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Abstract

We investigate mean convergence of Lagrange Interpolation at the

zeros of orthogonal polynomials p

n

�

W

2

; x

�

for Erd�os Weights W

2

=

exp [�2Q]. The archetypal example is W

k;�

= exp (�Q

k;�

), where

Q

k;�

(x) := exp (jxj

�

) � > 1, where exp

k

= exp (exp (exp (:::))) is

the kth iterated exponential. Following is our main result: Let 1 <

p < 1;� 2 R � > 0. Let L

n

(f) denote the Lagrange interpolation

polynomial to f at the zeros of p

n

�

W

2

; x

�

= p

n

(exp [�2Q] ; x). Then

for,

lim

n!1










f � L

n

(f)W (1 +Q)

��










L

P

(R)

= 0

to hold for every continuous function f : R ! R satisfying,

lim

jxj!1

(fW ) (x) (log jxj)

1+�

= 0

it is necessary and su�cient that,

� > max

�

0;

2

3

�

1

4

�

1

p

��
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1 Introduction and Results.

In the past twenty years, there has begun to develop a general theory of

orthogonal polynomials, and associated approximation theory, for weights

on R [8,18]. In several aspects of the investigations, it has been helpful to

distinguish between Erd}os weights and Freud Weights.

Freud weights have the form W

2

= exp [�2Q], where Q : R ! R is even

and of polynomial growth at in�nity. The archetypal example is,

W

�

(x) := exp (�Q

�

(x)) ; Q

�

(x) :=

1

2

jxj

�

; � > 0: (1)

Erd�os Weights have the form W

2

= exp [�2Q], where Q : R ! R is even and

of faster than polynomial growth at in�nity. The archetypal example is,

W

k;�

(x) := exp (�Q

k;�

(x)) : (2)

where

Q

k;�

(x) := exp

k

(jxj

�

) ; k � 1; � > 0: (3)

Here exp

k

=exp

k

= exp (exp (exp (:::))) is the kth iterated exponential.

Given a weightW : R ! R such as those above, we can de�ne orthonormal

polynomials,

p

n

(x) = p

n

�

W

2

; x

�

= 


n

x

n

+ :::; 


n

= 


n

�

W

2

�

> 0;

satisfying,

Z

R

p

n

�

W

2

; x

�

p

m

�

W

2

; x

�

W

2

(x) dx = �

mn

To those unfamiliar with the theory of weights on R, writing W

2

, rather

than say w for a weight might seem strange. However the square re
ects the

L

2

norm, and facilitates formulation of theorems. We denote the zeros of p

n

by,

�1 < x

nn

< x

n�1;n

::: < x

2;n

< x

1

;

n

<1

The Lagrange Interpolation polynomial to a function f : R ! R at the

zeros fx

j;n

g

n

j=1

is denoted by L

n

(f). Thus if P

m

denotes the class of poly-

nomials of degree � m and l

jn

2 P

n�1

; 1 � j � n, are the fundemental

polynomials of Lagrange interpolation at fx

j;n

g

n

j=1

satisfying,

l

jn

(x

j;n

) = �

j;k

2



then,

L

n

(f) (x) =

n

X

j=1

f (x

jn

) l

jn

(x) (4)

For a large class of Freud Weights, mean convergence of Lagrange Interpo-

lation was investigated by several authors [1], [4], [11], [17]. The possiblity of

obtaining identical necassary and su�cient conditions for mean convergence

of L

n

arises from bounds obtained for p

n

(W

2

; x) by A.L. Levin and the sec-

ond author [6]. For notational simplicity, we recall the result of Matjila and

the second author only for W

2

�

; � > 1.

Theorem 1.1. Let W

�

(x) := exp

�

�

1

2

jxj

�

�

; � > 1. Given f : R ! R,

let L

n

[f ] denote the Lagrange Interpolation polynomial to f at the zeros of

p

n

(W

2

; x). Let 1 < p <1; � 2 R; � > 0, and

� :=

1

p

�minf1; �g+max

(

0;

�

6

 

1�

4

p

!)

:

Then for,

lim

n!1








f � L

n

(f)W (1 + jxj)

��










L

P

(R)

= 0

to hold for every continuous function f : R ! R satisfying,

lim

jxj!1

(fW ) (x) (1 + jxj)

�

= 0

it is necessary and su�cient that,

� > � if 1 < p � 4

� > � if 4 < p and � = 1

� > � if 4 < p and � 6= 1:

In describing analogous results for Erd}os Weights, we need a class of

weights W

2

for which suitable bounds are available for p

n

(W

2

; :). These

were found in [7] and L

p

analoges were found in [10]. For our purposes, the

folowing subclass of weights from [7] is suitable:

De�nition 1.2. Let W := exp[�Q], where Q : R ! R is even, continuous,

Q

(2)

exists in (0;1) and the function,

T (x) := 1 +

xQ

(2)

(x)

Q

(1)

(x)

(5)
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is increasing in (0;1) with,

lim

x!1

T (x) =1; T (0+) := lim

x!0+

T (x) > 1: (6)

Moreover, we assume for some C

1

; C

2

; C

3

> 0,

C

1

�

T (x)

xQ

(1)

(x)

Q(x)

� C

2

; x � C

3

(7)

and for every " > 0,

T (x) = O (Q(x)

"

) ; x!1 (8)

Then we write W 2 E

1

.

The new restrictions over those in [7] are (8) and Q � 0. The latter

is easily achieved by replacing Q by Q + jQ(0)j. The former is needed in

simpli�ng the formulation of our theorems. The principal example of W =

exp[�Q] 2 E

1

is W

k;�

= exp (�Q

k;�

) given by (3) with � > 1. For this W ,

T (x) = T

k;�

(x) = �

2

4

1 + x

�

k

X

l=1

l�1

Y

j=1

exp

j

(x

�

) ; x � 0:

3

5

(9)

Here (7) holds in the stronger form,

lim

x!1

T (x)

xQ

(1)

(x)

Q(x)

= 1 (10)

and (8) holds in the stronger form,

lim

x!1

T (x)

h

Q

k

j=1

log

j

Q(x)

i

= � (11)

Here, and in the sequel, log (log (:::))denotes the kth iterated logarithm.

For � � 1, the second part of (6) fails, but this can be circumvented by

considering W

k;

�

2

(A+ x

2

), with A large enough to guarantee T (0+) > 1.

Another (more slowly decaying) example of W = exp[�Q] 2 E

1

is given

by,

Q(x) := exp

�

log

�

A + x

2

�

�

�

; � > 1; A large enough, (12)
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for which,

T (x) =

2x

2

A+ x

2

"

� � 1

log (A+ x

2

)

+ �

n

log

�

A+ x

2

�o

��1

#

+

2A

A + x

2

(13)

Again (7) holds in the stronger form (10), while (8) holds in the stronger

form,

lim

x!1

T (x) log x

logQ(x)

= � (14)

The �rst results for mean convergence of Lagrange interpolation for a

class of Erd�os weights appeared in [13]. However the restrictions there both

on W and on the growth of f are more severe, because the correct bounds

on p

n

(W

2

; :) were not available.

Following is our main result:

Theorem 1.3. Let W := exp[�Q] 2 E

1

. Let L

n

[:] denote the Lagrange

Interpolation to fat the zeros of p

n

(W

2

; :). Let 1 < p < 1;� 2 R; � > 0.

Then for,

lim

n!1








(f � L

n

[f ])W (1 +Q)

��










L

P

(R)

= 0 (15)

to hold for every continuous function f : R ! R satisfying,

lim

jxj!1

jfW j(x) (log jxj)

1+�

= 0 (16)

it is necessary and su�cient that,

� > max

(

0;

2

3

 

1

4

�

1

p

!)

(17)

At �rst, the choice of the extra weighting factor (1+Q) in (15) may seem

rather severe. After all Q grows faster than any polynomial. However, even

if f vanishes outside a �xed �nite interval, we need such a factor if p > 4:

Theorem 1.4. Let W; L

n

be as above and p > 4. Suppose that measurable

U : R ! R satis�es,

lim inf

x!1

U(x)x

�

(

3

2

�

1

p

)

Q(x)

2

3

(

1

4

�

1

p

)

> 0 (18)
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Then ther exists continuous f : R ! R vanishing outside [�2; 2] such

that,

lim sup

n!1

kL

n

[f ]WUk

L

P

[R]

=1 (19)

So for p > 4, no growth restriction on f , however severe, allows us a

weighting factor weaker than a power of 1 +Q. One can formulate versions

of Theorem 1.3 for p > 4 that involve � =

2

3

�

1

4

�

1

p

�

, and then one has to

introduce extra factors in (15), such as negative powers of 1+jxj and negative

powers of T or log (2 +Q). Unfortunately one then needs extra hypotheses on

T to avoid very complicated formulations. One of the complicating features

here is that T may grow faster than any power of jxj (as in (9) for k � 2),

like a power of x (as in (9) for k = 1), or slower than any power of jxj (as

in (13)). Moreover, one has to compare T to logQ. We spare the reader the

details.

For p � 4, the weighting factor 1 + Q is unnessesary strong. Let us

recall the Erd}os{Turan theorem, as extended by Shohat (see [3,Ch.2,p.97]).

If f : R ! R is Riemann integrable in each �nite interval, and there exists

an even entire function G with all non{negative Maclaurin series coe�cients

such that,

lim

jxj!1

f

2

(x)

G(x)

= 0

and

Z

R

G(x)W

2

(x)dx <1

then

lim

n!1

k(f � L

n

[f ])Wk

L

2

[R]

= 0

For nice weights here, a result of Clunie and Kovari [2,Th4,pg19], allows us

to choose G with

G(x) � W

�2

(x) (1 + jxj)

�1��

x 2 R; � > 0:

Here and in the sequel, the notation involving � means that the ratio of the

two sides is bounded above and below by positive constants independent of

x. (Later on, the dependence will be on n and possibly other parameters).

Thus we can ensure that (20) holds provided,

lim

jxj!1

(fW )(x) (1 + jxj)

1

2

+

�

2

= 0

6



Thus our result does not extend the classical result for p = 2.

Actually, the extension from continuous functions to Riemann integrable

ones can be completed in the context of the present paper, but would sub-

stantially lengthen the proofs, so is ommited. Our main emphasis in any

event, is the weighting factors required on L

n

, or f .

By modifying the proofs presented below, we can prove results of the

form,

lim

n!1

k(f � L

n

[f ])Wk

L

P

[R]

= 0 (20)

with p < 4, but under severe growth conditions on f . For example, we need

to assume,

lim

jxj!1

jfW j (x)T (x)

a

jxj

b

= 0

with suitable choices of a; b > 0. Of course T should not really be there. For

p = 4, a weighting factor is needed in (21). We hope to improve these results

to include the Erd}os{Turan result in a future paper.

Thiis paper is organised as follows: In section 2, we gather technical

estimates from other papers. In section 3, we present some quadrature sum

estimates. In section 4, we prove the su�ciency part of Theorem 1.3, and in

section 5, we prove the necessity part of Theorem 1.3 and also prove Theorem

1.4.

We close this section by introducing some more notation. Given Q as

above, the Mhaskar{Rhamanov{Sa� number a

u

is the positive root of the

equation,

u =

2

�

Z

1

0

a

u

tQ

0

(a

u

t)

dt

p

1� x

2

; u > 0 (21)

For example, for W

�

; a

u

= C(�)u

1

�

; u > 0. It is instructive to see how

a

u

. T (a

u

) ; Q (a

u

) grow for the example Q = Q

k;�

of (3). Here,

a

u

� (log

k

u)

1

�

(22)

T (a

u

) �

k

Y

j=1

log

j

u (23)

Q (a

u

) � u

8

<

:

k

Y

j=1

log

j

u

9

=

;

�

1

2

(24)

7



To the unfamiliar, one of the of a

u

is in the identity [14],

kPWk

L

1

[R]

= kPWk

L

1

[�a

n

a

n

]

; P 2 P

n

(25)

Here and the sequel, P

n

denotes the polynomials of degree � n. There

are also several L

p

analouges [15], [6], [7], for example, given " > 0, there

exists C > 0 such that for n � 1 and P 2 P

n

, [6], [7]

kPWk

L

p

[R]

� CkPWk

L

1

[�a

n

a

n

]

; (26)

In the sequel, C;C

1

; C

2

::: denote constants independent of n; x and P 2

P

n

. The same symbol does not necessarily denote the same constant in

di�erences occurrences.

The nth Christo�el function for a weight W

2

is,

�

n

(x) : = �

n

�

W

2

; x

�

= inf

P2P

n�1

Z

R

(PW )

2

dt

P

2

(x)

(27)

=

1

P

n�1

j=0

p

2

j

(x)

:

The Christo�el numbers are,

�

jn

= �

n

�

W

2

; x

j;n

�

1 � j � n: (28)

The fundamental polynomials l

jn

of (4) admit the representation,

l

jn

(x) = �

jn




n�1




n

p

n�1

(x

j;n

)

p

n

(x)

x� x

j;n

(29)

The reproducing kernel for W

2

is,

K

n

(x; t) : = K

n

�

W

2

; x; t

�

=

n�1

X

j=0

p

j

(x)p

j

(t) (30)

=




n�1

p

n

(x)p

n�1

(t)� p

n

(t)p

n�1

(x)




n

(x� t)

(the Christo�el{Darboux formula).

8



Given measurable f : R ! R with f(x)x

j

W

2

2 L

1

(R) 8j � 0, the nth

partial sum of its orthonormal expansion with respect to W

2

is denoted by

S

n

[f ](x), and admits the representation,

S

n

[f ](x) =

Z

R

K

n

(x; t)f(t)W

2

(t)dt (31)

If we introduce the Hilbert Transform of g 2 L

1

(R) by,

H[g](x) := lim

"!0+

Z

jx�tj�"

g(t)

x� t

dt; (32)

(this exists a.e. [20]), then we may use the Christo�el{Darboux formula for

K

n

(x; t) to rewrite (32) as,

S

n

[f ] =




n�1




n

n

p

n

H

h

fp

n�1

W

2

i

� p

n�1

H

h

fp

n

W

2

io

(33)

Finally, we de�ne some auxillary quantities:

�

n

:= (nT (a

n

))

�

2

3

; n � 1: (34)

This quantity is useful in describing the behaviour of p

n

(exp[�2Q]; t)

near x

1;n

. For example,

�

�

�

�

�

x

1;n

a

n

(Q)

� 1

�

�

�

�

�

�

L�

n

2

: (35)

Here L is independent of n. We often use the fact that �

n

is much smaller

than any power of

1

T (a

n

)

, see section 2. We also use the function,

	

n

(x) := max

8

>

<

>

:

s

1�

jxj

a

n

+ L�

n

;

2

4

T (a

n

)

s

1�

jxj

a

n

+ L�

n

3

5

�1

9

>

=

>

;

; jxj � a

n

(36)

and set

	

n

(x) := 	

n

(a

n

) ; jxj > a

n

(37)

This function is used in describing spacing of zeros of p

n

, behaviour of

Christo�el functions and so on.
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2 Technical Lemmas

In this section, we gather technical estimates from various sources. We begin

by recalling a number of estimates from [7]. Throughout, we assume that

W := exp[�Q] 2 E

1

.

Lemma 2.1.

(a) Uniformly for n � 1 and jxj � a

n

,

�

n

�

W

2

; x

�

�

a

n

n

W

2

(x)	

n

(x) (1)

(b) For n � 1,

�

�

�

�

x

1;n

a

n

� 1

�

�

�

�

� C�

n

(2)

Uniformly for n � 2 and 1 � j � n� 1,

x

j;n

� x

j+1;n

�

a

n

n

	

n

(x

j;n

) (3)

(c) For n � 1,

sup

x2R

jp

n

W j (x)

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

�

1

4

� a

�

1

2

n

(4)

and

sup

x2R

jp

n

W j (x) � a

�

1

2

n

(nT (a

n

))

1

6

(5)

(d) Let 0 < p � 1. There exists C > 0 such that for n � 1 and P 2 P

n

,

kPWk

L

p

[R]

� CkPWk

L

1

[�a

n

a

n

]

(6)

Moreover, given r > 1, there exists C

1

> 0such that,

kPWk

L

p

[R]

� exp [�C

1

n] kPWk

L

1

[�a

n

a

n

]

(7)

(e) For n � 1,




n�1




n

� a

n

(8)

10



(f) Uniformly for n � 2 and 1 � j � n� 1,

1�

jx

j;n

j

a

n

+ L�

n

� 1�

jx

j+1;n

j

a

n

+ L�

n

(9)

and

	

n

(x

j;n

) � 	

n

(x

j+1;n

) (10)

Here, Lis chosen so large enough that (36) is true.

(g) Uniformly for n � 2 and 2 � j � n� 1,

a

3

2

n

n

	

n

(x

j;n

)

 

1�

jx

j;n

j

a

n

+ L�

n

!

1

2

jp

0

n

W j (x

j;n

) (11)

� a

1

2

n

jp

n�1

W j (x

j;n

) �

 

1�

jx

j;n

j

a

n

+ L�

n

!

1

4

Proof.

(a) This is part of Theorem 1.2 in [7].

(b) (40) is part of Corrolary 1.3 in [7] and (41) is Corrolary 1.3 in [10] (A

weaker form of (41) appears in Corollary 1.3 in [7]).

(c) This is Corolary 1.4 (a) in [7].

(d) (44) is a special case of Theorem 1.5 in [7] and (45) is a special case of

Lemma 2.5 in [7]. This is (10.33) in [7]. (47) is (9.9) in [7] and (48)

follows immediately from (9.9). This is Corollary 1.4 (b) in [7]. 2

Next, we recall some results from [9], [10], involving mostly the funda-

mental polynomials of Lagrange interpolation:

Lemma 2.2.
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(a) Let 0 < p <1. Then for n � 2,

kp

n

Wk

L

P

(R)

� a

1

p

�

1

2

n

(12)

�

2

6

6

6

6

6

6

6

4

1 ; p < 4

(logn)

1

4

; p = 4

nT (a

n

)

2

3

(

1

4

�

1

p

)

; p > 4

3

7

7

7

7

7

7

7

5

(b) Uniformly for n � 1; 1 � j � n; x 2 R ,

jl

j;n

(x)j �

a

3

2

n

n

(	

n

W ) (x

j;n

)

0

@

 

1�

jx

j;n

j

a

n

+ L�

n

!

1

4

�

�

�

�

�

P

n

(x)

x� x

j;n

�

�

�

�

�

:

1

A

(13)

(c) Uniformly for n � 1; 1 � j � n; x 2 6 R,

jl

j;n

(x)jW (x)W (x

j;n

) � C (14)

(d) For n � 2; 1 � j � n� 1; x 2 [x

j;n

x

j+1;n

],

l

j;n

(x)W (x)W

�1

(x

j;n

) + l

j+1;n

(x)W (x)W

�1

(x

j+1;n

) � 1 (15)

Proof.

(a) This is Theorem 1.1 in [10].

(b),(c) These are Theorem 1.2 in [10].

(d) is a special case of the main result in [9]. 2

Next, some technical estimates on the growth of a

u

; Q (a

u

) ; T (a

u

)ect:

Lemma 2.3.

(a) Given r > 0, there exists x

0

such that for x � x

0

and j = 0; 1; 2;

Q

(j)

(x)

x

r

is increasing in (x

o

;1).

12



(b) Uniformly for u � C and j = 0; 1; 2,

a

j

u

Q

(j)

(a

u

) � uT (a

u

)

j�

1

2

(16)

(c) Let 0 < � < �. Then uniformly for u � C; j = 0; 1; 2,

T (a

�u

) � T (a

�u

) ;Q

(j)

(a

�u

) � Q

(j)

(a

�u

) (17)

(d) Given �xed r > 1,

a

ru

a

u

� 1 +

log r

T (a

ru

)

; u 2 (0;1): (18)

Moreover,

a

ru

� a

u

u 2 (1;1): (19)

(e) Uniformly for t 2 (C;1),

a

0

t

a

t

�

1

tT (a

t

)

(20)

(f) Uniformly for u 2 (C;1, and v 2

h

u

2

; 2u

i

, we have,

�

�

�

�

a

u

a

v

� 1

�

�

�

�

�

�

�

�

�

u

v

� 1

�

�

�

�

1

T (a

u

)

(21)

Proof.

(a) This is Lemma 2.1 (3) in [7].

(b){(f) are part of Lemma 2.2 in [7]. 2

Our �nal lemma in this section concerns estimates that speci�cally follow

from (1.8):

Recall that �

n

was de�ned by (35).

Lemma 2.4.

13



(a) Let " > 0. Then,

a

n

� Cn

"

; T (a

n

) � Cn

"

; n � 1: (22)

(b) Given A > 0, we have,

�

n

� CT (a

n

)

�A

; n � 1: (23)

(c) Let 0 < � < 1. Uniformly for n � 1; 0 < jxj � a

�n

; jxj = a

s

, we have,

C

1

� T (x)

 

1�

jxj

a

n

!

� C

2

log

n

s

(24)

Proof.

(a) From (54) for j = 0, we have,

Q (a

n

) � nT (a

n

)

�

1

2

� nT (a

1

)

�

1

2

Since Q grows faster than any power of x (Lemma 2.3 (a)), we deduce,

a

n

� n

"

;

for n large enough. Also (8) then shows that,

T (a

n

) = O (Q (a

n

)

"

) � Cn

"

:

(b) This follows as,

�

n

� n

�

2

3

T (a

1

)

�

2

3

;

that is �

n

decays faster than a power of n, while T (a

n

) grows slower

than any power of n.

(c) Firstly if

jxj

a

n

�

1

2

, then,

T (x)

 

1�

jxj

a

n

!

� T (0+)

1

2

>

1

2

:

14



If

jxj

a

n

�

1

2

, write jxj = a

s

, so that s � �n,

T (x)

 

1�

jxj

a

n

!

� T (a

s

)

0

@

1�

a

s

a

s

�

1

A

� C

1

;

by Lemma 2.3 (d). So we have the lower bound in (2.24). We proceed

to the upper bound. We can assume that x = a

s

; s � 1, and n � n

0

.

Then using the inequality

1� u � jlog uj ; u 2 (0; 1):

we obtain,

 

1�

jxj

a

n

!

�

�

�

�

�

log

a

s

a

n

�

�

�

�

=

Z

n

s

a

0

t

a

t

dt

� C

Z

n

s

dt

tT (a

t

)

�

C

T (a

s

)

log

n

s

=

C

T (x)

log

n

s

:2

3 Quadrature Sum Estimates

We present two quadrature sum estimates, the �rst of which is really part

of a Lebesgue function type estimate. The second involves quadrature sums

for polynomials.

Lemma 3.1. Let � 2

�

0;

1

4

�

and,

�

n

(x) :=

X

j

x

k;n

j

�a

�n

jl

k;n

(x)jW

�1

(x

k;n

) : (1)

We have for jxj � a�n

2

and jxj � a

2n

,

(�

n

W ) (x) � C (2)

Moreover, for a�n

2

� jxj � a

2n

,

(�

n

W ) (x) � C

�

logn + a

1

2

n

jP

n

W j (x)T (a

n

)

�1

4

�

(3)

15



Proof.

Let �

n;1

(x) denote the sum �

n

(x) omitting those terms x

k;n

for which

x 2 [x

k+2;n

; x

k�2;n

], (if there are any such k). Here and the sequel, we set

for l � 1,

x

1�l;n

:= x

1;n

+ l�

n

; x

n+l;n

:= x

n;n

� l�

n

(4)

Of course the sum �

n

� �

n;1

consists of at most 8 terms. Each of these 8

terms admits the bound in Lemma 2.2 (c). So,

j(�

n

� �

n;1

)W (x)j � C

1

: (5)

Next, by Lemma 2.2 (b) and Lemma 2.1 (b),

(�

n;1

W ) (x) � a

1

2

n

jP

n

W j (x)

(1)

X

j

x

k;n

j

�a

�n

(x

k;n

� x

k+1;n

)

jx� x

k;n

j

 

1�

jx

k;n

j

a

n

+ L�

n

!

1

4

(6)

Here the (1) indicates that the sum omits those k for which x 2 [x

k+2;n

x

k�2;n

].

Now (cf. (47)),

1�

jtj

a

n

+ L�

n

� 1�

jx

k;n

j

a

n

+ L�

n

; t 2 [x

k+1;

x

k;n

] ; (7)

uniformly in k and n. Next, if x 2 [x

k+2;n

x

k�2;n

], and t 2 [x

k+1;n

x

k;n

],

�

�

�

�

�

x� t

x� x

k;n

� 1

�

�

�

�

�

=

�

�

�

�

�

t� x

k;n

x� x

k;n

�

�

�

�

�

�

x

k;n

� x

k+1;n

jx

k�2;n

� x

k;n

j

� C:

Similarly we bound

(

x�x

k;n

)

x�t

. So,

jx� tj � jx� x

k;n

j ; t 2 [x

k+1;n

x

k;n

] ; x =2 [x

k+2;n

x

k�2;n

] : (8)

In view of the spacing of the zeros (Lemma 2.1 (b)), we deduce that,

(�

n;1

W ) (x) � a

1

2

n

jP

n

W j (x)

Z

a

�n

�jtj�a

n

jt�xj�C

a

n

n

	

n

(x)

�

1�

jtj

a

n

+ L�

n

�

1

4

jt� xj

dt (9)

= a

1

2

n

jP

n

W j (x)

Z

a

�n

a

n

�jsj�1

j

s�

x

a

n

j

�C

1

n

	

n

(x)

(1� jsj+ L�

n

)

1

4

�

�

�s�

jxj

a

n

�

�

�

ds

16



Note that since �

n

is much smaller than

1

T (a

n

)

,

1 + s+ L�

n

� C

2

�

1�

a

�n

a

n

�

� C

3

1

T (a

n

)

:

(See Lemma 2.3 (f)). Then we obtain the bound,

(�

n;1

W ) (x) � Ca

1

2

n

jP

n

W j (x)T (a

n

)

�

1

4

Z

a

�n

a

n

�jsj�1

j

s�

x

a

n

j

�C

1

n

	

n

(x)

ds

�

�

�s�

x

a

n

�

�

�

Now if 0 � x � a�n

2

or x � a

2n

, then for n � n

o

???? we can bound the

integral by,

Z

a

�n

a

n

ds

�

�

�s�

x

a

n

�

�

�

~

�

�

1�

a

�n

a

n

�

max

0

@

�

�

�

�

1�

a

2n

a

n

�

�

�

�

�1

;

�

�

�

�

�

a

�n

a

n

�

a�n

2

a

n

�

�

�

�

�

�1

1

A

� C

4

;

by Lemma 2.3 (f). In this case the bound (42) gives,

(�

n

W ) (x) � C

5

0

@

�

�

�

�

�

1 +

jxj

a

n

�

�

�

�

�

�1

4

T (a

n

)

�

1

4

1

A

� C

6

:

so we have (64). Now let us turn to to the more di�cult case where a�n

2

� a

2n

.

We bound the integral in (71) as follows:

Z

a

�n

a

n

�jsj�1

j

s�

x

a

n

j

�C

1

n

	

n

(x)

(1� jsj+ L�

n

)

1

4

�

�

�s�

jxj

a

n

�

�

�

ds

� C

7

[

Z

a

�n

a

n

�jsj�1

j

s�

x

a

n

j

�C

1

n

	

n

(x)

(1� s)

1

4

�

�

�s�

jxj

a

n

�

�

�

ds+

Z

a

�n

a

n

�jsj�1

j

s�

x

a

n

j

�C

1

n

	

n

(x)

(�

n

)

1

4

�

�

�s�

jxj

a

n

�

�

�

]ds

= : [I

1

+ I

2

]:

Now since

1

n

	

n

(x) is bounded below by a power of n, we see that,

I

2

� C

8

�

1

4

n

logn:
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If x � a

n

, we estimate,

I

1

�

Z

a

�n

a

n

(1� s)

1

4

js� 1j

ds � C

9

T (a

n

)

�

1

4

:

If x < a

n

, we make the substitution 1� s =

�

1�

x

a

n

�

vto get,

I

1

=

�

1�

x

a

n

�

1

4

Z

v2

�

0;

(

1�

a

�n

a

n

)

(

1�

x

a

n

)

�

jv�1j�C

	

n

(x)

n

(

1�

x

a

n

)

v

1

4

jv � 1j

dv

� C

10

�

1�

x

a

n

�

1

4

f

Z

v2[0;2]

jv�1j�C

	

n

(x)

n

(

1�

x

a

n

)

1

jv � 1j

dv +

Z

(

1�

a

�n

a

n

)(

1�

x

a

n

)

2

v

�

3

4

dv

g

� C

11

�

1�

x

a

n

�

1

4

logn + T (a

n

)

�

1

4

g

Combining our estimates for I

1

; I

2

and using the bound,

a

1

2

n

jp

n

W (x)j �

1

4

n

� C;

which follows from (43), we deduce (65) from (79). 2

In our second quadrature sum estimate, we need the kernel function for

the Chebyshev weight,

v(t) :=

�

1� t

2

�

�

1

2

; t 2 (�1; 1) (10)

If p

j

(v; x) =

q

2

�

T

j

(x)is the jth orthonormal polynomial for v (at least for

j � 1), then,

K

n

(v; x; t) :=

n�1

X

j=0

p

j

(v; x)p

j

(v; t) (11)

admits the following results [19,p36], [16,p108]:

K

n

(v; xx) � n; jxj � 1: (12)

18



Also,

jK

n

(v; x; t)j � Cmin

(

n;

p

1� x

2

+

p

1� t

2

jx� tj

)

; x; t 2 [�1; 1]: (13)

Lemma 3.2. Let 0 < � < 1. Let � : R ! (0;1) be a continuous function

with the following property: For n � 1, there exist polynomials R

n

of degree

� n such that,

C

1

�

�(t)

R

n

(t)

� C

2

; jtj � a

4n

: (14)

Then for n � n

0

and P 2 P

n

,

X

jx

j;n

j�a

�n

�

j;n

PW

�1

(x

j;n

)� (x

j;n

) � C

Z

a

4n

�a

4n

jPW j�: (15)

Proof.

Essentially the proof is the same as in [13], and the ideas appeared much

earlier [16], [17] but we include the details.

Step 1: Christo�el function type estimate

We �rst note that for P

1

2 P

4n

,

(P

1

W )

2

(x) � �

�1

4n

�

W

2

; x

�

Z

R

(P

1

W )

2

(t)dt

� C

1

n

a

n

(	

4n

(x))

�1

Z

a

4n

�a

4n

(P

1

W )

2

(t)dt;

by Lemma 2.1 (a), (d). We deduce that,













P

1

W	

1

2

4n













2

L

1

[�a

4n

a

4n

]

� C

1

n

a

n

Z

a

4n

�a

4n

�

�

�

�

P

1

	

�

1

2

4n

W (t)dt

�

�

�

�













P

1

W	

1

2

4n













L

1

[�a

4n

a

4n

]

and hence that for jxj � a

4n

,

�

�

�

�

P

1

	

1

2

4n

W (x)

�

�

�

�

� C

1

n

a

n

Z

a

4n

�a

4n

�

�

�

�

P

1

	

�

1

2

4n

W (t)dt

�

�

�

�
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Now we apply this for �xed jxj � a

4n

to

P

1

(t) := P

2

(t)K

2

n

�

v;

x

a

4n

;

t

a

4n

�

where P

2

2 P

2n

. We obtain, using (74) that,

�

�

�

�

P

2

	

1

2

4n

W (x)

�

�

�

�

� C

2

1

na

n

Z

a

4n

�a

4n

�

�

�

�

P

2

	

�

1

2

4n

W (t)

�

�

�

�

K

2

n

�

v;

x

a

4n

;

t

a

4n

�

dt

In particular, applying this to P

2

:= PR

n

, where P 2 P

n

, and using (76), we

obtain,

�

�

�

�

P	

1

2

4n

W�(x)

�

�

�

�

� C

3

1

na

n

Z

a

4n

�a

4n

�

�

�

�

P�	

�

1

2

4n

W (t)

�

�

�

�

K

2

n

�

v;

x

a

4n

;

t

a

4n

�

dt (16)

Step 2: The general quadrature sum bounded in terms of a special

quadrature sum

We take (78) for x = x

j;n

, multiply by �

j;n

W

�2

(x

j;n

)	

�

1

2

4n

(x

j;n

), and sum

over all jx

j;n

j � a

�n

. Using our estimate for Christo�el function �

n

(W

2

; :) in

Lemma 2.1 (a), we obtain,

X

jx

j;n

j�a

�n

�

j;n

�

�

�PW

�1

�

�

� (x

j;n

) � (x

j;n

) (17)

� C

4

Z

a

4n

�a

4n

jPW�j (t)�

n

(t)dt;

where,

�

n

(t) := n

�2

X

jx

j;n

j�a

�n

	

n

(x

j;n

)	

�

1

2

4n

(x

j;n

)K

2

n

�

v;

x

j;n

a

4n

;

t

a

4n

�

	

�

1

2

4n

(t) (18)

Then the result will follow if we can show

�

n

(t) � C

5

; jtj � a

4n

(19)

Step 3: Estimation of (80)
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First note that for jxj � a

�n

,

	

n

(x) � 	

4n

(x) �

 

1�

jxj

a

n

!

1

2

Now since

1

n

	

n

(x) is bounded below by a power of n, we see that,

I

2

� C

8

�

1

4

n

logn:

If x � a

n

, we estimate,

I

1

�

Z

a

�n

a

n

(1� s)

1

4

js� 1j

ds � C

9

T (a

n

)

�

1

4

:

If x < a

n

, we make the substitution 1� s =

�

1�

x

a

n

�

vto get,

I

1

=

�

1�

x

a

n

�

1

4

Z

v2

�

0;

(

1�

a

�n

a

n

)

(

1�

x

a

n

)

�

jv�1j�C

	

n

(x)

n

(

1�

x

a

n

)

v

1

4

jv � 1j

dv

� C

10

�

1�

x

a

n

�

1

4

f

Z

v2[0;2]

jv�1j�C

	

n

(x)

n

(

1�

x

a

n

)

1

jv � 1j

dv +

Z

(

1�

a

�n

a

n

)(

1�

x

a

n

)

2

v

�

3

4

dv

g

� C

11

�

1�

x

a

n

�

1

4

logn + T (a

n

)

�

1

4

g

Combining our estimates for I

1

; I

2

and using the bound,

a

1

2

n

jp

n

W (x)j �

1

4

n

� C;

which follows from (43), we deduce (65) from (79). 2

In our second quadrature sum estimate, we need the kernel function for

the Chebyshev weight,

v(t) :=

�

1� t

2

�

�

1

2

; t 2 (�1; 1) (20)
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If p

j

(v; x) =

q

2

�

T

j

(x) is the jth orthonormal polynomial for v (at least for

j � 1), then,

K

n

(v; x; t) :=

n�1

X

j=0

p

j

(v; x)p

j

(v; t) (21)

admits the following results [19,p36], [16,p108]:

K

n

(v; xx) � n; jxj � 1: (22)

Also,

jK

n

(v; x; t)j � Cmin

(

n;

p

1� x

2

+

p

1� t

2

jx� tj

)

; x; t 2 [�1; 1]: (23)

Lemma 3.2. Let 0 < � < 1. Let � : R ! (0;1) be a continuous function

with the following property: For n � 1, there exist polynomials R

n

of degree

� n such that,

C

1

�

�(t)

R

n

(t)

� C

2

; jtj � a

4n

: (24)

Then for n � n

0

and P 2 P

n

,

X

jx

j;n

j�a

�n

�

j;n

PW

�1

(x

j;n

)� (x

j;n

) � C

Z

a

4n

�a

4n

jPW j�: (25)

Proof.

Essentially the proof is the same as in [13], and the ideas appeared much

earlier [16], [17] but we include the details.

Step 1: Christo�el function type estimate

We �rst note that for P

1

2 P

4n

,

(P

1

W )

2

(x) � �

�1

4n

�

W

2

; x

�

Z

R

(P

1

W )

2

(t)dt

� C

1

n

a

n

(	

4n

(x))

�1

Z

a

4n

�a

4n

(P

1

W )

2

(t)dt;
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by Lemma 2.1 (a), (d). We deduce that,













P

1

W	

1

2

4n













2

L

1

[�a

4n

a

4n

]

� C

1

n

a

n

Z

a

4n

�a

4n

�

�

�

�

P

1

	

�

1

2

4n

W (t)dt

�

�

�

�













P

1

W	

1

2

4n













L

1

[�a

4n

a

4n

]

and hence that for jxj � a

4n

,

�

�

�

�

P

1

	

1

2

4n

W (x)

�

�

�

�

� C

1

n

a

n

Z

a

4n

�a

4n

�

�

�

�

P

1

	

�

1

2

4n

W (t)dt

�

�

�

�

Now we apply this for �xed jxj � a

4n

to

P

1

(t) := P

2

(t)K

2

n

�

v;

x

a

4n

;

t

a

4n

�

where P

2

2 P

2n

. We obtain, using (74) that,

�

�

�

�

P

2

	

1

2

4n

W (x)

�

�

�

�

� C

2

1

na

n

Z

a

4n

�a

4n

�

�

�

�

P

2

	

�

1

2

4n

W (t)

�

�

�

�

K

2

n

�

v;

x

a

4n

;

t

a

4n

�

dt

In particular, applying this to P

2

:= PR

n

, where P 2 P

n

, and using (76), we

obtain,

�

�

�

�

P	

1

2

4n

W�(x)

�

�

�

�

� C

3

1

na

n

Z

a

4n

�a

4n

�

�

�

�

P�	

�

1

2

4n

W (t)

�

�

�

�

K

2

n

�

v;

x

a

4n

;

t

a

4n

�

dt (26)

Step 2: The general quadrature sum bounded in terms of a special

quadrature sum

We take (78) for x = x

j;n

, multiply by �

j;n

W

�2

(x

j;n

)	

�

1

2

4n

(x

j;n

), and sum

over all jx

j;n

j � a

�n

. Using our estimate for Christo�el function �

n

(W

2

; :) in

Lemma 2.1 (a), we obtain,

X

jx

j;n

j�a

�n

�

j;n

�

�

�PW

�1

�

�

� (x

j;n

) � (x

j;n

) (27)

� C

4

Z

a

4n

�a

4n

jPW�j(t)�

n

(t)dt;

where,

�

n

(t) := n

�2

X

jx

j;n

j�a

�n

	

n

(x

j;n

)	

�

1

2

4n

(x

j;n

)K

2

n

�

v;

x

j;n

a

4n

;

t

a

4n

�

	

�

1

2

4n

(t) (28)

23



Then the result will follow if we can show

�

n

(t) � C

5

; jtj � a

4n

(29)

Step 3: Estimation of (80)

First note that for jxj � a

�n

,

	

n

(x) � 	

4n

(x) �

 

1�

jxj

a

n

!

1

2

Now since

1

n

	

n

(x) is bounded below by a power of n, we see that,

I

2

� C

8

�

1

4

n

logn:

If x � a

n

, we estimate,

I

1

�

Z

a

�n

a

n

(1� s)

1

4

js� 1j

ds � C

9

T (a

n

)

�

1

4

:

If x < a

n

, we make the substitution 1� s =

�

1�

x

a

n

�

vto get,

I

1

=

�

1�

x

a

n

�

1

4

Z

v2

�

0;

(

1�

a

�n

a

n

)

(

1�

x

a

n

)

�

jv�1j�C

	

n

(x)

n

(

1�

x

a

n

)

v

1

4

jv � 1j

dv

� C

10

�

1�

x

a

n

�

1

4

f

Z

v2[0;2]

jv�1j�C

	

n

(x)

n

(

1�

x

a

n

)

1

jv � 1j

dv +

Z

(

1�

a

�n

a

n

)(

1�

x

a

n

)

2

v

�

3

4

dv

g

� C

11

�

1�

x

a

n

�

1

4

logn + T (a

n

)

�

1

4

g

Combining our estimates for I

1

; I

2

and using the bound,

a

1

2

n

jp

n

W (x)j �

1

4

n

� C;
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which follows from (43), we deduce (65) from (79). 2

In our second quadrature sum estimate, we need the kernel function for

the Chebyshev weight,

v(t) :=

�

1� t

2

�

�

1

2

; t 2 (�1; 1) (30)

If p

j

(v; x) =

q

2

�

T

j

(x) is the jth orthonormal polynomial for v (at least for

j � 1), then,

K

n

(v; x; t) :=

n�1

X

j=0

p

j

(v; x)p

j

(v; t) (31)

admits the following results [19,p36], [16,p108]:

K

n

(v; xx) � n; jxj � 1: (32)

Also,

jK

n

(v; x; t)j � Cmin

(

n;

p

1� x

2

+

p

1� t

2

jx� tj

)

; x; t 2 [�1; 1]: (33)

Lemma 3.2. Let 0 < � < 1. Let � : R ! (0;1) be a continuous function

with the following property: For n � 1, there exist polynomials R

n

of degree

� n such that,

C

1

�

�(t)

R

n

(t)

� C

2

; jtj � a

4n

: (34)

Then for n � n

0

and P 2 P

n

,

X

jx

j;n

j�a

�n

�

j;n

PW

�1

(x

j;n

)� (x

j;n

) � C

Z

a

4n

�a

4n

jPW j�: (35)

Proof.

Essentially the proof is the same as in [13], and the ideas appeared much

earlier [16], [17] but we include the details.

Step 1: Christo�el function type estimate
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We �rst note that for P

1

2 P

4n

,

(P

1

W )

2

(x) � �

�1

4n

�

W

2

; x

�

Z

R

(P

1

W )

2

(t)dt

� C

1

n

a

n

(	

4n

(x))

�1

Z

a

4n

�a

4n

(P

1

W )

2

(t)dt;

by Lemma 2.1 (a), (d). We deduce that,
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�

�

�

�
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and hence that for jxj � a

4n

,

�

�

�

�

P

1

	

1

2

4n

W (x)

�

�

�

�

� C

1

n

a

n

Z

a

4n

�a

4n

�

�

�

�

P

1

	

�

1

2

4n

W (t)dt

�

�

�

�

Now we apply this for �xed jxj � a

4n

to

P

1

(t) := P

2

(t)K

2

n

�

v;

x

a

4n

;

t

a

4n

�

where P

2

2 P

2n

. We obtain, using (74) that,

�

�

�

�

P

2

	

1

2

4n

W (x)

�

�

�

�

� C

2

1

na

n

Z

a

4n

�a

4n

�

�

�

�

P

2

	

�

1

2

4n

W (t)

�

�

�

�

K

2

n

�

v;

x

a

4n

;

t

a

4n

�

dt

In particular, applying this to P

2

:= PR

n

, where P 2 P

n

, and using (76), we

obtain,

�

�

�

�

P	

1

2

4n

W�(x)

�

�

�

�

� C

3

1

na

n

Z

a

4n

�a

4n

�

�

�

�

P�	

�

1

2

4n

W (t)

�

�

�

�

K

2

n

�

v;

x

a

4n

;

t

a

4n

�

dt (36)

Step 2: The general quadrature sum bounded in terms of a special

quadrature sum

We take (78) for x = x

j;n

, multiply by �

j;n

W

�2

(x

j;n

)	

�

1

2

4n

(x

j;n

), and sum

over all jx

j;n

j � a

�n

. Using our estimate for Christo�el function �

n

(W

2

; :) in

Lemma 2.1 (a), we obtain,

X

jx

j;n

j�a

�n

�

j;n

�

�

�PW

�1

�

�

� (x

j;n

) � (x

j;n

) (37)

� C

4

Z

a

4n

�a

4n

jPW�j(t)�

n

(t)dt;
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where,

�

n

(t) := n

�2

X

jx

j;n

j�a

�n

	

n

(x

j;n

)	

�

1

2

4n

(x

j;n

)K

2

n

�

v;

x

j;n

a

4n

;

t

a

4n

�

	

�

1

2

4n

(t) (38)

Then the result will follow if we can show

�

n

(t) � C

5

; jtj � a

4n

(39)

Step 3: Estimation of (80)

First note that for jxj � a

�n

,

	

n

(x) � 	

4n

(x) �

 

1�

jxj

a

n

!

1

2

This follows easily from the fact that 1 �

jxj

a

n

� C

6

T (a

n

) for this range.

Moreover,

	

4n

(t) �

 

1�

jtj

a

4n

+ L�

n

!

1

2

for jtj � a

4n

. Let us set,

y

j;n

:=

x

j;n

a

4n

; T :=

t

a

4n

:

Then we have, using also (75) and the spacing in Lemma 2.1 (b), that,

�

n

(t)

 

1�

jtj

a

n

+ L�

n

!

1

4

�

C

7

na

n

X

jx

j;n

j�a

�n

(x

j;n

� x

j+1;n

)

 

1�

jx

j;n

j

a

4n

!

�

1

4

K

2

n

�

v;

x

j;n

a

4n

;

t

a

4n

�

(40)

� C

8

n

�1

X

jy

j;n

j�a

�n

(y

j;n

� y

j+1;n

) (1� jy

j;n

j)

�

1

4

�min

8

<

:

n;

q

1� y

j;n

2

+

p

1� T

2

jy

j;n

� T j

9

=

;

2

� C

9

n

�1

Z

1

�1

(1� jyj)

�

1

4

min

(

n;

p

1� y

2

+

p

1� T

2

jy � T j

)

2

dy
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In bounding the sum in terms of the integral, we have used (47). Let us

assume that 1� n

�2

� T � 0. Then we can continue the above as,

�

n

(t)(1� T )

1

4

� C

10

n

�1

8

>

<

>

:

n

2

R

y2[0;1]:jy�T j�

1

n

(1�T )

1

2

(1� y)

�

1

4

dy

+

R

y2[0;1]:jy�T j�

1

n

(1�T )

1

2

(1� y)

�

1

4

1�y+1�T

jy�T j

2

dy

9

>

=

>

;

= C

10

n

�1

8

>

<

>

:

n

2

(1� T )

3

4

R

w:j1�wj�

1

n

(1�T )

�

1

2

w

�

1

4

dw

+(1� T )

�

1

4

R

w:j1�wj�

1

n

(1�T )

�

1

2

w

�

1

4

j1+wj

j1�wj

2

dw

9

>

=

>

;

(substitution 1� y = (1� T )w)

� C

11

(1� T )

1

4

Here we have used the fact that,

1

n

(1� T )

�

1

2

� 1:

So in this case, we have (81). In the remaining case where 1� n

�2

� T < 1,

we continue (82) as,

�

n

(t) (L�

n

)

1

4

� C

12

n

�1

8

<

:

n

2

R

y2[0;1]:jy�T j�4n

�2

(1� y)

�

1

4

dy

+

R

1�2n

�2

0

(1� y)

�

1

4

1�y+n

�2

jy�T j

2

dy

9

=

;

� C

13

n

�

1

2

Since �

1

4

n

decays scarcely faster than n

�

1

6

we again have (81). 2

4 Proof of the su�ciency conditions

In proving the su�ciency conditions, we split our functions into pieces that

vanish inside or outside

h

�a

n

9

;

a

n

9

i

. Throughout, we let �

S

denote the char-

acteristic function of a set S. Also, we set for some �xed � > 0,

�(x) :=

�

log

�

2 + x

2

��

�1��

: (1)

Throughout, we assume that W = exp[�Q] 2 E

1

, that 1 < p <1, and,

� > max

(

0;

2

3

 

1

4

�

1

p

!)

: (2)
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Lemma 4.1.

Let ffg

1

n=1

be a sequence of measurable functions from R ! R such that

for n � 1,

f

n

(x) = 0; jxj < a

n

9

; (3)

jf

n

W j (x) � �(x); x 2 R (4)

Then,

lim

n!1








L

n

[f

n

]W (1 +Q)

��










L

P

(R)

= 0 (5)

Proof.

Firstly for jxj � a

n

18

or jxj � a

2n

, Lemma 3.1 (with � =

1

9

) and (86), (87)

show that,

jL

n

[f

n

]W j (x) � �

�

a

n

9

�

X

j

x

k;n

j

�a
n

9

jl
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(x)jW

�1

(x

k;n

)W (x)

� C

1

�

�

a

n

9

�

:

So,
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n
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��










L

P
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�
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�

� C

1

�

�

a

n

9

�








(1 +Q)

��










L

P

[R]

� C

2

�

�

a

n

9

�

Here we have used the fact that Q grows faster than any power of x (Lemma

2.3 (a)). Next, for a

n

18

� jxj � a

2n

, Lemma 3.1 gives,

jL

n

[f

n

]W j (x) � C

3

�

�

a

n

9

�

�

logn+ a

1

2

n

jP

n

W j (x)T (a

n

)

�

1

4

�

Also for this range of x,

Q(x) � Q (a

n

) � nT (a

n

)

�

1

2

:
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So,
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n
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��










L

P
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i
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4

�

�

a
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9
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nT (a

n
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�
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�
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�
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�

a
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n

18

�

1

p
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1

2

n

T (a

n

)

�

1

4

kP

n

Wk

L

P
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�
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5

�

�

a

n

9

� �

nT (a

n

)

�

1

2

�

��

(logn)

 

a

n

T (a

n

)

!

1

p
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5

�

�

a

n

9

� �

nT (a

n

)

�

1

2

�

��

T (a

n

)

�

1

4

a

1

p

n

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

1 ; p < 4

(logn)

1

4

; p = 4

nT (a

n

)

2

3

(

1

4

�

1

p

)

; p > 4

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

by Lemma 2.2 (a) and Lemma 2.3 (f). Since T (a

n

) and a

n

grow slower than

any positive power of n (Lemma 2.4 (a)), we see that the right hand side is

o

�

�

�

a

n

9

��

= o(1), because of (84). 2

Next, we deal with functions that vanish outside

h

�a

n

9

; a

n

9

i

. We sepa-

rately estimate the weighted L

p

norms of their Lagrange interpolants over

h

�a

n

8

; a

n

8

i

and Rn

h

�a

n

8

; a

n

8

i

.

Lemma 4.2.

Let fg

n

g

1

n=1

be a sequence of measurable functions from R ! R such that

for n � 1,

g

n

(x) = 0; jxj � a

n

9

; (6)

jg

n

W j (x) � �(x); x 2 R (7)

Then,

lim

n!1








L

n
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n

]W (1 +Q)

��










L

P

h

jxj�a
n

8

i

= 0 (8)

Proof.

For x � a

n

8

,

jL

n

[g

n

] (x)j �

X

j

x

k;n

j

�a
n

9

l

k;n(x)

W

�1

(x

k;n

)� (x

k;n

)
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� C

1

a

1

2

n

jp

n

(x)j

X

j

x

k;n

j

�a
n

9

(x

k;n

� x

k+1;n

)

�

1�

j

x

k;n

j

a

n

+ L�

n

�

1

4

jx� x

k;n

j

� (x

k;n

)

(by Lemma 2.2 (b) and (2.3))

� C

2

a

1

2

n

jp

n

(x)j

Z

a
n

9

�a
n

9

�

1�

jtj

a

n

+ L�

n

�

1

4

jx� tj

�(t)dt:

Here we have used the monotonicity of � and (69). Next, for t 2

h

0; a

n

9

i

; x �

a

n

8

,

0 �

a

n

� t

x� t

= 1 +

a

n

x

� 1

1�

t

x

� 1 +

a

n

a
n

8

� 1

1�

a
n

9

a
n

8

� C

3

;

by Lemma 2.3 (f). Moreover,

1�

jtj

a

n

� C

4

1

T (a

n

)

>> �

n

So,

jL

n

[g

n

] (x)j � C

5

a

1

4

n

jp

n

(x)j

Z

a
n

9

0

(a

n

� t)

1

4

x� t

�(t)dt

� C

6

a

1

4

n

jp

n

(x)j

Z

a
n

9

0

(x� t)

�

3

4

�(t)dt

Here if t = a

s

;

n

9

� s � 1, we have for x � a

n

8

,

x� t = x

�

1�

t

x

�

� a

n

8

0

@

1�

a

s

a

9s

8

1

A

� C

7

a

n

T (a

s

)

:

So,

jL

n

[g

n

] (x)j � C

5

a

�

1

2

n

jp

n

(x)j

Z

a
n

9

0

T (t)

3

4

�(t)dt

Thus,








L

n
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n
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L

P

h

jxj�a
n

8

i

� C

9

a

�

1

2

n

�

Z

a
n

9

0

T (t)

3

4

�(t)dt

�

Q

�

a

n

8

�

��
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n

Wk

L

P

[R]

:
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It is easy to see that the integral involving � in the last right hand side grows

slower than any power of n. Then using (84) and the estimate on kp

n

Wk

L

P

[R]

provided by Lemma 2.2 (a), we obtain (90). 2

We now turn to the most di�cult part of the su�ciency proof, namely the

estimation of








L

n

[g

n

]W (1 +Q)

��










L

P

h

jxj�a
n

8

i

. We present the most technical

part of this as a seperate lemma. Recall the notation (31{34) for partial sums

S

n

[ : ] of orthonormal expansions with respect to W

2

.

Lemma 4.3.

Let � : R ! R be a bounded measurable function. Then,








S

n

h

��W

�1

i

W (1 +Q)

��










L

P

h

jxj�a
n

8

i

� Ck�k

L

1

(R)

; (9)

for n � 1. Here C is independent of � and n.

Proof.

We split this into several steps. Part of the di�culty lies in that we

cannot simply estimate Hilbert Transforms in L

p

with the weight (1+Q)

��

,

as it does not satisfy Muckenhoupts A

p

condition [20]. We may assume that

k�k

L

1

[R]

= 1.

Step 1: Split S

n

[:](x) into several terms depending on the location

of x

First note that by (34) and by our estimates for




n�1




n

and p

n

(see Lemma

2.1 (c), (e)),

S

n

h

��W

�1

i

W (x) � C

1

a

1

2

n

 

1�

jxj

a

n

!

�

1

4

n

X

j=n�1

H [��p

j

W ] (x) (10)

Now let us choose l := l(n) such that,

2

l

�

n

8

� 2

l+1

(11)

Note that us choose l = l(n) guarantees that,

2

l+3

� n: (12)
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De�ne,

=

k

:= [a

2

k
; a

2

k+1
] ; k � 1 (13)

The reason for this choice of intervals is that,

Q(x) � Q (a

2

k) � 2

k

T (a

2

k) ; x 2 =

k

(14)

uniformly in k. For j = n� 1; n and x 2 =

k

, we split,

H [��p

j

W ] (x) = [

Z

0

�1

+

Z

a

2

k�1

0

+P:V:

Z

a

2

k+2

a

2

k�1

+

Z

1

a

2

k+2

]

��p

j

W (t)

x� t

dt(15)

= : I

1

(x) + I

2

(x) + I

3

(x) + I

4

(x):

Here P:V stands for principle value.

Step 2: Estimation of I

1

and I

2

for x 2 =

k

We see that (recall x � a

2

),

jI

1

(x)j �

Z

1

0

jp

j

W�j (�t)

t+ x

dt

� C

2

a

�

1

2

n

Z

a

n

2

0

�(t)
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2

dt + C

2

a

�1

n

Z

1

a

n

2

jp

j

W j (t)dt

� C

3

a

�

1

2

n

:

Here we have used the bound (42), the bound for kp

n

Wk

L

1

[R]

in Lemma

2.2 (a), and also the form of � (recall (83)), which guarantees that,

Z

1

0

�(t)

1 + t

dt <1: (16)

Next the bound (42) gives,

jI

2

(x)j �

Z

a

2

k�1

0
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j

W�j (t)

x� t
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4
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�
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2

n

�

1�
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a

n

�

�

1

4

Z

a

2

k�1

0
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x� t

= C

4

a

�

1

2

n

�

1�

x

a

n

�

�

1

4

log

�
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a

2

k�1

x

�

�1
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Now

1�

a

2

k�1

x

� 1�

a

2

k�1

a

2

k

� C

5

1

T (a

2

k)

� C

6

1

T (x)

Thus,
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2
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7

a

�

1

2

n

�

1�

x

a

n

�

�

1

4

log (C

8

T (x)) :

Step 3: Estimation of I

4

for x 2 =

k

Now using our bound (42) again gives,

jI

4
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Z

1

a

2
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j
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t� x

dt
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9
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�
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n

�

�
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�
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2

n

Z
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f
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;

a

n

2

g
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2
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�(t)

t
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+

Z

1

a

n

2

jp

j

W j (t)

t
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� C
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a

�

1

2

n

[1 + J ]

where,
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Z
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2
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a

2

k+2

�

�

�

�

1�

t

a

n

�

�

�

�

�

1

4
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t� x

(We have used (98) and the bound on the L

1

norm of p

n

W .) Here if

�

�

�1�

t

a

n

�

�

� �

1

2

�

1�

x

a

n

�

, then,

jt� xj = a

n

�

�

�

�

�

1�

x

a
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�

�
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t

a

n

�

�

�

�

�

�

1

2

a

n

�
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x

a

n

�

:

Thus,
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x

a
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4
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t

a

n

j

�
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(
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a
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;

2a

2

k+2

]

dt

t� x
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a

n

j

�
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(
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a
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;
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�

�
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�

�
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� C
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�

1�

x

a

n

�

�

1

4

log

 

1 +

a

2

k+2

a

2
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!

+

�
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x

a

n

�

�1

Z
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1

2

(
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x

a
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)
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�
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� C
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�

1�
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a
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�

�

1

4

log (C

14

T (x)) :

Step 4: Estimation of kS

n

[:]k

L

P

[=

k

]

Combining our estimates for I

j

j = 1; 2; 4 gives,

jI

1

+ I

2

+ I

4

j (x) � C

14

a

�

1

2

n

�

1�

x

a

n

�

�

1

4

log (C

15

T (x)) :

Together with (92, 96 and 97), this gives,
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1
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P
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��p
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9

>

=

>

;

We use M. Riez' theorem on the boundedness of the Hilbert transform from

L

p

(R), to L

p

(R) [20] to deduce that,
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]

� C

17
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a
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a

�

p

2

n

�
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a

2
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a

n

�

�

p

4

(a

2

k+2 � a

2

k�1) :

Next, note that, in view of (94), n � 2

k+3

for k � l, so,

�
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a

2

k+1

a

n

�

�

�
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a

2
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a

n

�
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2
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a

2
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!
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1

T (a

2
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Similarly by using the triangle inequality (if necessary) and (59) we can

bound (a

2

k+2 � a

2

k�1) and (a

2

k+1 � a

2

k)

1

p

to yield,
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]
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2
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T (a

2

k)

1

2

log (C

15

T (a

2

k+1))

 

a

2

k

T (a

2

k)

!

1

p

Step 5: Completion of the proof

The estimation of S

n

[:] (x) for x 2 �=

k

= [�a

2

k+1 � a

2

k ] is exactly the

same as for x 2 =

k

. Since we have (96), and since a

2

k
; T (a

2

k
) grow much

slower than Q (a

2

k) (Lemma 2.4 (a)), we obtain,
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The estimation of








S

n

[��W
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]W (1 +Q)

��










L

P

[jxj�a

2

]

is similar but easier.

We split,

H [��p

j

W ] (x) = [

Z

�2a

2

�1

+P:V:

Z

2a

2

�2a

2

+

Z

1

2a

2

]

��p

j

W (t)

x� t

dt:

The �rst and third integrals may be estimated as we did before, and the

second is estimated as we did I

3

. 2

Armed with this lemma, we can complete the estimation of L

n

[g

n

] over

[�a

�n

; a

�n

] :

Lemma 4.4.

Let " 2 (0; 1). Let fg

n

g be as in Lemma 4.2, except that rather than

(89), we assume that,

jg

n

W j (x) � "�(x); x 2 R n � 1: (18)
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Then,

lim sup

n!1
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8

i

� C" (19)

where Cis independent of n; fg

n

g and ".

Proof.

Let,

�

n

:= �

h

�a

n

8

; a

n

8

i

; �

n

:= sign S

n

[h

n

] :

We shall show that,
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Then Lemma 4.3 gives the result. Let,

h
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n
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n

]) jL

n
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n

]j

p�1

�

n

W

p�2

(1 +Q)

��p

:

Then using the orthogonality of f�S

n

[f ] to P

n�1

, and the Guass quadrature

formula, we see that,
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by Lemma 3.2. Note that it is easy to verify the approximation property in

Lemma 3.2 for � (in fact Jacksons Theorem gives polynomials of degree o(n)

satisfying (76)). We can continue this as,
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for h

n

has its support inside

h

�a

n

8

;

a

n

8

i

. Using Holders Inequality with q =

p

p�1

,

we continue this as,
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Cancelling the p� 1th power of kL

n

:::k gives (102). 2

We can now turn to the,

Proof of the Su�ciency Part of Theorem 1.3.

Let f : R ! R be continuous and satisfy (16). Let " > 0. We can choose

a polynomial P such that,
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� ":

(Compare (5)). Then for n large enough,
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The �rst norm in (103) is �nite as � > 0, and as Qfaster than any power

of x.

Next, let

�

n

:= �

h

�a

n

9

;

a

n

9

i

and write,

P � f = (P � f)�

n

+ (p� f)(1� �

n

) =: g

n

+ f

n

By Lemma 4.1,

lim

n!1
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Also Lemmas 4.2 and 4.4, together give,

lim sup
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� C";

with C independent of ". Substituting the estimates for L

n

[f

n

], and L

n

[g

n

]

into (103) and then letting "! 0, gives (15). 2
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5 Proof of the Neccessary Conditions

We begin with a lemma,

Lemma 5.1.

Let 0 < p <1; � 2 (0; 1]. Let 0 < A < B <1, and � : R ! (0;1) be a

continous function such that for 1 � s; t � 1 with

1

2

�

s

t

� 2,

A �

� (a

s

)

� (a

t

)

� B (21)

Then for n � 1,
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n

W�k

L

P

[

�a

�n

;a

�n

]

� Ca

�

1

2

n



















�(t)

 

1�

jtj

a

n

+ L�

n

!

�

1

4



















L

P

[

�a

�n

;a

�n

]

: (22)

Here C depends on A;B, but is independent of n, and �.

Proof.

By Lemma 2.2 (d), for x 2 [x

j+1;n

x

j;n

],

max

n

l

j;n

(x)W

�1

(x

j;n

)W (x); l

j+1;n

(x)W

�1

(x

j+1;n

)W (x)

o

�

1

2

and hence,

jp

n

W j (x) �

1

2

minfjx� x

j;n

j p

0

n

W (x

j;n

) ; jx� x

j+1;n

j p

0

n

W (x

j+1;n

)g

� C

1

n

a

3

2

n

	

�1

n

(x

j;n

)

 

1�

jx

j;n

j

a

n

+ L�

n

!

�

1

4

min fjx� x

j;n

j ; jx� x

j+1;n

jg ;

by Lemma 2.1 (f), (g). Let,

=

j;n

:=

�

x

j+1;n

+

1

4

(x

j;n

� x

j+1;n

) ; x

j;n

+

1

4

(x

j;n

� x

j+1;n

)

�

:

We see from the spacing of the zeros in Lemma 2.1 (b), that for x 2 =

j;n

,

jp

n

W j (x) � C

2

a

�

1

2

n

 

1�

jx

j;n

j

a

n

+ L�

n

!

�

p

4

Z

=

j;n

�

p

:
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The result follows if we can show that,

Z

=

j;n

�

p

� C

4

Z

x

j;n

x

j+1;n

�

p

To do this, it su�ces to show that,

�(t) � � (x

j;n

) ; t 2 [x

j+1;n

x

j;n

] :

In view of (104), it su�ces to show that if x

j+1;n

= a

s

and x

j;n

= a

t

, with

s; t � s

0

(some �xed large s

0

), then,

1 �

s

t

� 2 (23)

Now in view of the spacing Lemma 2.1 (b),
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a

s

a
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=
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� x
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)

x
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a
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a
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	(a
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)

a
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)

1

2
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�

= C

6

a

n

a

1

n

n

1

3

T (a

n

)

�

2

3

= o

 

1

T (a

n

)

!

using the de�nition (35) and the fact that T (a

n

) grows slower than any

power of n. Thus it follows that for n � n

0

and s; t � s

0

, Lemma 2.3 (d) it

guarantees (106). 2

Proof of the necessity part of Theorem 1.3.

Fix � 2 R; � > 0; � > 1 + � and assume the conclusion of Theorem 1.3

is true. Let X be the space of all continuous functions f : R ! R with,

kfk

X

:= sup

x2R

jfW j(x) (log (2 + jxj))

�

<1:

Moreover, let Y be the space of all measurable functions f : R ! R with,

kfk

Y

:=








fW (1 +Q)

��










L

p

(R)

<1:
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Each f 2 X satis�es (15), so the conclusion of Thm 1.3 ensures that,

lim

n!1

kf � L

n

[f ]k

Y

= 0

Since X is a Banach space, the uniform boundedness principle gives,

kf � L

n

[f ]k

Y

� Ckfk

X

(24)

with C independent of n and f . In particular as L

1

[f ] = f(0) (recall that

p

1

(x) = 


1

(x)), we deduce that for f 2 X with f(0) = 0,

kfk

Y
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X

:

So for such f ,
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n

continuous in R, with g

n
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2

a

n
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n

W j (x)

�
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and for x

j;n

2

�

�

1

2

a

n

; 0

�

,

g

n

W (x

j;n

)

�

log (2 + jx

j;n

j)

�

sign (p

0

n

(x

j;n
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For example,
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�

can be chosen to be piecewise linear.

Then for x 2 [1:a
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jL

n

[g

n

] (x)j =

�

�

�

�

�

�

�

X

x

j;n

2[�

1

2

a

n

;0)

g

n

(x

j;n

)

p

n

(x)

p

0

n

(x

j;n

) (x� x

j;n

)

�

�

�

�

�

�

�

= jp

n

(x)j

X

x

j;n

2[�

1

2

a

n

;0)

(log (2 + jx

j;n

j))

��

jp

0

n

W j (x

j;n

) (x + jx

j;n

j)

� C

1

a

1

2

n

jp

n

(x)j (log a

n

)

��

x

�1

X

x

j;n

2[�

1

2

a

n

;0)

(x

j;n

� x

j+1;n

)

(by lemma 2.1 (g) and (b))
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Then by (108),

2C = 2C kg
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Here we used the monotonicity of Q, Lemma 2.2 (a) and Lemma 2.1 (d).

Note that [�1; 1] does not give a big contribution to the L

p

norm of p

n

W .

Since a

1

p

n

(log a

n

)

��

grows to 1, we see that � > 0 is necessary for p � 4.

Also, for p > 4, we obtain from Lemma 2.3 (b),
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Since the terms invoving a

n

and T (a

n

) grow to 1 with n, we see that nec-

essarily,
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�

1
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!

:2

Proof of Theorem 1.4.

This is similar to the previous proof. We let X be the Banach space of

continuous functions f : R ! R vanishing outside [�2; 2], with norm,

kfk

X

:= kfk

[�2;2]

:

We let Y be the space of all measurable f : R ! R with,

kfk

Y

:= kfWUk

L

P

[R]

<1:

Assume that we cannot �nd f sayisfying (19). Then the uniform boundedness

principle gives (107) for all f 2 X. Again, when f(0) = 0, we obtain (108).

We now choose g

n

2 X, with

(g

n

W ) (x

j;n

) sign (p

0

n

(x

j;n

)) = 1
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in

h
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; g

n

= 0in (�1;�2] [ [0;1) and
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n
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) sign (p
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in [�2; 2t]. Much as before, we deduce that for x � 1,
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Also by hypothesis, there exists C
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2
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:

Hence by (108),
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much as before, by Lemma 2.2 (a) and (42). Of course this is impossible for

large n and we have a contridiction. 2
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