=xn) = gn+ fn
By Lemma 4.1,
. —_A .
nlggo HL" [ W +Q) HLP[R} =0
Also Lemmas 4.2 and 4.4, together give,
lim sup ||Ly [g.] W(1+Q) 2| <Ce,
n—00 PIR]

with C independent of . Substituting the estimates for L,, [f,], and L, [gy,]
into (103) and then letting ¢ — 0, gives (15). O
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5 Proof of the Neccessary Conditions
We begin with a lemma,

Lemma 5.1.
Let 0 <p<oo,0€(0,1]. Let 0 < A< B <o0,and ¢: R — (0,00) be a
continous function such that for 1 < s, t < oo with % <3<72

¢ (a)
A B 21
= ¢ (ar) = 2
Then for n > 1,
PVl [ 5] = Can? |6(t) (1 - % + L5n> ! (22)

Lp [7‘1571 70‘an|

Here C' depends on A, B, but is independent of n, and ¢.

Proof.
By Lemma 2.2 (d), for « € 241, 2},

DO |

max {1 (2)W " (@50) W (), Lian(@)W " (25000) W(2) } 2

and hence,

1 .
W (@) 2 5min{le = 20| W (2jn) |2 = Zj410

p;LW (Ij+1,n)}

2

n . Tin B
> Cl_s\lln1 (xj,n) (1 - M + L5n> min {|z — Ij,n| o — Ij+1,n|}a
an

an

by Lemma 2.1 (f), (g). Let,

1 1
S = |Tjrrn + (Tjm — Tjyim), Tjpn + 2 (Tjn — Tjrrn)| -

We see from the spacing of the zeros in Lemma 2.1 (b), that for z € S,

L.

J,n

L]

Qn

lpaW| (2) > Czaﬁ% (1 — M + L5n>
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The result follows if we can show that,
/ ¢’ > Cy / " o
& Tj+1,n

Jn

To do this, it suffices to show that,

¢(t) ~ ¢ (x],n) ) te [xj+1,n xjvn] .

In view of (104), it suffices to show that if z;1,, = a; and z,, = a;, with
s, t > so (some fixed large sg), then,

1<° <2 (23)

S+ | ®»

Now in view of the spacing Lemma 2.1 (b),

0 < 1 _ % — (x_]m, - $j+17n)

at Tjti,n

n a1 nooa
- ap, 1 1 N 2
= cﬁmax((L(sn)zT(an) ,(Lén)Z)—CgalnnST(an) 3

- (T(lcm)

using the definition (35) and the fact that T (a,) grows slower than any
power of n. Thus it follows that for n > ng and s, t > sp, Lemma 2.3 (d) it
guarantees (106). O

Proof of the necessity part of Theorem 1.3.
Fix A€R, k>0, 0 >1+ k and assume the conclusion of Theorem 1.3
is true. Let X be the space of all continuous functions f : R — R with,

1F ]l = sup [fW|(x) (log (2 + []))” < oo.
Moreover, let Y be the space of all measurable functions f : R — R with,

Il = [+

Ly(®) < Q.
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Each f € X satisfies (15), so the conclusion of Thm 1.3 ensures that,

lim [|f = Lo[f]lly = 0

n—00

Since X is a Banach space, the uniform boundedness principle gives,

1f = LalAlly < Clifllx (24)

with C independent of n and f. In particular as L,[f] = f(0) (recall that
p1(z) = 71(x)), we deduce that for f € X with f(0) =0,

1flly < Clifllx-

So for such f,
ILa[Ally < 2C0FlIx (25)

Choose g, continuous in R, with g, =0 in [0,00) U (—o0, Stay,], with,
5
lgallx = sup [g.W| () (log (2 + |2])°) = 1,
TER

and for z;, € <—%an, 0),

W (272) (0g (2 + |2,])° sign (¢, (w;))) = 1.

For example, (gnW(x) (log (2 + \x!))a) can be chosen to be piecewise linear.
Then for z € [1.a,],

L@ = | 5 ol 22

Tjn€[—5an,0) P (xjn) (& —2jn)

_ ‘pn(x)’ Z (log (2 + |$j,n ))_

V] () (& +

)

1
xj,nE[*Eanvo

l — .
> Cyai |pa(2)| (logan) "zt Y (@i — Tjsan)
CL’]'WE[*%G,T“O)
(by lemma 2.1 (g) and (b))
1 —
> Cyal |pn(x)| (loga,)™’
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Then by (108),

20 = 2C|Ignllx = [ILn [gn]lly

1 _ —
> Csai (logan) ™ |paW (1 + Q) AHLp[la]
1
> Ciaf (loga,) ™ Q (a,)~ ™3 1 ped
(logn)T p=4
(nT (an))é(%*%) , P> 4

Here we used the monotonicity of ¢, Lemma 2.2 (a) and Lemma 2.1 (d).
Note that [—1,1] does not give a big contribution to the L, norm of p, V.
1

Since af, (log an)fé grows to oo, we see that A > 0 is necessary for p < 4.
Also, for p > 4, we obtain from Lemma 2.3 (b),

1

20 > Csah (log an)~° T () 33 (i=3) p=2+3(3-3)

Since the terms invoving a, and T (a,) grow to oo with n, we see that nec-
essarily,

Proof of Theorem 1.4.
This is similar to the previous proof. We let X be the Banach space of
continuous functions f : R — R vanishing outside [—2, 2|, with norm,

1fllx = [[fll—221
We let Y be the space of all measurable f : R — R with,
Iflly = [[fWU|Lpr) < oo
Assume that we cannot find f sayisfying (19). Then the uniform boundedness

principle gives (107) for all f € X. Again, when f(0) = 0, we obtain (108).
We now choose g, € X, with

(9. W) (z5,0) sign (pr, () = 1
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in [—1, —%] , gn = 0in (—o0, —2] U [0,00) and

gnW (Ij,n) Sign (p;z (Ij,n)) Z 0

in [—2,2t]. Much as before, we deduce that for x > 1,

Lulg] ()] > Caf 2

Also by hypothesis, there exists C' and C such that,

1_1

Ux) > Clx%_%Q(x)_g(rﬁ),x > Cs.
Hence by (108),

2C

2C|gnllx = 1 Ln [gn]lly

> Cy||Ln [gn] (x)W(I)xTEQ(x)_E(Z_E) oo
> CgafTEQ(an)T(r;) Han”Lp [M an}
Z O3T (a’n)%_%7

much as before, by Lemma 2.2 (a) and (42). Of course this is impossible for
large n and we have a contridiction. O
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