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THE SUPPORT OF THE EQUILIBRIUM MEASURE IN THE

PRESENCE OF A MONOMIAL EXTERNAL FIELD ON [−1, 1]

S.B. DAMELIN AND A.B.J. KUIJLAARS

Abstract. The support of the equilibrium measure associated with an exter-
nal field of the form Q(x) = −cx2m+1, x ∈ [−1, 1] with c > 0 and m a positive
integer is investigated. It is shown that the support consists of at most two
intervals. This resolves a question of Deift, Kriecherbauer and McLaughlin.

1. Introduction and statement of main result

The equilibrium measure in the presence of a continuous external field Q :
[−1, 1] −→ R is the unique Borel probability measure µ on [−1, 1] satisfying for
some constant F ,

{

Uµ(x) + Q(x) = F, x ∈ supp (µ),
Uµ(x) + Q(x) ≥ F, x ∈ [−1, 1].

(1.1)

Here Uµ denotes the logarithmic potential of µ, i.e.,

Uµ(x) :=

∫ 1

−1

log
1

|x − t|dµ(t).

We set

w(x) := exp(−Q(x)), x ∈ [−1, 1]

and call w the weight with respect to the external field Q. In the theory of weighted
polynomials of the form wnPn, n ≥ 1, a crucial role is played by the set supp (µ).
Indeed, Mhaskar and Saff [16] showed that for every polynomial Pn of degree at
most n,

‖wnPn‖L∞([−1,1]) = ‖wnPn‖L∞(supp (µ)),(1.2)

so that wnPn actually “lives” on the set supp (µ). Thus the determination of the
equilibrium measure and its support is an important tool in describing asymptotics
of weighted polynomials on [−1, 1].
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We also note that equilibrium problems like (1.1) play an important role in
random matrix theory and the theory of singular limits of integrable systems. We
refer the interested reader to [4], [3] and the references cited therein.

For convex external fields on [−1, 1], it is well known that the support of the
equilibrium measure is an interval. As a result, weighted polynomials wnPn with
Q(x) = − logw(x) convex are studied frequently, see e.g. [7], [14], [17], [20] and also
the recent books [13], [15], [18]. The corresponding theory for non-convex external
fields, however, is less studied in the literature and it is our purpose in this paper
to investigate this subject further building on the work of [11] and answering a
question raised in [3].

More precisely, in this paper we study external fields of the form

Q(x) = Qc(x) = −cx2m+1, x ∈ [−1, 1],(1.3)

where m is a fixed positive integer and c > 0. The equilibrium measure in the
presence of the external field Qc is denoted by µc and its support by Sc. Here the
dependence on m is not indicated explicitly. It follows that (1.1) takes the form

{

Uµc(x) + Qc(x) = Fc, x ∈ Sc,
Uµc(x) + Qc(x) ≥ Fc, x ∈ [−1, 1],

(1.4)

for some constants Fc and that the above relations uniquely determine µc.
Following is our main result.

Theorem 1.1. Let m ∈ N, m ≥ 1. Then there are three critical values cj = cj(m),
j = 1, 2, 3, 0 < c1 < c2 < c3 such that

(a) For 0 < c ≤ c1, we have

Sc = [−1, 1].

(b) For c1 < c ≤ c2, we have

Sc = [a, 1]

with a = a(c) ∈ (−1, 0).
(c) For c2 < c < c3, we have

Sc = [a1, b1] ∪ [a2, 1]

with aj = aj(c) ∈ (−1, 1), j = 1, 2, b1 = b1(c) and −1 < a1 < b1 < a2 < 1.
(d) For c3 ≤ c < ∞, we have

Sc = [a, 1]

with a = a(c) ∈ (0, 1).

Remark 1.2. Theorem 1.1 answers a question raised by Deift, Kriecherbauer and
McLaughlin [3]. In this very interesting paper many new properties are derived
for the equilibrium measure in the presence of an external field. For example, it is
shown that for real analytic external fields, the support consists of a finite number
of intervals. Furthermore, if the external field is a polynomial of degree N , then
the number of intervals is at most N + 1. As special cases they consider in detail
the monomial external fields −cxN and they obtain our Theorem 1.1 for N = 3.
For odd N ≥ 5, the part (c) was left open. For even N , see Remark 1.4 (2) below.
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Remark 1.3. We briefly mention the connection between fast decreasing polynomi-
als on [−1, 1] and our problem. For a given external field Q and x0 ∈ [−1, 1], we
ask for a sequence of polynomials {Pn} with deg Pn ≤ n, such that

Pn(x0) = enQ(x0)(1.5)

and

|Pn(x)| ≤ en(Q(x)+o(1)), x ∈ [−1, 1].(1.6)

For x0 = 0 and Q(x) = −c|x|α with fixed positive constants c and α, the polynomi-
als Pn satisfying (1.5) and (1.6) take the value 1 at the origin, while they decrease
exponentially fast outside the origin, with a rate determined by the external field.
This situation, in particular, was considered in [9], [12] and [21]. For further in-
teresting applications of fast decreasing polynomials to weighted approximation on
[−1, 1] and the real line, see [2], [5] and the references cited therein.

The connection between fast decreasing polynomials and potentials was thor-
oughly investigated by Totik in [21], see also [18] and [20]. One of the main results
in [21] is that, if µ is the equilibrium measure with the external field Q as in
(1.1), then fast decreasing polynomials satisfying (1.5) and (1.6) exist, if and only
if equality holds in (1.1) for x = x0. In particular, a sufficient condition is that
x0 ∈ supp (µ).

If the external field is of the form Q(x) = cQ1(x), c > 0, then one may ask for
the largest value of the parameter c such that polynomials satisfying (1.5) and (1.6)
exist. The answer is then given by

sup{c > 0 : 0 ∈ Sc},
cf. equation (2.5) below.

Finallly, we note that for many external fields (including the fields given by
(1.3)), the condition (1.6) can be replaced with the condition that

|Pn(x)| ≤ MenQ(x), x ∈ [−1, 1],

for some constant M , independent of n, see [18].

Remark 1.4.
(1) In [11], Kuijlaars and Dragnev considered external fields of the form

Q(x) := −cxα, x ∈ [0, 1], α > 1(1.7)

and they proved that for α > 1, the support consists of at most two intervals. To
be precise, there are two critical values c1, c2, depending on α. For c ≤ c1, the
support is equal to the full interval [0, 1], for c ∈ (c1, c2), the support has the form
[0, b] ∪ [a, 1] with 0 < b < a < 1, and for c ≥ c2, the support is an interval of the
form [a, 1]. These results have applications to existence theorems for fast decreasing
polynomials on [0, 1], see [12], [21].

Note that for α ≤ 1, the external field (1.5) is convex on [0, 1], so that in that
case the support is always a single interval.

(2) The corresponding problem for external fields

Q(x) := −c|x|β , x ∈ [−1, 1], β > 2

can be resolved completely using the above mentioned result from [11] by a suitable
quadratic transformation. The result is that there are two critical values c1, c2

which depends on β. For c ≤ c1, the support is [−1, 1], for c ∈ (c1, c2) the support



4 S.B. DAMELIN AND A.B.J. KUIJLAARS

consists of three intervals and has the form [−1,−a] ∪ [−b, b] ∪ [a, 1] with 0 < b <
a < 1, and for c ≥ c2, the support consists of two intervals [−1,−a] ∪ [a, 1].

We note that this problem with β = 2m an even integer was also considered in
[3]. The cases m = 1 and m = 2 were covered completely, but for m ≥ 3, there was
also a gap in the range of parameters.

(3) What remains open is the investigation of the odd external fields

Q(x) := −c sgn(x)|x|α, x ∈ [−1, 1],

when α is not an odd integer. We intend to come back to this in a future paper.

The rest of the paper is organized as follows. In Section 2 we collect together
some general facts concerning the supports Sc which will be needed in the proof of
Theorem 1.1. In Section 3 we discuss balayage onto a finite number of intervals.
We prove a result on the monotonic behavior of the density of a balayage measure.
In Section 4 we study the iterated balayage algorithm of P. Dragnev, which was
also used in [11]. This iterative method to solve the equilibrium problem (1.1) gives
rise to a sequence of signed measures on [−1, 1], which in certain cases converges
to the equilibrium measure µ. We analyse this algorithm for polynomial external
fields Q and we show that convergence to µ takes place. As an aside, we recover
the result from [3] that the support of the equilibrium measure consists of at most
deg Q + 1 intervals. Combining the convergence of the iterated balayage algorithm
with the result of Section 3, we arrive at Theorem 4.3 which extends a previous
result of [11]. Finally, in Section 5, we prove our main result, Theorem 1.1.

Acknowlegdments. The authors wish to thank P. Deift, T. Kriecherbauer and
K. T-R McLaughlin for raising their interest in the above problem and for providing
them with a copy of [3] prior to publication. We thank Doron Lubinsky, Vilmos
Totik and Walter Van Assche for helpful discussions and encouragements.

2. Preliminaries

We now collect together some facts concerning the supports Sc and their closely
related “cousins”

S∗
c := {x ∈ [−1, 1] : Uµc(x) + Qc(x) = Fc}.(2.1)

These facts are not specific to the external fields (1.3), but they apply to any family
of external fields Qc = cQ1, c > 0, with Q1 a continuous function on [−1, 1]. Most
of these results can be found in the monograph of Saff and Totik [18].

Remark 2.1.
(1) Note first that by (1.4) and (2.1) we have

Sc ⊂ S∗
c , c > 0.

In general equality need not hold.
(2) Next, observe that Qc has its minimum at x = 1, and therefore by (1.2)

1 ∈ Sc, c > 0.(2.2)

In the general case of a family Qc = cQ1 of continuous external fields, this is

{x0 ∈ [−1, 1] : Q1(x0) = min
x∈[−1,1]

Q1(x)} ⊂ Sc, c > 0.

(3) We have that Sc is decreasing as c increases, i.e.,

c < d =⇒ Sc ⊃ Sd,(2.3)
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and c 7→ Sc is continuous from the right with respect to the Hausdorff metric on
compact subsets of [−1, 1]. This means in view of (2.3) that

Sc =
⋃

d>c

Sd.(2.4)

For this, see Theorems IV.1.6 and IV.4.1 of [18].
(4) The mapping c 7→ Sc is not necessarily continuous from the left. That is, we

have by (2.3) that

Sc ⊂
⋂

d<c

Sd, c > 0,

but the inclusion may be strict. Instead, we always have

S∗
c =

⋂

d<c

Sd, c > 0,(2.5)

where S∗
c is given by (2.1). It follows that c 7→ Sc is continuous at a point c, if and

only if Sc = S∗
c , see Theorem IV.1.6 (g) of [18].

We note that it will follow from Theorem 1.1 that Sc = S∗
c for all c > 0, except

c = c3.

The relation (2.5) can be deduced easily from results in [18], in particular The-
orem IV.4.1 and Lemma IV.4.3. We thank V. Totik for this remark. We will give
here a simple proof based on the following lemma.

Lemma 2.2. Let Q be a continuous external field on [−1, 1] with equilibrium mea-
sure µ characterized by the equations (1.1). Let ν 6= µ be a non-negative Borel
measure on C with a compact support and ‖ν‖ ≤ 1. If x0 ∈ C is such that

Uµ−ν(x0) ≥ max
x∈supp (µ)

Uµ−ν(x),(2.6)

then x0 ∈ supp (µ).

Proof. The function Uµ−ν is subharmonic outside the support of µ, and also at
∞, since ‖ν‖ ≤ 1 = ‖µ‖. Therefore, by the maximum principle, the maximum of
Uµ−ν is attained in supp (µ). Moreover, if the maximum is also attained at a point
outside of supp (µ), then Uµ−ν is necessarily a constant throughout C, and this is
impossible, because µ 6= ν. Thus every x0 satisfying (2.6) belongs to supp (µ).

Proof of (2.5). The fact that
⋂

d<c Sd ⊂ S∗
c is contained in Theorem IV.4.1 of [18].

It is therefore enough to prove that S∗
c ⊂ Sd, whenever d < c.

Thus let d < c and put Q = Qd, µ = µd and ν = (d/c)µc. For x ∈ supp (µ) = Sd,
we have by (1.4),

Uµ−ν(x) = (Uµ(x) + Q(x)) − (Uν(x) + Q(x))

= (Uµd(x) + Qd(x)) − (d/c)(Uµc(x) + Qc(x))

≤ Fd − (d/c)Fc.

Thus

max
x∈supp (µ)

Uµ−ν(x) ≤ Fd − (d/c)Fc.
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Next, if x0 ∈ S∗
c , then by (1.4) and (2.1),

Uµ−ν(x0) = ((Uµd(x0) + Qd(x0)) − (d/c)(Uµc(x0) + Qc(x0))

≥ Fd − (d/c)Fc

≥ max
x∈supp (µ)

Uµ−ν(x).

This implies x0 ∈ Sd by Lemma 2.2, since ‖ν‖ ≤ 1 and ν 6= µ.

We finally need an extension of (2.4) that characterizes the set ∪d>cSd (without
closure). We will state this result for a family of external fields Qc = cQ1 that are
real analytic in a neighborhood of [−1, 1]. For a field Q which is real analytic in
a neighborhood of [−1, 1], it was shown in [3] that the equilibrium measure µ is
supported on a finite number of intervals. Furthermore, there is a function h, real
analytic in a neigborhood of [−1, 1], such that

supp (µ) = {t ∈ [−1, 1] : h(t) > 0},(2.7)

and if we write h = h+ − h−, where h+ and h− are the positive and negative parts
of h, respectively, then

dµ(t)

dt
=

√

h+(t)

π
√

1 − t2
, t ∈ [−1, 1].(2.8)

For this, see Theorems 1.34 and 1.38 of [3].

Lemma 2.3. Let Qc = cQ1 be a family of external fields that are real analytic in
a neighborhood of [−1, 1]. Let µc be the equilibrium measure with external field Qc

on [−1, 1] and let Sc = supp (µc). Then
⋃

d>c

Sd = {x0 ∈ Sc :
dµc

dt
(x0) > 0}.(2.9)

Proof. In the proof we use vc to denote the density of µc.
Let d > c. We use Lemma 5.7 of [20], which says that

(µc)|Sd

≥ c

d
µd + (1 − c/d)(ωSc

)|Sd

,

where ωSc
is the equilibrium measure (without external field) of Sc. In terms of

densities, this is

vc(x0) ≥
c

d
vd(x0) + (1 − c/d)

dωSc

dt
(x0), x0 ∈ Sd.

The equilibrium measure ωSc
has a density that does not vanish on Sc. So we get,

since Sd ⊂ Sc,

vc(x0) ≥ (1 − c/d)
dωSc

dt
(x0) > 0, x0 ∈ Sd.

We have shown that
⋃

d>c Sd is contained in {x0 ∈ Sc : vc(x0) > 0}.
For the converse, we suppose that vc(x0) > 0. The proof that x0 ∈ Sd for

some d > c, is based on the fact that there exists a non-negative measure ρ on Sc

satisfying

ρ ≤ µc, ρ 6= 0,(2.10)

and

Uρ(x0) = max
x

Uρ(x).(2.11)
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Before we prove (2.10), (2.11) let us first show how to obtain from it the result that
x0 ∈ Sd for some d > c.

Assuming (2.10), (2.11), we write δ :=
∫

dρ, so that 0 < δ ≤ 1 by (2.10). We
pick d such that

c < d <
c

1 − δ

and we define the measure

ν :=
d

c
(µc − ρ).

Then ν is a non-negative measure with ‖ν‖ < 1. For x ∈ Sd, we have

Uµd−ν(x) = Uµd(x) + Qd(x) − d

c
(Uµc(x) + Qc(x)) +

d

c
Uρ(x)

≤ Fd − d

c
Fc +

d

c
Uρ(x0).(2.12)

Here we used (1.4) and (2.11). For x0, we get

Uµd−ν(x0) = Uµd(x0) + Qd(x0) −
d

c
(Uµc(x0) + Qc(x0)) +

d

c
Uρ(x0)

≥ Fd − d

c
Fc +

d

c
Uρ(x0),(2.13)

because of (1.4) and the fact that x0 ∈ Sc. Thus from (2.12), (2.13), we have

Uµd−ν(x0) ≥ max
x∈Sd

Uµd−ν(x)

and this implies x0 ∈ Sd by Lemma 2.2, since ‖ν‖ < 1.
So what remains is to prove the existence of a measure ρ satisfying (2.10), (2.11).

We note that by (2.7) and (2.8), there is a real analytic function hc on a neighbor-
hood of [−1, 1] such that

vc(t) =

√

h+
c (t)

π
√

1 − t2
, t ∈ [−1, 1].(2.14)

If x0 is an interior point of Sc, then, since vc is continuous by (2.14), there are
ǫ0, ǫ1 > 0, such that vc(t) ≥ ǫ0 on [x0 − ǫ1, x0 + ǫ1]. Let ρ be the measure with
density ǫ0 on [x0 − ǫ1, x0 + ǫ1] and 0 elsewhere. Then (2.10) is clearly satisfied and
(2.11) is easily verified by direct calculation.

If x0 is a boundary point of Sc and vc(x0) > 0, then it follows from (2.14) that
we have either x0 = −1 or x0 = 1. Suppose without loss of generality that x0 = 1.
Then there exist ǫ0, ǫ1 > 0 such that

vc(t) ≥ ǫ0|1 − t|−1/2, t ∈ [1 − ǫ1, 1].

This follows from (2.14) and the fact that hc is real analytic in a neighborhood of
[−1, 1]. Let ρ be the measure with density ǫ0|1 − t|−1/2 for t ∈ [1 − ǫ1, 1], and 0
elsewhere. Then again it is easily shown that ρ satisfies (2.10) and (2.11).

This completes the proof of the lemma.

Remark 2.4. Lemma 2.3 should be compared with Lemma 5.8 of [20]. If vc(x0) > 0
and x0 is an interior point of Sc, then this lemma immediately gives that x0 ∈ Sd

for some d > c, which is of course, part of the statement (2.9). We have chosen to
include a full proof also for this case, since it is simpler than the proof in [20] and
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the same proof works for boundary point x0, which is not covered by the results of
[20].

3. Balayage onto a finite number of intervals

We recall the notion of balayage onto a compact set, see [18] or [19]. Let K
be a compact subset of the complex plane with positive logarithmic capacity and
such that the complement C \K is regular for the Dirichlet problem. Then, if ν is
any finite positive Borel measure on C with compact support, there exists a unique
measure ν̂ supported on K such that ‖ν‖ = ‖ν̂‖, and for some constant C,

U ν̂(z) = Uν(z) + C, z ∈ K.(3.1)

The measure ν̂ is called the balayage of ν onto K and we denote it by Bal(ν; K). For
a signed measure σ = σ+ − σ−, we define Bal(σ; K) := Bal(σ+; K)− Bal(σ−; K).

We are going to take the balayage of measures onto sets Σ which are finite unions
of closed disjoint intervals on the real line. The main result of this section is the
following:

Theorem 3.1. Let Σ = ∪l
j=1[aj , bj] be a finite union of closed disjoint intervals

with

a1 < b1 < a2 < · · · < al < bl.

Let ν be a finite positive Borel measure supported on the union of the gaps ∪l−1
j=1(bj , aj+1).

Then the measure Bal(ν; Σ) has a density v on Σ such that
√

(t − a1)(bl − t)v(t), t ∈ Σ,(3.2)

increases on the first interval [a1, b1] and decreases on the last interval [al, bl].

We need the following lemma.

Lemma 3.2. Let Σ = ∪l
j=1[aj , bj ] with a1 < b1 < a2 < · · · < al < bl be as in

Theorem 3.1. Fix a point s ∈ (bj∗ , aj∗+1) for some j∗ ≤ l−1 and let δs be the point
mass at s. Then

d(Bal(δs; Σ))

dt
=

Ts(t)

(t − s)R(t)
, t ∈ Σ,(3.3)

where

R(t) := (−1)l−j0





l
∏

j=1

|(bj − t)(t − aj)|





1/2

t ∈ (aj0 , bj0), j0 = 1, . . . , l,

(3.4)

and Ts is a polynomial of degree ≤ l − 1 with exactly one zero in each of the gaps
(bj , aj+1), j 6= j∗. In addition, there is one more zero in R \ [a1, bl] if the degree of
Ts is l − 1.

Remark 3.3. We have defined R in (3.4) in such a way that its sign changes when
going from one interval to the next. Because of the properties of the zeros of Ts,
also Ts(t)/(t − s) changes sign, and we see that the right hand side of (3.3) has
constant (positive) sign.

Note that the polynomials Ts depend on Σ as well.
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Proof of Lemma 3.2. Without loss of generality, we may assume that s = 0. We
define

Σ−1 := {x−1 : x ∈ Σ}.
Note that as 0 6∈ Σ, the set Σ−1 is compact and it is the union of l closed intervals.
Let ω denote the usual equilibrium measure (without external field) for Σ−1 and
let ρ be the image of the measure ω under the mapping t 7→ 1/t. We claim that

Bal(δ0; Σ) = ρ.(3.5)

To see this, we note firstly that ρ is a probability measure supported on Σ. By the
uniqueness of balayage it then suffices to show that

Uρ(x) = U δ0(x) + C(3.6)

for some constant C and for every x ∈ Σ. We have for x ∈ Σ,

Uρ(x) =

∫

Σ

log
1

|x − t|dρ(t)

=

∫

Σ−1

log
1

|x − t−1|dω(t)

= log
1

|x| +

∫

Σ−1

log |t|dω(t) +

∫

Σ−1

log
1

|x−1 − t|dω(t)

= U δ0(x) − Uω(0) + Uω(x−1),

with x−1 ∈ Σ−1. Since ω is the equilibrium measure of Σ−1, its potential is constant
on Σ−1 and this constant is equal to − log(cap (Σ−1)), where cap (Σ−1) is the loga-
rithmic capacity of Σ−1. We have proved (3.6) with C = −Uω(0)− log(cap (Σ−1))
and our claim (3.5) follows.

Now (3.4) follows from the known representation of the equilibrium measure ω
of Σ−1 (see for example Lemma 4.4.1 of [19]).

Proof of Theorem 3.1. By symmetry, it suffices to show that (3.2) increases on
[a1, b1].

From Lemma 3.2 it follows that the balayage of ν onto Σ has the density

v(t) =

∫

Ts(t)

(t − s)R(t)
dν(s), t ∈ Σ,(3.7)

where Ts and R are as in Lemma 3.2. Here we used the fact that

Bal(ν; Σ) =

∫

Bal(δs; Σ)dν(s),

see e.g. formula (4.13) of Chapter II in [18]. We see that by (3.7) it is enough to
show that

√

(t − a1)(bl − t)
Ts(t)

(t − s)R(t)
(3.8)

increases on [a1, b1] for every s ∈ [a1, bl] \ Σ.
We first consider the case that s belongs to the gap (b1, a2). Then we can write

by Lemma 3.2

Ts(t) = C(1 − tY )

l−1
∏

j=2

(t − yj),
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with yj ∈ (bj , aj+1) for j = 2, . . . , l−1, Y −1 ∈ R\[a1, bl] and C a non-zero constant
(which all depend on Σ and s). Then (3.8) is

C|1 − tY |
|t − s|

1√
b1 − t

l−1
∏

j=2

yj − t
√

(aj − t)(bj − t)

1√
al − t

, t ∈ (a1, b1).(3.9)

It is easy to see that all factors in (3.9) are positive and increasing on [a1, b1].
Therefore, the product is increasing on [a1, b1] and it follows that (3.8) increases
on [a1, b1] for every s ∈ (b1, a2). Using (3.7) we see that we have proved that (3.2)
increases on [a1, b1] if ν is supported in the first gap (b1, a2).

Using mathematical induction, we may assume that (3.2) increases on [a1, b1]
for all positive finite measures supported on the union of the first j∗ − 1 gaps with
j∗ ≥ 2 and we may further assume that ν is supported on (bj∗ , aj∗+1). Put

Σ1 = [a1, bj∗ ] ∪ Σ,

which is a finite union of intervals, and ν is supported on the first gap of Σ1.
Therefore, by what has been proved before, the balayage measure Bal(ν; Σ1) onto
Σ1 has a density v1 and

√

(t − a1)(bl − t)v1(t)

is increasing on [a1, bj∗ ], and so in particular on [a1, b1]. Let ν1 be the measure

Bal(ν; Σ1) restricted to ∪j∗−1
j=1 (bj , aj+1) and let v2 be the density of the balayage

measure Bal(ν1; Σ). By hypothesis, we have that
√

(t − a1)(bl − t)v2(t)

increases on [a1, b1]. Since v = v1 + v2 on Σ we get that (3.2) increases on [a1, b1]
if ν is supported on (bj∗ , aj∗+1).

This completes the proof of Theorem 3.1.

4. The iterated balayage algorithm

The iterated balayage algorithm gives an iterative method to solve an equilibrium
problem (1.1) with an external field.

Given the external field Q on [−1, 1] one proceeds as follows. Suppose one knows
that the support of µ is contained in the interval [a, b]. (For example, one could
take [−1, 1], but it will be useful to have some freedom here.) Then the first step
is to solve the integral equation

∫ b

a

log |x − t|v0(t)dt = Q(x) − F0, a < x < b,(4.1)

subject to the condition
∫ b

a

v0(t)dt = 1.(4.2)

Formally differentiating (4.1) with respect to x, one obtains the singular integral
equation

–

∫ b

a

v0(t)

x − t
dt = Q′(x), a < x < b.(4.3)

Here –
∫

is used to denote a Cauchy principle value integral.
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It is well-known that if Q is smooth enough, for example if Q is differentiable
with a Hölder continuous derivative, i.e., Q ∈ C1+ǫ([a, b]) for some ǫ > 0, then
(4.2)–(4.3) has the unique solution

v0(t) =
1

π
√

(b − t)(t − a)

[

1 +
1

π
–

∫ b

a

Q′(s)

s − t

√

(b − s)(s − a)ds

]

, a < t < b,

(4.4)

where the above integral is again a Cauchy principle value integral, see §42.3 of [6].
If the function v0 happens to be non-negative on [a, b] then it is the density of the
equilibrium measure with external field Q and we are done. If not, then we put

dσ0(t) := v0(t)dt,

so that σ0 is a signed measure on [a, b]. Let σ0 = σ+
0 − σ−

0 be the Jordan decom-
position of σ0 and

Σ1 := supp (σ+
0 ).

It was shown in [11] that µ ≤ σ+
0 and supp (µ) ⊂ Σ1, so that in determining µ

and its support we may restrict ourselves to Σ1. The next step is to consider the
integral equation on Σ1

∫

Σ1

log |x − t|dσ1(t) = Q(x) − F1, x ∈ Σ1(4.5)

subject to the condition
∫

Σ1

dσ1 = 1.(4.6)

The solution to (4.5)-(4.6) can be expressed in terms of the measure σ0: it is simply
the balayage of σ0 onto Σ1, see (3.1).

To describe this process, an operator J was introduced in [11] on all finite signed
measures σ on [−1, 1] with

∫

dσ = 1 and cap (supp (σ+)) > 0 as follows

J(σ) := σ+ − Bal(σ−; supp (σ+)) = Bal(σ; supp (σ+)).

The operator J sweeps the negative part of the measure σ onto the support of the
positive part, so that in particular J(σ)+ ≤ σ+.

Returning to (4.5)-(4.6), we see that σ1 is given by

σ1 = J(σ0).

Continuing in this way, we write for every k ≥ 1,

Σk := supp (σ+
k−1), σk := J(σk−1) = Jk(σ0).(4.7)

The measures σk are signed measures which have a Jordan decomposition σk =
σ+

k − σ−
k . It follows as in [11] that

σ+
0 ≥ σ+

1 ≥ · · · ≥ µ,(4.8)

and

[a, b] ⊃ Σ1 ⊃ Σ2 ⊃ · · · ⊃ supp (µ).(4.9)

Under quite general conditions one expects from (4.8) that the sequence {σ+
k }∞k=0

converges in weak∗ sense to the equilibrium measure µ, but this has not been proven
yet. If it holds, then we say that the iterated balayage algorithm converges.
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Besides presenting a possible algorithm for numerical calculations, the iterated
balayage algorithm can also be used to prove rigorous results on the support of µ
in certain situations. This was done in [11], where for the class of external fields
given in (1.5), it was shown that Σk consists of at most two intervals for every k,
which led to the result that the support of µ also consists of at most two intervals,
see Remark 1.4 (1).

The main difficulty in proving that the iterated balayage algorithm converges
generally, lies in the fact that one has to show that the negative parts σ−

k tend
to zero as k tends to ∞. This can be shown, if one can control the limiting set
Σ∗. Indeed, any possible limit measure of a subsequence of {σ−

k } is supported on
∂Σ∗, the topological boundary of Σ∗ in [a, b]. (This holds provided that for every
k, Σk+1 is contained in the interior of Σk with respect to [−1, 1], which will be true
in many cases.) If the capacity of ∂Σ∗ is zero, then ∂Σ∗ cannot support a non-zero
measure with a finite potential. This forces the sequence {σ−

k } to converge to 0,
which proves the convergence of the iterated balayage algorithm.

Using these ideas, we consider the case of a polynomial external field. As a by-
product of the analysis we find that for a polynomial external field of degree m on an
interval, the support of the equilibrium measures consists of at most m+1 intervals.
This was shown earlier by Deift, Kriecherbauer and McLaughlin [3] using different
methods. This bound is not the best possible, since for m = 1, the external field is
convex and the support is therefore an interval. The optimal number is (m/2) + 1
if m is even, and (m + 1)/2 if m is odd, as remarked on page 408 of [3].

Theorem 4.1. Let Q be a polynomial of degree m and let µ be the equilibrium
measure in the presence of the external field Q on [−1, 1]. Suppose the support of
µ is contained in the interval [a, b] and let v0, σk, and Σk be as in (4.4) and (4.7).
Define

Σ∗ :=

∞
⋂

k=1

Σk.(4.10)

Then the following hold.

(a) For each k, the set Σk consists of at most m + 1 intervals, say

Σk =

lk
⋃

j=1

[a
(k)
j , b

(k)
j ],(4.11)

with lk ≤ m + 1 and a
(k)
1 < b

(k)
1 < · · · < b

(k)
lk

.

(b) For each k, the signed measure σk has a density vk on Σk and if

Rk(t) := (−1)lk−j0





lk
∏

j=1

|(b(k)
j − t)(t − a

(k)
j )|





1/2

, t ∈ (a
(k)
j0

, b
(k)
j0

),(4.12)

then

Pk(t) := πRk(t)vk(t), t ∈ Σk,(4.13)

is a polynomial of degree m + lk − 1. (More precisely, the restriction of a
polynomial to Σk, but we will not bother about such distinction here and in
the sequel.)

(c) The measures σ+
k converge to the measure µ in weak∗ sense.

(d) The support of µ is equal to Σ∗ minus its isolated points.
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(e) The support of µ consists of at most m + 1 intervals.

First we need a lemma.

Lemma 4.2. Let Σ =
⋃l

j=1[aj , bj ] with a1 < b1 < · · · < bl and

R(t) = (−1)l−j0





l
∏

j=1

|(bj − t)(t − aj)|





1/2

, t ∈ (aj0 , bj0).

Let Q be a polynomial of degree m. Then

P (t) := –

∫

Σ

Q′(s)

s − t
R(s)ds

is a polynomial of degree m + l − 1 exactly.

Proof. Since R2 is a polynomial of degree 2l, we see that Q′R2 has degree m+2l−1.
We can write Q′R2 = AB where A and B are polynomials of degrees m + l and
l − 1, respectively. Then

P (t) = –

∫

Σ

A(s)B(s)

s − t

ds

R(s)

=

∫

Σ

A(s) − A(t)

s − t

B(s)ds

R(s)
+ A(t) –

∫

Σ

B(s)

s − t

ds

R(s)
.

In the final expression, the first integral is a polynomial of degree m + l − 1, since
for each s, (A(s)−A(t))/(s− t) is a polynomial of degree m+ l−1 in t. The second
integral vanishes identically, since the degree of B is l − 1, see §42.3 of [6].

Proof of Theorem 4.1. From Lemma 4.2 and (4.4) we get that

P0(t) := π
√

(b − t)(t − a)v0(t), a < t < b

is a polynomial of degree m. Thus P0 has at most m zeros in [a, b] which implies
that Σ1 consists of at most [m/2] + 1 intervals, say

Σ1 :=

l1
⋃

j=1

[a
(1)
j , b

(1)
j ]

with l1 ≤ [m/2] + 1 and a
(1)
1 < b

(1)
1 < · · · < b

(1)
l1

. We will in fact only need that

l1 ≤ m+1. Then the first iterated measure σ1 = J(σ0) is supported on Σ1 and has
a density v1 satisfying

∫

Σ1

log |x − t|v1(t)dt = Q(x) − F1, x ∈ Σ1,(4.14)

with some constant F1. Differentiating this we get the singular integral equation
on several intervals

–

∫

Σ1

v1(t)

x − t
dt = Q′(x), x ∈ Σ1,

which has the general solution, see [6], p. 427, formula (42.29),

v1(t) =
1

πR1(t)

[

πl1−1(t) +
1

π
–

∫

Σ1

Q′(s)

s − t
R1(s)ds

]

, t ∈ Σ1,(4.15)

where R1 is given by (4.12) with k = 1 and and πl1−1(t) is an arbitrary polynomial of
degree≤ l1−1. This polynomial is uniquely determined by the condition

∫

v1(t)dt =
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1, along with the l1−1 conditions arising from the fact that the integration constant

F1 in (4.14) is the same on each interval [a
(1)
j , b

(1)
j ]. From Lemma 4.2 and (4.15) it

follows that

P1(t) := πR1(t)v1(t)

is a polynomial of degree m+ l1 − 1 exactly, and therefore has at most this number
of zeros in Σ1. Recalling that J(σ)+ ≤ σ+, we have v1 ≤ v0 on Σ1 and since

v0(a
(1)
j ) = v0(b

(1)
j ) = 0 for all j, except possibly for a

(1)
1 and b

(1)
l1

, we find that

v1(a
(1)
j ) ≤ 0 and v1(b

(1)
j−1) ≤ 0, j = 2, . . . , l1.

From this it can be deduced that v1 is positive on at most [(m + l1 − 1)/2] + 1
subintervals of Σ1. Thus Σ2 has the form

Σ2 =

l2
⋃

j=1

[a
(2)
j , b

(2)
j ]

with l2 ≤ [(m + l1 − 1)/2] + 1 and a
(2)
1 < b

(2)
1 < · · · < b

(2)
l2

. Since l1 ≤ m + 1 it then
easily follows that also

l2 ≤ m + 1.

We deduce that we can control our algorithm in the sense that the number of
intervals remains bounded by m + 1. Inductively, it follows that for every k, Σk

consists of at most m + 1 intervals and so has the form given by (4.11). Then with
Rk as in (4.12) and Pk as in (4.13) we get from Lemma 4.2 that Pk is a polynomial
of degree m + lk − 1 ≤ 2m, which is non-negative on at most m + 1 subintervals of
Σk and Σk+1 consists of at most m + 1 intervals. This proves parts (a) and (b) of
the theorem.

Now taking the limit k → ∞, we have that Σ∗ given by (4.10), also consists of
at most m + 1 intervals, say

Σ∗ =

l∗
⋃

j=1

[a∗
j , b

∗
j ], l∗ ≤ m + 1,

and a∗
1 ≤ b∗1 < a∗

2 ≤ · · · ≤ b∗l . It could happen that some of the intervals in the limit
shrink to a single point. We use Σ to denote the set Σ∗ minus its set of isolated
points and we write

Σ =
l
⋃

j=1

[aj , bj ], l ≤ l∗ ≤ m + 1,

with a1 < b1 < · · · < bl. The boundary of Σ∗ has capacity zero, and therefore,
by the remarks preceding Theorem 4.1, the iterated balayage algorithm converges.
This proves part (c).

It also follows that the equilibrium measure µ is supported on Σ (it cannot have
mass at the isolated points of Σ∗) and has density v(t) = limk vk(t), t ∈ Σ, given
by

v(t) :=
1

πR(t)
P (t), t ∈ Σ
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with

R(t) := (−1)l−j0





l
∏

j=1

|(bj − t)(t − aj)|





1/2

, t ∈ (aj0 , bj0),

and P (t) a polynomial of degree m + l − 1. Hence v does not vanish identically on
any subinterval of Σ, which means that Σ is the support of µ. It follows that the
support consists of at most m + 1 intervals. This proves parts (d) and (e) and the
proof of the theorem is complete.

We will use the following result in the proof of Theorem 1.1 in the next section.

Theorem 4.3. Let Q be a polynomial external field on [−1, 1] and let µ be the
equilibrium measure in the presence of Q with support

Σ =

l
⋃

j=1

[aj, bj ]

(see Theorem 4.1). Let v be the density of µ on Σ. Suppose Σ ⊂ [a, b] for some
interval [a, b] ⊂ [−1, 1] and let v0 be defined as in (4.4).

(a) Suppose that there exist a number b∗ ∈ [a, b) such that [a, b∗] ⊂ supp (µ) and

a t0 ∈ (b∗, b) such that
√

(b − t)(t − a)v0(t) decreases on [b∗, t0]. Then
(1) supp (µ) ∩ [a, t0] = [a1, b1] is an interval containing a, and

(2)
√

(b − t)(t − a)v(t) decreases on [b∗, b1].
(b) Suppose that there exist a number a∗ ∈ (a, b] such that [a∗, b] ⊂ supp (µ) and

a t0 ∈ (a, a∗) such that
√

(b − t)(t − a)v0(t) increases on [t0, a
∗]. Then

(1) supp (µ) ∩ [t0, b] = [al, bl] is an interval containing b, and

(2)
√

(b − t)(t − a)v(t) increases on [al, a
∗].

Proof. It is enough to prove part (a), since part (b) follows from (a) by symmetry.
So assume the conditions of part (a) are satisfied. Let dσ0(t) := v0(t)dt and let
Σk and σk, k = 1, 2, . . . , be given by (4.7). We also put Σ0 = [a, b]. We use vk to
denote the density of σk on Σk, which exists by Theorem 4.1 (b).

From Theorem 4.1 (a) we know that each Σk consists of a finite number of
intervals, which we denote as in (4.11). Since supp (µ) ⊂ Σk for each k, we have

[a, b∗] ⊂ Σk, k = 1, 2, . . .(4.16)

and it follows that for the endpoints of the first interval [a
(k)
1 , b

(k)
1 ] of Σk, we have

a
(k)
1 = a, b

(k)
1 ≥ b∗.

Using mathematical induction, we show that for each k = 0, 1, . . . ,

(I) Σk ∩ [a, t0] = [a, b
(k)
1 ], where b

(0)
1 = t0;

(II)
√

(b − t)(t − a)vk(t) decreases on [b∗, b
(k)
1 ].

For k = 0 this follows immediately from the assumptions of the theorem.
Let k ≥ 0 and assume (I) and (II) hold for k. Using Σk+1 = supp (σ+

k ) and (II),

we find that Σk+1 ∩ [b∗, b
(k)
1 ] is an interval. In view of (4.16) with k replaced by

k + 1, we then have

Σk+1 ∩ [b∗, b
(k)
1 ] = [b∗, b

(k+1)
1 ].
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From (I) and the fact that Σk+1 ⊂ Σk, it then follows that

Σk+1 ∩ [a, t0] = Σk+1 ∩ [a, b
(k)
1 ] = [a, b

(k+1)
1 ],

which is (I) with k + 1 instead of k.
Next, we note that

σk+1 = J(σk) = σ+
k − Bal(σ−

k ; Σk+1)

and therefore

vk+1(t) = vk(t) − uk(t), t ∈ Σk+1,(4.17)

where uk is the density of Bal(σ−
k ; Σk+1). From Theorem 3.1, we get that

√

(b
(k)
lk

− t)(t − a)uk(t)

increases on [a, b
(k+1)
1 ], and so a fortiori on the smaller interval [b∗, b

(k+1)
1 ]. Here b

(k)
lk

is the largest number in Σk. Since b
(k)
lk

≤ b, we easily get that
√

(b − t)(t − a)uk(t)

increases on [b∗, b
(k+1)
1 ]. Combining this with (II) and (4.17), we obtain (II) with k

replaced by k + 1.
Thus (I) and (II) hold for every k. Then we get from Theorem 4.1 (d) and (I)

that supp (µ) ∩ [a, t0] is a single interval, which proves (1). From (II) and the fact
that v(t) = limk vk(t) we find (2). This completes the proof of part (a).

5. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We need two lemmas. The first is the
classical Descartes’ rule of signs.

Lemma 5.1. The number of zeros on (0,∞) of any polynomial

n
∑

i=0

ait
i

is at most the number of sign changes in the sequence of coefficients (ai)
n
i=0 after

zero terms are discarded.

Proof. See for example [1] or [10].

The next lemma is of a computational nature.

Lemma 5.2. Let m ≥ 1.

(a) For every a ∈ [−1, 1), we have

1

π
–

∫ 1

a

s2m

s − t

√

(1 − s)(s − a)ds =

2m
∑

j=0

Bj(a)tj − t2m+1, a < t < 1,(5.1)

with coefficients Bj(a) satisfying

Bj(a) ≥ 0, j = 0, 1, . . . , 2m, a ∈ [−1, 1).(5.2)

Equality holds in (5.2) if and only if a = −1 and j even.
(b) We have

1

π

∫ 1

−1

s2m

√

1 − s

1 + s
ds =

(1
2 )m

m!
,(5.3)

where (x)m is the Pochhammer symbol given by (x)m = Γ(x + m)/Γ(x).
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Proof. From Lemma 4.2 we know that the left-hand side of (5.1) is a polynomial
of degree 2m + 1 exactly, say with coefficients Bj(a), j = 0, . . . , 2m + 1. We write

1

π
–

∫ 1

a

s2m

s − t

√

(1 − s)(s − a)ds =
1

π

∫ 1

a

s2m − t2m

s − t

√

(1 − s)(s − a)ds

+
1

π
–

∫ 1

a

t2m

s − t

√

(1 − s)(s − a)ds.(5.4)

For the first integral of the right-hand side of (5.4), we find

1

π

∫ 1

a

s2m − t2m

s − t

√

(1 − s)(s − a)ds =
2m−1
∑

j=0

tj
1

π

∫ 1

a

s2m−1−j
√

(1 − s)(s − a)ds,

and for the second integral, formula 3.228.3 of [8] gives

1

π
–

∫ 1

a

t2m

s − t

√

(1 − s)(s − a)ds = t2m

(

1 + a

2
− t

)

, a < t < 1.

Thus B2m+1(a) = −1, B2m(a) = (1 + a)/2 ≥ 0 and

Bj(a) =
1

π

∫ 1

a

s2m−1−j
√

(1 − s)(s − a)ds, j = 0, 1, . . . , 2m − 1.(5.5)

It is clear that Bj(a) > 0 if j is odd or if a ≥ 0, since then the integrand in (5.5)
is non-negative. So assume j is even and ≤ 2m − 2 and a < 0. Then we split the
integral for Bj(a) in (5.5) in an integral from 0 to 1 and an integral from a to 0. In
the second integral we make the change of variables s 7→ as and we obtain

Bj(a) =
1

π

∫ 1

0

s2m−1−j
√

(1 − s)(s − a)ds

−(−a)2m+ 1

2
−j 1

π

∫ 1

0

s2m−1−j
√

(1 − s)(1 − as)ds

=
1

π

∫ 1

0

s2m−1−j
√

1 − s
(√

s − a − (−a)2m+ 1

2
−j

√
1 − as

)

ds.

Since
√

s − a ≥ (−a)2m+ 1

2
−j

√
1 − as, 0 < s < 1, −1 ≤ a ≤ 0,(5.6)

we see that Bj(a) is non-negative for even j and a ∈ [−1, 0). Equality holds in (5.6)
only if a = −1, which gives that equality holds in (5.2) if and only if j is even and
a = −1. This proves part (a).

For part (b), we note that the change of variables s 7→ −s gives
∫ 1

−1

s2m

√

1 − s

1 + s
ds =

∫ 1

−1

s2m

√

1 + s

1 − s
ds

and therefore

1

π

∫ 1

−1

s2m

√

1 − s

1 + s
ds =

1

2π

∫ 1

−1

s2m

(

√

1 − s

1 + s
+

√

1 + s

1 − s

)

ds

=
1

π

∫ 1

−1

s2m 1√
1 − s2

ds.

The last integral is easily reduced to a beta-integral and (5.3) follows.
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We are ready for:

Proof of Theorem 1.1. We fix m ∈ N, m ≥ 1.

Proof of part (a). Let c > 0 and Qc(x) = −cx2m+1. We first solve the integral
equation (4.1)-(4.2) on the full interval [−1, 1]. This gives using (4.4) and (5.1) the
representation

v0(t) =
1

π
√

1 − t2

[

1 − c(2m + 1)

π
–

∫ 1

−1

s2m

s − t

√

1 − s2ds

]

(5.7)

=
1

π
√

1 − t2



1 − c(2m + 1)
2m
∑

j=0

Bj(−1)tj + c(2m + 1)t2m+1



 .

All coefficients Bj(−1) are non-negative by Lemma 5.2 (a). Thus the polynomial

P0(t) := π
√

1 − t2v0(t)(5.8)

has at most two sign changes in its coefficients. Descartes’ rule of signs, see Lemma
5.1, then gives that P0 has at most two positive zeros. Applying Descartes’ rule of
signs to P ′

0, we see that P0 has at most one extreme point on [0,∞). From (5.6),
(5.7) we easily get that P0(0) = 1, P ′

0(0) < 0 and

P0(1) = 1 +
c(2m + 1)

π

∫ 1

−1

s2m

√

1 + s

1 − s
ds > 1.

It follows that P0 has a local minimum at a unique t0 ∈ (0, 1) and P0 decreases
on [0, t0] and increases on [t0, 1]. We see that P0 has its maximum on [−1, 1] at
+1 and, by symmetry, since P0(t)− 1 is an odd function (which is immediate from
(5.7), (5.8)), its minimum at −1. Lemma 5.2 (b) yields that

P0(−1) = 1 − c(2m + 1)

π

∫ 1

−1

s2m

√

1 − s

1 + s
ds = 1 − c(2m + 1)

(1
2 )m

m!
.

Thus P0 is non-negative on [−1, 1] and Sc = [−1, 1] if and only if

c ≤ c1(m) :=
m!

(2m + 1)(1
2 )m

.(5.9)

This proves part (a).

In the rest of the proof we consider for various combinations of a ∈ (−1, 1) and
c > 0 the integral equation (4.1), (4.2) on [a, 1] with Q(x) = Qc(x). This leads by
(4.4) to a function v0 depending on the parameters a and c, given by

v0(t; a, c) =
1

π
√

(1 − t)(t − a)

[

1 − c(2m + 1)

π
–

∫ 1

a

s2m

s − t

√

(1 − s)(s − a)ds

]

.

(5.10)

The associated polynomial P0(t; a, c) defined by

P0(t; a, c) := π
√

(1 − t)(t − a)v0(t; a, c)(5.11)

has by Lemma 5.2 (a) the expansion

P0(t; a, c) = 1 − c(2m + 1)

2m
∑

j=0

Bj(a)tj + c(2m + 1)t2m+1(5.12)
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with Bj(a) > 0. Applying Descartes’ rule of signs to P ′
0, see Lemma 5.1, we see

that P0(t; a, c) has at most one extreme point in (0,∞). We note that by (5.12)

P0(0; a, c) = 1 − c(2m + 1)B0(a) < 1, P ′
0(0; a, c) = −c(2m + 1)B1(a) < 0,

and by (5.10) and (5.11),

P0(1; a, c) = 1 +
c(2m + 1)

π

∫ 1

a

s2m

√

s − a

1 − s
ds > 1.

Therefore, there is a unique t0 in (0, 1) such that
{

P0(t; a, c) decreases on [0, t0],
P0(t; a, c) increases on [t0, 1].

(5.13)

It is easy to see that t0 depends only on a and not on c. Therefore we will also
write t0 = t0(a).

Proof of part (b). Let c ≥ c1(m). We solve the integral equation (4.1)-(4.2) on
[a, 1] with −1 ≤ a ≤ 0. This gives v0(t; a, c) on [a, 1] as in (5.10). To obtain a
relationship between c and a, we impose the condition v0(a; a, c) = 0, from which
we get that c = C(a) with

C(a) :=

(

2m + 1

π

∫ 1

a

s2m

√

1 − s

s − a
ds

)−1

.(5.14)

The polynomial P0(t; a, C(a)), see (5.11), then depends analytically on a. For
a = −1, we have from (5.9) and (5.14) that C(a) = c1(m), and it follows from the
proof of part (a) that P0(t;−1, C(−1)) > 0 for t ∈ (−1, 1]. By continuity we also
have for a slightly bigger than −1, that P0(t; a, C(a)) > 0 for t ∈ (a, 1]. Define

A := {a0 ∈ [−1, 0] : For all a ∈ [−1, a0], P0(t; a, C(a)) ≥ 0 on [a, 1]},(5.15)

which is clearly a closed interval A = [−1, a∗] with

a∗ := maxA ∈ (−1, 0].(5.16)

We show that for a ∈ A and c = C(a), we have Sc = [a, 1]. Indeed, for such a
and c, the measure dµ(t) := v0(t; a, c)dt is a probability measure on [a, 1] (cf. (4.2))
and by (4.1)

Uµ(x) + Qc(x) = Fc, x ∈ [a, 1],(5.17)

for some constant Fc. On [−1, a) we have

d2

dx2
Uµ(x) =

∫ 1

a

v0(t; a, c)

(t − x)2
dt > 0, x ∈ [−1, a).

Hence Uµ is convex on [−1, a) and Qc(x) = −cx2m+1 is convex on [−1, a) as well,
since a ≤ 0. Next, we have

d

dx
Uµ(x) =

∫ 1

a

v0(t; a, c)

t − x
dt

which is a singular integral if x ∈ (a, 1) and an ordinary integral if x ∈ [−1, a).
Since v0(t; a, c) = O((t − a)1/2) as t ց a, we find that (d/dx)Uµ(x) is continuous
at x = a. Then because of (5.17), we have

(Uµ + Qc)
′
(a) = 0.(5.18)
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From the convexity of Uµ + Qc on [−1, a), we then get

(Uµ + Qc)
′ (x) < 0, x ∈ [−1, a).

It follows that Uµ + Qc is strictly decreasing on [−1, a) and so by (5.17)

Uµ(x) + Qc(x) > Fc x ∈ [−1, a).(5.19)

The relations (5.17) and (5.19) show that µ = µc, the equilibrium measure with
external field Qc, and thus Sc = [a, 1], whenever a ∈ A and c = C(a). From the
strict inequality in (5.19) we find that also S∗

c = [a, 1], see (2.1).
From the uniqueness of Sc, we get that a 7→ C(a) is strictly increasing for a ∈ A.

Now we put

c2(m) := C(a∗),(5.20)

and it follows from the above that for every c ∈ (c1(m), c2(m)] there is an a ∈
(−1, a∗] with c = C(a) and

Sc = S∗
c = [a, 1], c ∈ (c1(m), c2(m)].

To complete the proof of part (b), it remains to show that a∗ < 0, and for this
it suffices to prove that 0 6∈ A, see (5.16). But, if 0 ∈ A, then we can follow the
above arguments, and it would follow that (5.18) holds for a = 0. Since Q′

c(0) = 0
we get (Uµ)′(0) = 0, which gives a contradiction, since

d

dx
Uµ(0) =

∫ 1

0

v0(t; 0, C(0))

t
dt > 0.

This completes the proof of part (b).

For the remaining parts of the proof, we introduce

a1(c) := minSc, c > 0.(5.21)

We already know from part (a) that a1(c) = −1 if c ≤ c1(m) and from part (b)
that a1(c) increases from −1 to a∗ as c increases from c1(m) to c2(m). Moreover,
using Remark 2.1, we see that a1(c) increases and is continuous from the right. We
define

c3(m) := inf{c : a1(c) > 0}.(5.22)

We now proceed to prove part (d) and after that part (c).

Proof of part (d). Let c > c3(m), so that Sc ⊂ (0, 1] by (5.21) and (5.22). Then it
follows that the equilibrium measure with external field Qc on [−1, 1] is the same
as the equilibrium measure with external field Qc on [0, 1]. This was considered in
[11], see also Remark 1.4 (1), and it follows that Sc consists of at most two intervals.
If it were two intervals, then one interval would contain 0 and this is not possible,
since Sc ⊂ (0, 1]. Thus Sc consists of exactly one interval, and has the form [a1, 1]
with a1 = a1(c) ∈ (0, 1).

For c = c3(m), we then get by continuity from the right, see Remark 2.1, that
Sc3

= [a∗∗, 1] with

a∗∗ := a1(c3(m)) ≥ 0.(5.23)

It is not possible that a∗∗ = 0, since then we find a contradiction in the same way
that a∗ = 0 gave a contradiction in the proof of part (b). Thus a∗∗ > 0 and this
completes the proof of part (d).
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Proof of part (c). We define

γ := γ(m) := sup{c > 0 : 0 ∈ Sc}.(5.24)

From (5.20) and the proof of part (b), we have that Sc2
= [a∗, 1] with a∗ < 0.

Likewise, from the proof of part (d), we have Sc3
= [a∗∗, 1] with a∗∗ > 0. Thus

c2 ≤ γ ≤ c3. We first prove that we have strict inequalities here.
To show that c2 < γ, we use the polynomial P0(t; a

∗, c2) given by (5.10)-(5.11)
with a∗ defined in (5.16). Since a∗ ∈ A and c2 = C(a∗), we have that P0(t; a

∗, c2) ≥
0 for t ∈ [a∗, 1], see (5.15) and (5.20). From (5.13) we obtain that P0(t; a

∗, c2) does
not have its minimum at t = 0 and therefore

P0(0; a∗, c2) > 0.

It follows that the density of the equilibrium measure µc2
(which is equal to

v0(t; a
∗, c2), see (5.10)) is strictly positive at t = 0. Then Lemma 2.3 implies

that 0 ∈ Sd for d > c2 sufficiently close to c2. Hence γ > c2.
To prove γ < c3, we note first that it follows from the proof of part (d) that

Sc3
= [a∗∗, 1] and therefore

{

Uµc3 (x) + Qc3
(x) = Fc3

, x ∈ [a∗∗, 1],
Uµc3 (x) + Qc3

(x) ≥ Fc3
, x ∈ [−1, 1].

If equality would hold here for x = 0, i.e., if 0 ∈ S∗
c3

, then we would get

(Uµc3 + Qc3
)′(0) = 0,

and this would give a contradiction, since

d

dx
Uµc3 (0) =

∫ 1

a∗∗

1

t
dµc3

(t) > 0

and Q′
c3

(0) = 0. Thus 0 6∈ S∗
c3

, and then it follows from (2.5) that 0 6∈ Sd for d < c3

sufficiently close to c3. This proves γ < c3, and so we have

c2(m) < γ(m) < c3(m).(5.25)

We continue now with the case c ∈ [c2, γ). Since Sc ⊂ [a1(c), 1], we may start to
solve the integral equation (4.1)-(4.2) on [a1, 1] with a1 = a1(c). We get v0(t; a1, c)
as given by (5.10) and the polynomial P0(t; a1, c) as in (5.11). We obtain from (5.24)
and c < γ, that 0 ∈ Sc. From the convexity of the external field Qc(x) = −cx2m+1

on [−1, 0], it follows that Sc ∩ [−1, 0] is an interval, see Theorem IV.1.10 of [18].
Hence

Sc ∩ [−1, 0] = [a1(c), 0], c2 ≤ c < γ.(5.26)

From (5.26) and Lemma 2.3 it follows that the density of µc2
is strictly positive on

[a1(c), 0] for every c > c2. Letting c ց c2, we find that

P0(t; a
∗, c2) > 0, for t ∈ (a∗, 0].

(Recall that v0(t; a
∗, c2) is the density of µc2

.) On the interval [0, 1], the polynomial
P0(t; a

∗, c2) assumes its minimum at t0(a
∗) ∈ (0, 1), see (5.13). Then it follows easily

from the fact that a∗ = maxA < 0 that

P0(t0(a
∗); a∗, c2) = 0.

Using Lemma 2.3, we find that t0(a
∗) 6∈ Sc for all c > c2. Therefore P0(t; a1(c), c)

cannot be non-negative on the full interval [a1(c), 1] if c ∈ (c2, γ). We find using
(5.13) and (5.26) that P0(t0(a1); a1, c) < 0, and so t0(a1) 6∈ Sc. Furthermore, as
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P0(t; a1, c) decreases on [0, t0(a1)], we get from Theorem 4.3 (a) and (5.26) that
Sc ∩ [a1, t0(a1)] is an interval. Thus there is a b1 = b1(c) ∈ [0, t0(a1)) such that

Sc ∩ [−1, t0] = [a1, b1].(5.27)

We also have using (5.13) that P0(t; a1, c) increases on [t0(a1), 1]. Then by Theorem
4.3 (b) we get, since 1 ∈ Sc,

Sc ∩ [t0, 1] = [a2, 1](5.28)

for some a2 = a2(c) ∈ (t0, 1]. Combining (5.27) and (5.28), we see that

Sc = [a1(c), b1(c)] ∪ [a2(c), 1](5.29)

and we have proved part (c) for c ∈ (c2, γ).
Next, we have γ < c3 by (5.25), and thus a1(γ) < 0. Then letting c increase

towards γ we obtain from (5.29) that

Sγ = [a1(γ), b1(γ)] ∪ [a2(γ), 1].

If we would have b1(γ) > 0, then it would follow from Theorem 4.3 (a) (2) that

π
√

(1 − t)(t − a1)v(t)

with v the density of the equilibrium measure µγ , decreases on [0, b1(γ)] and v(0) >
0. Then Lemma 2.3 implies that 0 ∈ Sd for some d > γ. This is impossible by
(5.24) and therefore b1(γ) = 0. Thus we get

Sγ = [a1(γ), 0] ∪ [a2(γ), 1].(5.30)

Now to the remaining case c ∈ (γ, c3). Here we solve the integral equation (4.1)-
(4.2) on [a, 1] with a = a1(γ). This gives us the polynomial P0(t; a1(γ), c) which
depends on c, but its minimum on [0, 1] is at the same point t0 = t0(a1(γ)), see
(5.13). On [t0, 1], P0(t; a1(γ), c) is increasing, and therefore by Theorem 4.3 (b),
Sc ∩ [t0, 1] is an interval containing 1. Hence

Sc ∩ [t0, 1] = [a2(c), 1].

Since Sc ⊂ Sγ , we find a2(c) > a2(γ). Then we also get, because of (5.30),

Sc ∩ (0, 1] = [a2(c), 1].(5.31)

Because the external field Qc is convex on [−1, 0], we have that Sc ∩ [−1, 0] is an
interval, see Theorem IV.1.10 of [18]. It is non-empty since min Sc < 0. Hence

Sc ∩ [−1, 0] = [a1(c), b1(c)](5.32)

with −1 < a1(c) < b1(c) < 0. (Observe that 0 6∈ Sc). From (5.31), (5.32), we have

Sc = [a1(c), b1(c)] ∪ [a2(c), 1]

and this proves part (c) for the remaining case c ∈ (γ, c3).

Now the proof of Theorem 1.1 is complete and we are done.
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