
Convergence of Hermite and Hermite-Fej�er

interpolation of higher order for Freud weights

S. B. Damelin

1

, H. S. Jung

2

, and K. H. Kwon

2

1 March 2001

Abstract

We investigate weighted L

p

(0 < p < 1) convergence of Hermite and

Hermite - Fej�er interpolation polynomials of higher order at the zeros of

Freud orthogonal polynomials on the real line. Our results cover as spe-

cial cases, Lagrange, Hermite-Fej�er and Krylov-Stayermann interpolation

polynomials.
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1 Introduction and Statement of Results

We study mean convergence of Hermite and Hermite-Fej�er interpolatory poly-

nomials of higher order for Freud type weight functions on the real line. More

precisely, let X := fx

kn

g � R;

�1 < x

nn

< x

n�1;n

< � � � < x

2n

< x

1n

<1; n = 1; 2; � � � ;

be a set of pairwise di�erent nodes. Then for any real-valued function f on R

and an integer m � 1, see ([25]), the Hermite-Fej�er interpolation polynomial of

higher order H

nm

(f;X) of degree � nm� 1 with respect to X is de�ned by

�

H

nm

(f;X; x

kn

) = f(x

kn

); 1 � k � n;

H

(t)

nm

(f;X; x

kn

) = 0; 1 � t � m� 1; 1 � k � n:

(1.1)

We note that by de�nition, H

n1

are the Lagrange, H

n2

the Hermite-Fej�er and

H

n4

the Krylov-Stayermann interpolatory polynomials [7], [22] and [23]. By

(1.1), we may write for x 2 R,

H

nm

(f;X; x) =

n

X

k=1

f(x

kn

)h

knm

(X; x); n = 1; 2; � � � :
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The polynomials

h

k

(X; x) := h

knm

(X; x) = l

m

kn

(X; x)

m�1

X

i=0

e

iknm

(x� x

kn

)

i

; 1 � k � n

are unique, of degree exactly nm� 1 and satisfy the relations

h

(t)

k

(X; x

ln

) = �

0t

�

lk

; 1 � k; l � n; 0 � t � m� 1 (1.2)

where for nonnegative integers u and v

�

uv

:=

�

1; u = v

0; u 6= v:

Here, l

kn

(X; x) are the well known fundamental Lagrange polynomials of degree

n� 1 given by

l

kn

(X; x) :=

w

n

(x)

w

0

n

(x

kn

)(x� x

kn

)

; w

n

(x) :=

n

Y

k=1

(x� x

kn

):

If f 2 C

(m�1)

(R), then the Hermite interpolation polynomial of higher order

b

H

nm

(f;X; x) of degree � nm� 1 with respect to X is de�ned by

b

H

(t)

nm

(f;X; x

kn

) := f

(t)

(x

kn

); 1 � k � n; 0 � t � m� 1:

We may write for x 2 R,

b

H

nm

(f;X; x) =

m�1

X

t=0

n

X

k=1

f

(t)

(x

kn

)h

tk

(X; x); m = 1; 2; � � � ;

where

h

tk

(X; x) : = h

tknm

(X; x)

= l

m

kn

(X; x)

(x� x

kn

)

t

t!

m�1�t

X

i=0

e

tiknm

(x� x

kn

)

i

; 0 � t � m� 1

is the unique polynomial of degree nm� 1 satisfying

h

(i)

tk

(X; x

jn

) = �

ti

�

kj

; 0 � i; t � m� 1; 1 � j; k � n: (1.3)

The coe�cients e

ik

:= e

iknm

and e

tik

:= e

tiknm

may be obtained from the

properties of h

k

and h

tk

, (1.2) and (1.3), see e.g. (2.6). It follows that we may

write for any polynomial P of degree � nm� 1, and x 2 R

P (x) =

b

H

nm

(P;X; x) = H

nm

(P;X; x) +

m�1

X

t=1

n

X

k=1

P

(t)

(x

kn

)h

tk

(X; x): (1.4)
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In this paper, we are interested in investigating L

p

(0 < p <1) convergence

of Hermite-Fej�er and Hermite interpolation of higher order for an interpolatory

matrix X whose lines are the zeros of a sequence of orthogonal polynomials

with respect to a class of Freud weights on the real line. As special cases of

our main results, we are able to recover known results on weighted Lagrange,

Hermite and Hermite-Fej�er interpolation for even Freud weights on the real

line. In particular, we are also able to derive new results for Krylov-Stayermann

interpolation and higher order processes for Freud weights on the real line for

arbitrary �xed values of m. We thus believe that our main theorems provide a

uni�ed method by which all of the above results may be obtained.

More precisely, we are concerned with Freud weights w of the form w =

exp(�Q) where:

� Q : R ! R is even and continuous.

� Q

(2)

is continuous in (0;1).

� Q

0

� 0 in (0;1).

� There are constants A and B with 1 < A � B so that

A �

d

dx

(xQ

0

(x))=Q

0

(x) � B; x 2 (0;1):

This class is large enough to cover the well known example

w

�

(x) := exp(�jxj

�

); x 2 R; � > 1

of which the Hermite weight w

2

is a special case.

For a given Freud weight w, we denote by

p

n

(w

2

; x) = 


n

(w

2

)x

n

+ :::; 


n

(w

2

) > 0; n � 0

the unique orthonormal polynomials satisfying

Z

R

p

n

(w

2

; x)p

m

(w

2

; x)w

2

(x)dx = �

mn

; m; n = 0; 1; 2; � � �

and denote by

x

n;n

(w

2

) < x

n�1;n

(w

2

) < � � � < x

2;n

(w

2

) < x

1;n

(w

2

)

their n real simple zeros. We henceforth set X := fx

kn

(w

2

)g

n

k=1

= fx

kn

g

n

k=1

:

The subject of general orthogonal polynomials and weighted approximation

on the real line and on �nite intervals of the real line of positive length, is a rich

and well established topic of research and we refer the reader to [3], [8], [15],
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[17], [18] and the many references cited therein for a comprehensive account of

this vast area and its applications.

The results in this paper are motivated, in part, by the following papers

dealing with the theory of Lagrange, Hermite and Hermite-Fej�er interpolation

for weights on the real line and on �nite intervals. In [11], [14], [16] and [20] the

above authors studied weighted uniform and mean convergence of Lagrange

interpolation for Freud weights on the real line while in [4], [10], [13] and

[20], mean convergence of Hermite-Fej�er and Hermite interpolation processes

for Freud weights on the real line were investigated. In [19], [23], [24], [26] and

[27], Sakai, V�ertesi and Xu studied weighted uniform and mean convergence of

Hermite and Hermite-Fej�er interpolations of higher order at the zeros of Jacobi

polynomials. Earlier work on Krylov-Stayermann interpolation for Jacobi poly-

nomials can be found in [7] and [22] and an interesting survey on this topic and

related subjects may be found in [25]. Finally in [6], Kasuga and Sakai have re-

cently investigated, in particular, convergence of Hermite-Fejer interpolation of

higher order for the Freud weight of the form w

2

(x) = exp(�x

m

), m = 2; 4; � � � .

Before stating our main results, we �nd it convenient to introduce some

needed notation. Firstly, we will henceforth suppress the dependence of the

matrix X on the sequences of functions de�ned above. For example we will

often write H

mn

(f;X; x) = H

mn

[f ](x) and adopt similar conventions for other

sequences of functions. For any two sequences (b

n

) and (c

n

) of nonzero real

numbers, we shall write

b

n

<

� c

n

;

if there exists a constant C > 0, independent of n such that

b

n

� Cc

n

for n large enough

and we shall write

b

n

� c

n

;

if b

n

<

� c

n

and c

n

<

� b

n

. Similar notation will be used for functions and sequences

of functions. Given m � 1 and 0 < p <1, we will always set for every natural

number n

(logn)

�

m;p

:=

�

logn; mp 6= 4

(logn)

1+1=p

; mp = 4:

The symbol C will always denote an absolute positive constant which may take

on di�erent values at di�erent times and �

n

will denote the class of polynomials

of degree at most n � 1.

Finally, let a

u

(w

2

) := a

u

, for u > 0, be the u-th Mhaskar-Rahmanov-Sa� num-

ber, which is the unique positive root of the equation

u =

2

�

Z

1

0

a

u

tQ

0

(a

u

t)

p

1� t

2

dt; u > 0:
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Throughout, w will denote a Freud weight as de�ned above and a

u

will

denote the Mhaskar-Rakhmanov-Sa� number for the weight w

2

. Following are

our main results.

Theorem 1.1a Let 0 < p < 1, 1 � m < 4 and let � 2 R, � > 0 and

b� := minf1; �g. Then the following hold:

(A) Suppose that for 0 < p � 4=m, we have uniformly for n � C

a

�(�+�)+1=p

n

n

m=6�1=3

<

�

1

(logn)

�

m;p

(1.5)

and

b�+� >

1

p

: (1.6)

Then

lim

n!1

jj

�

f(x)�H

nm

[f ](x)

�

w

m

(x)(1 + jxj)

��

jj

L

p

(R)

= 0 (1.7)

for every continuous function f : R ! R satisfying

lim

jxj!1

jf(x)jw

m

(x)(1 + jxj)

�

= 0: (1.8)

Moreover,

lim

n!1

jj

�

f(x)�

b

H

nm

[f ](x)

�

w

m

(x)(1 + jxj)

��

jj

L

p

(R)

= 0 (1.9)

for every f 2 C

(m�1)

(R) satisfying (1:8) and

sup

x2R

jf

(t)

(x)w

m

(x)(1 + jxj)

�

j <1; t = 1; 2; � � � ;m� 1: (1.10)

(B) Suppose that for p > 4=m, we have uniformly for n � C

a

�(�+�)+1=p

n

n

(m�1)=3�2=(3p)

<

�

�

1

logn

�

(1.11)

and

a

�(b�+�)+1=p

n

n

m=6�2=(3p)

<

�

�

1

logn

�

: (1.12)

Then (1:7) holds for continuous functions satisfying (1:8) and (1:9) holds

for continuous functions satisfying (1:8) and (1:10).

Theorem 1.1b Let 0 < p < 1, m � 4 and let � 2 R, � > 0 and b� :=

minf1; �g. In addition, assume that uniformly for n � C

a

��

n

n

m=6�1

<

�

1

(logn)

1=p

: (1.13)

Then the following hold:
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(A) Suppose that for 0 < p � 4=m, (1:5) and (1:6) hold. Then (1:7) holds

for continuous functions satisfying (1:8) and (1:9) holds for continuous

functions satisfying (1:8) and (1:10).

(B) Suppose that for 4=m < p � 1, there exists �

1

> 0 and �

2

> 0 such that

uniformly for n � C

a

�(�+�)+1=p

n

n

(m�1)=3�2=3

<

�

�

n

��

1

�

(1.14)

and

a

�(b�+�)+1=p

n

n

m=6�2=3

<

�

�

n

��

2

�

: (1.15)

Then (1:7) holds for continuous functions satisfying (1:8) and (1:9) holds

for continuous functions satisfying (1:8) and (1:10).

(C) Suppose that for p > 1, (1:11) and (1:12) hold. Then (1:7) holds for con-

tinuous functions satisfying (1:8) and (1:9) holds for functions satisfying

(1:8) and (1:10).

Remark

(a) It is instructive to brie
y discuss the assumptions (1.5)-(1.6), (1.11)-(1.12)

and (1.13)-(1.15). Firstly, it is well known, see ([18], Theorem 3.2.1), that

for every polynomial P

n

2 �

n

, n � 1 and for a given Freud weight w

kP

n

wk

L

1

[�a

n

;a

n

]

= kP

n

wk

L

1

(R)

:

Thus in particular for weighted approximation, it has become natural to

impose minimal growth assumptions on the sequence a

n

in order to estab-

lish convergence of interpolation operators in suitable weighted spaces on

the real line, see [1], [2], [4], [11], [16], [20] and the references cited therein.

(b) For a Freud weights w, it is well known, see [8], that uniformly for u � C,

u

1=B

<

� a

u

<

� u

1=A

so that in particular, the assumption (1.13) only becomes signi�cant for

m > 6. Indeed, it is easily seen that (1.13) is readily satis�ed for 1 � m �

6. If (1.6) holds, then a

����+1=p

n

decreases to 0 for large n. If p > 4=m,

then it is easy to see that that the exponents of n in (1.12) are positive. In

particular, (1.12) implies (1.6). Similarly, if m � 4, (1.15) implies (1.6).

(c) In particular, for the weight w = w

�

, it is well known, see ([18], Chapter

4), that a

n

= Cn

1=�

and thus we obtain the following result.

Corollary 1.2a Let w = w

�

; � > 1, 0 < p < 1 and 1 � m < 4. In addition,

let � 2 R, � > 0 and b� := minf1; �g. Then the following hold:

6



(A) Suppose that for 0 < p � 4=m,

��

�

+

m

6

<

�

�

�

1

p�

+

1

3

; b�+� >

1

p

:

Then (1:7) holds for continuous functions satisfying (1:8) and (1:9) holds

for continuous functions satisfying (1:8) and (1:10).

(B) Suppose moreover that for p > 4=m we have

��

�

+

m

6

<

�

�

�

1

p�

+

2

3p

�

m

6

+

1

3

;

�b�

�

+

m

6

<

�

�

�

1

p�

+

2

3p

:

Then (1:7) holds for functions satisfying (1:8) and (1:9) holds for functions

satisfying (1:8) and (1:10).

Corollary 1.2b Assume the hypotheses of Corollary 1:2a except we assume

that m � 4. Then the following hold:

Suppose that for 0 < p � 4=m, we have

��

�

+

m

6

< min

�

1;

�

�

�

1

p�

+

1

3

�

; b�+� >

1

p

;

for 4=m < p � 1, we have

��

�

+

m

6

< min

�

1;

�

�

�

1

p�

+

2

3

�

m

6

+

1

3

�

;

�b�

�

+

m

6

<

�

�

�

1

p�

+

2

3

and for p > 1 we have

��

�

+

m

6

< min

�

1;

�

�

�

1

p�

+

2

3p

�

m

6

+

1

3

�

;

�b�

�

+

m

6

<

�

�

�

1

p�

+

2

3p

:

Then (1:7) holds for continuous functions satisfying (1:8) and (1:9) holds for

continuous functions satisfying (1:8) and (1:10).

We observe that Theorems 1.1a and 1.1b allow us to recover as special cases,

results on weighted Lagrange, Hermite, Hermite-Fej�er and Krylov-Stayermann

interpolation for Freud weights. For Lagrange, Hermite and Hermite-Fej�er in-

terpolation, special cases of our results for our class of weights have already

appeared in ([4], Theorem 1.1), ([11], Theorem 1.3) and ([14], Theorem 1.1).

1.1 Lagrange interpolation: The case m = 1

Corollary 1.3 Let 0 < p <1, � 2 R, � > 0 and b� := minf1; �g. We assume

that for 0 < p � 4,

b�+� >

1

p

7



and for p > 4,

a

�(b�+�)+1=p

n

n

1=6(1�4=p)

<

�

�

1

logn

�

:

Then we have

lim

n!1

jj

�

f(x)� L

n

[f ](x)

�

w(x)(1 + jxj)

��

jj

L

p

(R)

= 0

for every continuous function f : R ! R satisfying

lim

jxj!1

jf(x)jw(x)(1 + jxj)

�

= 0:

1.2 Hermite and Hermite-Fej�er interpolation: The case

m = 2

Corollary 1.4 Let 0 < p <1, � 2 R, � > 0 and b� := minf1; �g. We assume

that for 0 < p � 2,

b�+� >

1

p

and for p > 2,

a

�(b�+�)+1=p

n

n

1=3(1�2=p)

<

�

�

1

logn

�

:

Then we have

lim

n!1

jj

�

f(x)�H

2n

[f ](x)

�

w

2

(x)(1 + jxj)

��

jj

L

p

(R)

= 0

for every continuous function f : R ! R satisfying

lim

jxj!1

jf(x)jw

2

(x)(1 + jxj)

�

= 0: (1.16)

Moreover,

lim

n!1

jj

�

f(x)�

b

H

2n

[f ](x)

�

w

2

(x)(1 + jxj)

��

jj

L

p

(R)

= 0

for every f 2 C

(1)

(R) satisfying (1:16) and

sup

x2R

jf

0

(x)jw

2

(x)(1 + jxj)

�

<1:
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1.3 Krylov-Stayermann interpolation: The case m = 4

Corollary 1.5 Let 0 < p <1, � 2 R, � > 0 and b� := minf1; �g. We assume

that for 0 < p � 1,

a

�(�+�)+1=p

n

n

1=3

<

�

1

(logn)

�

4;p

and

b�+� >

1

p

:

Moreover for p > 1 assume

a

�(�+�)+1=p

n

n

1�2=(3p)

<

�

�

1

logn

�

and

a

�(b�+�)+1=p

n

n

2=3�2=(3p)

<

�

�

1

logn

�

:

Then we have

lim

n!1

jj

�

f(x)�K

4n

[f ](x)

�

w

4

(x)(1 + jxj)

��

jj

L

p

(R)

= 0

for every continuous function f : R ! R satisfying

lim

jxj!1

jf(x)jw

4

(x)(1 + jxj)

�

= 0: (1.17)

Moreover,

lim

n!1

jj

�

f(x)�

b

K

4n

[f ](x)

�

w

4

(x)(1 + jxj)

��

jj

L

p

(R)

= 0

for every f 2 C

(3)

(R) satisfying (1:17) and

sup

x2R

jf

(t)

(x)jw

4

(x)(1 + jxj)

�

<1; t = 1; 2; 3:

This paper is organized as follows. In Section 2, we state and prove a quadrature

theorem which is of independent interest and in Section 3, we prove our main

results. Section 4 contains an appendix with a technical lemma which we use

throughout.

Acknowledgments The authors thank P�eter V�ertesi for his constant encour-

agement and the referee for his many valuable comments and corrections. The

�rst author was supported, in part, by a Georgia Southern research grant. The

third author (KHK) was partially supported by BK21 project and KOSEF (99-

2-101-001-5).
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2 Quadrature and derivative estimates

In this section, we prove a quadrature estimate which is of independent interest.

Throughout for convenience, we set for n � 1

x

0;n

:= x

1;n

+ Cn

�2=3

a

n

; x

n+1;n

:= x

n;n

� Cn

�2=3

a

n

:

Following is our main result in this section:

Theorem 2.1 For � 2 (0; 1=2), � 2 R, r = 0; 1; 2; � � � ;m� 1 and x 2 R, let

X

r

(x) :=

�

n

a

n

�

r

X

jx

kn

j��a

n

�

jl

kn

(x)jw

�1

(x

kn

)

�

m

jx� x

kn

j

r

(1 + jx

kn

j)

��

:

Then for some positive constants C

1

, C

2

and C

3

with x

0;n

< (1 + C

2

n

�2=3

)a

n

,

we have uniformly for n � C,

w

m

(x)

X

r

(x)

<

� a

n

��

8

>

>

>

>

<

>

>

>

>

:

A

n

(x); jxj � �a

n

=2

B

n

(x); jxj � 2a

n

C

n

(x); �a

n

=2 � jxj � a

n

(1� C

1

n

�2=3

)

D

n

(x); a

n

(1� C

1

n

�2=3

) � jxj � a

n

(1 + C

2

n

�2=3

)

E

n

(x); a

n

(1 + C

2

n

�2=3

) � jxj � 2a

n

:

(2.1)

Here:

A

n

(x) := n

maxfm=6�1;0g

�

logn; m = 6

1; m 6= 6:

B

n

(x) := a

n

jxj

�(m�r)

n

maxfm=6�1;0g

�

logn; m = 6

1; m 6= 6:

C

n

(x) := (1� jxj=a

n

)

�r=2

+ n

maxfm=6�1=3;0g

�

�

�

a

1=2

n

p

n

(x)w(x)

�

�

�

m

logn:

D

n

(x) :=

�

n

a

n

�

r

�

�

�

jxj � (1� C

3

n

�2=3

)a

n

�

�

�

r

+

+ n

maxfm=6�1=3;0g

�

�

�

a

1=2

n

p

n

(x)w(x)

�

�

�

m

logn:

E

n

(x) := n

maxfm=6�1=3;0g

�

�

�

a

1=2

n

p

n

(x)w(x)

�

�

�

m

logn:

In order to prove Theorem 2.1, we need two auxiliary lemmas.

We begin with:

Lemma 2.2 Let n; r � 1. Then uniformly for 1 � k � n,

�

�

�

�

�

p

(r)

n

(x

kn

)

p

0

n

(x

kn

)

�

�

�

�

�

<

�

�

n

a

n

�

r�1

: (2.2)

10



For the weight exp(�x

m

), m an even positive integer, Lemma 2.2 was �rst

proved in ([5], Lemma 4) for all r � 1. We emphasize that our method of

proof di�ers from that used in [5] as there, heavy use was made of di�erential

equations satis�ed by the orthogonal polynomials in question.

Proof. We write

p

n

(t) = l

kn

(t)(t� x

kn

)p

0

n

(x

kn

) (2.3)

and introduce the reproducing kernel

K

n

(x; t) :=

n�1

X

k=0

p

k

(x)p

k

(t); x; t 2 R

and Cotes numbers

�

k;n

:= K

n

(x

k;n

; x

k;n

)

�1

; k � 1:

Then it is well known, see ([3], Chapter 1), that for 1 � k � n

K

n

(t; x

k;n

) =

l

k;n

(t)

�

k;n

; t 2 R

and for every polynomial P

n�1

of degree at most n� 1

P

n�1

(x) =

Z

R

P

n�1

(t)K

n

(t; x

k;n

)w

2

(t)dt:

Applying these well known identities gives

p

(r)

n

(x

kn

) =

Z

R

p

(r)

n

(t)K

n

(t; x

kn

)w

2

(t)dt

=

1

�

kn

Z

R

p

(r)

n

(t)l

kn

(t)w

2

(t)dt

=

p

0

n

(x

kn

)

�

kn

Z

R

(l

kn

(t)(t � x

kn

))

(r)

l

kn

(t)w

2

(t)dt

=

p

0

n

(x

kn

)

�

kn

Z

R

�

l

(r)

kn

(t)(t� x

kn

)l

kn

(t) + rl

(r�1)

kn

(t)l

kn

(t)

�

w

2

(t)dt

=

rp

0

n

(x

kn

)

�

kn

Z

R

l

(r�1)

kn

(t)l

kn

(t)w

2

(t)dt:

Then by H�older's inequality and Markov's inequality, see ([9], Theorem 1.1) we

11



learn that

jp

(r)

n

(x

kn

)j

<

�

<

�

jp

0

n

(x

kn

)j

�

kn

�

Z

R

�

l

(r�1)

kn

(t)w(t)

�

2

dt

�

1=2

�

Z

R

(l

kn

(t)w(t))

2

dt

�

1=2

=

jp

0

n

(x

kn

)j

�

kn

jjl

(r�1)

kn

(t)w(t)jj

L

2

(R)

jjl

kn

(t)w(t)jj

L

2

(R)

<

�

jp

0

n

(x

kn

)j

�

kn

�

n

a

n

�

(r�1)

jjl

kn

(t)w(t)jj

2

L

2

(R)

:

It remains to observe that

1

�

k;n

kl

kn

(t)w(t)k

2

L

2

(R)

=

Z

R

K

n

(t; x

k;n

)l

k;n

(t)w

2

(t)dt = l

k;n

(x

k;n

) = 1:

This completes the proof of (2.2). 2

Next we use Lemma 2.2 to prove:

Lemma 2.3 Let r � 0 and n;m � 1. Then uniformly for 1 � k � n, 0 � t �

m� 1 and 0 � s � m� 1

�

�

�

[l

m

kn

]

(r)

(x

kn

)

�

�

�

<

�

�

n

a

n

�

r

(2.4)

and

je

sk

j

<

�

�

n

a

n

�

s

; je

tsk

j

<

�

�

n

a

n

�

s

: (2.5)

Proof We prove (2.4) by induction on m. >From (2.3) we easily obtain by using

Leibnitz's rule for di�erentiation

l

(r)

kn

(x

kn

) =

p

(r+1)

n

(x

kn

)

(r + 1)p

0

n

(x

kn

)

and so (2.4) holds for m = 1 by Lemma 2.2. Now assume that (2.4) holds for

m = 1; 2; � � � ; t � 1 for t � 2. Then using Leibnitz's rule for di�erentiation we

obtain

�

�

�

l

t

kn

�

(r)

(x

kn

)

�

�

<

�

r

X

i=0

�

r

i

�

jl

(i)

kn

(x

kn

)j

�

�

�

l

t�1

kn

�

(r�i)

(x

kn

)

�

�

<

�

r

X

i=0

�

r

i

��

n

a

n

�

i

�

n

a

n

�

(r�i)

<

�

�

n

a

n

�

r

:
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This completes the proof of (2.4). To prove (2.5), we proceed by induction on

s. Firstly for s = 0, (2.5) is trivial since e

0k

= 1 and e

t0k

= 1. For s � 1, we

have by (1.2)

0 = h

(s)

k

(x

kn

) =

s

X

i=0

e

ik

�

s

i

�

i!

�

l

m

kn

�

(s�i)

(x

kn

)

so that

e

sk

= �

1

s!

s�1

X

i=0

e

ik

�

s

i

�

i!

�

l

m

kn

�

(s�i)

(x

kn

): (2.6)

Thus if we assume that (2.5) holds for s = 0; 1; � � � ; t�1 for t � 1, then by (2.6)

and (2.4), we have

je

tk

j

<

�

t�1

X

i=0

je

ik

j

�

�

�

�

l

m

kn

�

(t�i)

(x

kn

)

�

�

�

<

�

t�1

X

i=0

�

n

a

n

�

i

�

n

a

n

�

t�i

<

�

�

n

a

n

�

t

:

By the same process for h

tk

, we have je

tsk

j

<

�

�

n

a

n

�

s

. This completes the proof

of Lemma 2.3 2:

We now present the proof of Theorem 2.1:

Proof. For jx

kn

j � �a

n

, jx

kn

j � a

n

by (4.2) so we may assume without loss of

generality that � = 0. We consider various cases:

Case 1. jxj � �a

n

=2: First we observe that uniformly for jx

kn

j � �a

n

jx� x

kn

j � jx

kn

j � a

n

:

Moreover, for this range of x, (4.3) implies that

ja

1=2

n

p

n

(x)w(x)j

<

� 1:

Thus (4.7) yields

w

m

(x)

X

r

(x) (2.7)

<

�

�

n

a

n

�

r

�

�

X

jx

kn

j��a

n

 

a

3=2

n

n

maxfn

�2=3

; 1� jx

kn

j=a

n

g

�1=4

jp

n

(x)w(x)j

jx� x

kn

j

!

m

jx� x

kn

j

r

<

�

�

a

n

n

�

m�r

a

r�m

n

X

jx

kn

j��a

n

maxfn

�2=3

; 1� jx

kn

j=a

n

g

�m=4

:

13



Now using (4.2) we see that

X

jx

kn

j��a

n

maxfn

�2=3

; 1� jx

kn

j=a

n

g

�m=4

<

�

n

a

n

X

jx

kn

j��a

n

maxfn

�2=3

; 1� jx

kn

j=a

n

g

�m=4+1=2

(x

k�1;n

� x

k+1;n

)

<

�

n

a

n

[�

r1

+�

r2

]

where

�

r1

:=

X

�a

n

�jx

kn

j�(1�n

�2=3

)a

n

maxfn

�2=3

; 1� jx

kn

j=a

n

g

�m=4+1=2

(x

k�1;n

� x

k+1;n

)

and

�

r2

:=

X

jx

kn

j�(1�n

�2=3

)a

n

maxfn

�2=3

; 1� jx

kn

j=a

n

g

�m=4+1=2

(x

k�1;n

� x

k+1;n

):

Then we have by (4.1)

X

r2

<

� n

�2=3(�m=4+1=2)

�

�

�

x

0n

� (1� n

�2=3

)a

n

�

�

�

<

� a

n

n

m=6�1

and since 1� jx

kn

j=a

n

� 1� jtj=a

n

for t 2 [x

k+1;n

; x

k�1;n

] from (4.5), we have

X

r1

<

�

X

�a

n

�jx

kn

j�(1�n

�2=3

)a

n

(1� jx

kn

=a

n

j)

�m=4+1=2

Z

x

k�1;n

x

k+1;n

dt

<

�

Z

(1�n

�2=3

)a

n

�a

n

(1� jtj=a

n

)

�m=4+1=2

dt:

Thus, we have

X

jx

kn

j��a

n

maxfn

�2=3

; 1� jx

kn

j=a

n

g

�m=4

(2.8)

<

�

n

a

n

"

Z

(1�n

�2=3

)a

n

�a

n

(1� t=a

n

)

�m=4+1=2

dt+ a

n

n

m=6�1

#

<

� n

1+maxfm=6�1;0g

�

logn; m = 6

1; m 6= 6:

Substituting (2.8) into (2.7) proves Case 1.

Case 2. jxj � 2a

n

: Here jx� x

kn

j � jxj and for this range of x,

ja

1=2

n

p

n

(x)w(x)j

<

� 1

14



by (4.3). Thus using (2.8) and proceeding as in Case 1 gives

w

m

(x)

X

r

(x)

<

�

�

n

a

n

�

r

�

�

X

jx

kn

j��a

n

 

a

3=2

n

n

maxfn

�2=3

; 1� jx

kn

j=a

n

g

�1=4

jp

n

(x)w(x)j

jx� x

kn

j

!

m

jx� x

kn

j

r

<

�

�

a

n

n

�

m�r

jxj

�(m�r)

X

jx

kn

j��a

n

maxfn

�2=3

; 1� jx

kn

j=a

n

g

�m=4

<

� a

n

jxj

�(m�r)

n

maxfm=6�1;0g

�

logn; m = 6

1; m 6= 6

as required.

Case 3. �a

n

=2 � jxj � 2a

n

: We choose l = l(x) such that x 2 [x

l+1;n

; x

ln

], if

possible, and split

X

r

(x) :=

X

r1

(x) +

X

r2

(x)

where

P

r1

sums over those k in

P

r

for which k 2 [l�3; l+3] and

P

r2

contains

the rest. Here, if jxj > x

0n

, we set

P

r1

= 0. Then we have much as in Cases 1

and 2

w

m

(x)

X

r2

(x) (2.9)

<

�

�

n

a

n

�

r

�

�

X

r2

 

a

3=2

n

n

maxfn

�2=3

; 1� jx

kn

j=a

n

g

�1=4

jp

n

(x)w(x)j

jx� x

kn

j

!

m

jx� x

kn

j

r

<

�

�

a

n

n

�

m�r�1

�

�

�

a

1=2

n

p

n

(x)w(x)

�

�

�

m

X

r2

(x

k�1;n

� x

k+1;n

)

jx� x

kn

j

m�r

�

�maxf1� jx

kn

j=a

n

; n

�2=3

g

�m=4+1=2

:

Then (2.9) becomes

w

m

(x)

X

r2

(x)

<

�

�

a

n

n

�

m�r�1

�

�

�

a

1=2

n

p

n

(x)w(x)

�

�

�

m

n

maxfm=6�1=3;0g

X

r2

(x

k�1;n

� x

k+1;n

)

jx� x

kn

j

m�r

<

�

�

a

n

n

�

m�r�1

�

�

�

a

1=2

n

p

n

(x)w(x)

�

�

�

m

n

maxfm=6�1=3;0g

�

�

"

Z

x

l+3;n

�a

n

+

Z

x

0;n

x

l�3;n

dt

jx� tj

m�r

#

:
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Here, for r < m� 1,

Z

x

l+3;n

�a

n

+

Z

x

0;n

x

l�3;n

dt

jx� tj

m�r

<

�

Z

x

l+3;n

�a

n

dt

(x� t)

m�r

+

Z

x

0;n

x

l�3;n

dt

(t� x)

m�r

<

� (x

l+1;n

� x

l+3;n

)

�(m�r�1)

+ (x

l�3;n

� x

l�1;n

)

�(m�r�1)

<

�

�

a

n

n

max

n

1� jxj=a

n

; n

�2=3

o

�1=2

�

�(m�r�1)

<

�

�

n

a

n

�

m�r�1

�

n

�2=3

+ j1� jxj=a

n

j

�

(m�r�1)=2

<

�

�

n

a

n

�

m�r�1

and for r = m� 1

Z

x

l+3;n

�a

n

+

Z

x

0;n

x

l�3;n

dt

jx� tj

m�r

<

� logn:

Therefore, for r = 0; 1; 2; � � � ;m� 1

Z

x

l+3;n

�a

n

+

Z

x

0;n

x

l�3;n

dt

jx� tj

m�r

<

�

�

n

a

n

�

m�r�1

logn:

Thus we have shown that for this range of x,

w

m

(x)

X

r2

(x)

<

� n

maxfm=6�1=3;0g

�

�

�

a

1=2

n

p

n

(x)w(x)

�

�

�

m

logn:

Case 3-1. �a

n

=2 � jxj � (1� C

1

n

�2=3

)a

n

: We have

w

m

(x)

X

r1

(x) =

�

n

a

n

�

r

�

(l

l+3;n

(x)w

�1

(x

l+3;n

)w(x))

m

jx� x

l+3;n

j

r

+ � � �+ (l

l�3;n

(x)w

�1

(x

l�3;n

)w(x))

m

jx� x

l�3;n

j

r

�

:

Thus by (4.8) we have

w

m

(x)

X

r1

(x)

<

�

�

n

a

n

�

r

jx

l�3;n

� x

l+3;n

j

r

� (1� jxj=a

n

)

�r=2

:

Case 3-2. (1 � C

1

n

�2=3

)a

n

� jxj � (1 + C

2

n

�2=3

)a

n

: By a similar argument

to the above we see that there exists a constant C

3

> 0 such that

w

m

(x)

X

r1

(x)

<

�

�

n

a

n

�

r

�

�

�

jxj � (1� C

3

n

�2=3

)a

n

�

�

�

r

:

Case 3-3. (1+C

2

n

�2=3

)a

n

� jxj � 2a

n

: Finally for this range of x, we observe

that

P

r1

(x) = 0. Combining all our estimates completes the proof of Theorem

2.1 2:
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3 Proof of Main Results

In this section we prove our main results, namely Theorems 1.1a and 1.1b. We

�nd it convenient to split our functions to be approximated into pieces that

vanish inside or outside [��a

n

; �a

n

] for some � > 0. For simplicity, we shall

write

H

n;m;i

[f ](x) = H

nmi

[f ](x) :=

n

X

k=1

e

ik

l

m

kn

(x)(x � x

kn

)

i

f(x

kn

)

so that

H

nm

[f ](x) =

m�1

X

i=0

H

nmi

[f ](x):

We break up the proof of Theorems 1.1a and 1.1b into several lemmas. The

�rst is given in:

Lemma 3.1 Let 1 < p < 1, � 2 R, � > 0, b� := minf1; �g and " > 0.

Let � 2 (0; 1=2) and assume further that ff

n

g

1

n=1

is a sequence of measurable

functions from R to R satisfying

f

n

(x) = 0; jxj < �a

n

and

jf

n

w

m

j(x) � "(1 + jxj)

��

; x 2 R and n � 1: (3.1)

Let m � 1.

(a) Suppose for the given m, 1 < p � 4=m. Then assume that (1.5) and (1.6)

hold.

(b) Suppose that for the given m, p > 4=m. Then assume that (1.11) and

(1.12) hold. Moreover, if m > 6, assume that (1.13) always holds.

Then for r = 0; 1; � � � ;m� 1, we have

lim sup

n!1

jjH

nmr

[f

n

](x)w

m

(x)(1 + jxj)

��

jj

L

p

(R)

<

� ":

Proof. Firstly we have by (2.5), (3.1) and the de�nition of

P

r

in Theorem
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2.1,

jH

nmr

[f

n

](x)w

m

(x)(1 + jxj)

��

j (3.2)

=

�

�

�

�

�

w

m

(x)

n

X

k=1

e

rk

l

m

kn

(x)(x � x

kn

)

r

f

n

(x

kn

)(1 + jxj)

��

�

�

�

�

�

<

� "w

m

(x)

�

n

a

n

�

r

X

jx

kn

j��a

n

�

�

l

kn

(x)w

�1

(x

kn

)

�

�

m

�

� jx� x

kn

j

r

(1 + jx

kn

j)

��

(1 + jxj)

��

<

� "w

m

(x)

X

r

(x)(1 + jxj)

��

:

Thus to prove Lemma 3.1 it su�ces to estimate (3.2). We �nd it convenient to

adopt the following notation. Set:

A

1

:= fx j jxj � �a

n

=2g;

A

2

:= fx j jxj � 2a

n

g;

A

3

:= fx j �a

n

=2 � jxj � (1� C

1

n

�2=3

)a

n

g;

A

4

:= fx j (1� C

1

n

�2=3

)a

n

� jxj � (1 + C

2

n

�2=3

)a

n

g;

A

5

:= fx j (1 + C

2

n

�2=3

)a

n

� jxj � 2a

n

g:

Firstly by (3.2) and (2.1)

�

(1)

n

:= jjH

nmr

[f

n

](x)w

m

(x)(1 + jxj)

��

jj

L

p

(A

1

)

<

� "a

n

��

n

maxfm=6�1;0g

jj(1 + jxj)

��

jj

L

p

(A

1

)

�

logn; m = 6;

1; m 6= 6

<

� "a

��+maxf��+1=p;0g

n

n

maxfm=6�1;0g

�

logn; m = 6;

1; m 6= 6:

�

�

(log n)

1=p

; �p = 1;

1; �p 6= 1

<

� "

8

>

>

>

<

>

>

>

:

a

��

n

(logn)

1+1=p

; (1) m � 6;�p � 1;

a

�(�+�)+1=p

n

logn; (2) m � 6;�p < 1;

a

��

n

n

m=6�1

(logn)

1=p

; (3) m > 6;�p � 1;

a

�(�+�)+1=p

n

n

m=6�1

; (4) m > 6;�p < 1:

Case (a) : Suppose 1 < p � 4=m and (1.6) is satis�ed. Then it su�ces to

consider the possibilities m = 1; 2; 3.

If �p � 1 then (1) = O(1), since � > 0.

If �p < 1 then (1.6) implies a

�(�+�)+1=p

n

� a

�(b�+�)+1=p

n

, but here, �(b� +

�) + 1=p < 0. Hence (2) = O(1).

Case (b): If p > 4=m,

if m � 6 and (1.12) is satis�ed,
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if �p � 1, then (1) = O(1), since � > 0;

if �p < 1, then (1.12) ) (2) = O(1), because

a

�(�+�)+1=p

n

logn � a

�(b�+�)+1=p

n

logn

� a

�(b�+�)+1=p

n

n

m

6p

(p�

4

m

)

logn

= a

�(b�+�)+1=p

n

n

m=6�2=(3p)

logn = O(1);

if m > 6 and (1.12),(1.13) are satis�ed,

if �p � 1, then (1.13) ) (3) = O(1) ;

if �p < 1, then (1.12) ) (4) = O(1), because

a

�(�+�)+1=p

n

n

m=6�1

� a

�(b�+�)+1=p

n

n

m=6�1

= a

�(b�+�)+1=p

n

n

m=6�2=(3p)

n

2=(3p)�1

= O

�

1

logn

�

n

�1+2=(3p)

= O(1):

Therefore, we have

lim sup

n!1

�

(1)

n

<

� ":

Next,

�

(2)

n

:= jjH

nmr

[f

n

](x)w

m

(x)(1 + jxj)

��

jj

L

p

(A

2

)

<

� "a

��+1

n

n

maxfm=6�1;0g

�

logn; m = 6;

1; m 6= 6:

�jjjxj

�(m�r)

(1 + jxj)

��

jj

L

p

(A

2

)

<

� "a

�(�+�)+1=p�(m�r�1)

n

n

maxfm=6�1;0g

�

logn; m = 6;

1; m 6= 6:

<

� "a

�(�+�)+1=p

n

n

maxfm=6�1;0g

�

logn; m = 6;

1; m 6= 6:

Case (a) : If 1 < p � 4=m and (1.6) is satis�ed.

Then m < 6 and (1.6) implies

a

�(�+�)+1=p

n

n

maxfm=6�1;0g

= a

�(�+�)+1=p

n

� a

�(b�+�)+1=p

n

= O(1):

Case (b): If p > 4=m and (1.12) is satis�ed,

if m � 6,

a

�(�+�)+1=p

n

n

maxfm=6�1;0g

�

logn; m = 6;

1; m 6= 6

� a

�(b�+�)+1=p

n

logn

� a

�(b�+�)+1=p

n

n

m

6p

(p�

4

m

)

logn

� a

�(b�+�)+1=p

n

n

m=6�2=(3p)

logn = O(1);

19



if m > 6, (1.12) implies

a

�(�+�)+1=p

n

n

maxfm=6�1;0g

�

logn; m = 6;

1; m 6= 6

� a

�(b�+�)+1=p

n

n

m=6�1

� a

�(b�+�)+1=p

n

n

m=6�2=3p

n

�1+2=(3p)

= O

�

1

logn

�

n

�1+2=(3p)

= O(1):

Therefore, we have

lim sup

n!1

�

(2)

n

<

� ":

Now we have

�

(3)

n

:= jjH

nmr

[f

n

](x)w

m

(x)(1 + jxj)

��

jj

L

p

(A

3

)

<

� "a

�(�+�)

n
















�

1�

jxj

a

n

�

�r=2
















L

p

(A

3

)

+

+ "a

�(�+�)

n

n

maxfm=6�1=3;0g

logn










�

a

1=2

n

p

n

w

�

m










L

p

(R)

<

� "a

�(�+�)

n
















�

1�

jxj

a

n

�

�r=2
















L

p

(A

3

)

+

+ "a

�(�+�)

n

n

maxfm=6�1=3;0g

lognjja

1=2

n

p

n

wjj

m

L

mp

(R)

:

Observe that �rstly
















�

1�

jxj

a

n

�

�r=2
















L

p

(A

3

)

� a

1=p

n

 

Z

(1�Cn

�2=3

)

�=2

(1� t)

�

rp

2

dt

!

1=p

� a

1=p

n

8

<

:

1; rp < 2;

(logn)

1=p

; rp = 2;

n

�2=3(�r=2+1=p)

; rp > 2

<

� a

1=p

n

n

maxfr=3�2=(3p);0g

(logn)

1=p

and secondly by (4.6)

jja

1=2

p

n

wjj

m

L

mp

(R)

<

� a

1=p

n

8

<

:

1; mp < 4;

(logn)

m=4

; mp = 4;

n

m=6�2=(3p)

; mp > 4

<

� a

1=p

n

n

maxfm=6�2=(3p);0g

�

(logn)

m=4

; mp = 4;

1; mp 6= 4:
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Thus if m � 2, we have

�

(3)

n

<

� "a

�(�+�)+1=p

n

(logn)

1=p

n

maxfr=3�2=(3p);0g

+ "a

�(�+�)+1=p

n

n

maxf(m�1)=3�2=(3p);m=6�1=3g

(logn)

�

m;p

= "(b

n

+ c

n

)

where

b

n

:= a

�(�+�)+1=p

n

(logn)

1=p

n

maxfr=3�2=(3p);0g

and

c

n

:= a

�(�+�)+1=p

n

n

maxf(m�1)=3�2=(3p);m=6�1=3g

(logn)

�

m;p

:

Moreover if m = 1 we have

�

(3)

n

<

� "a

�(�+�)+1=p

n

+ "a

�(�+�)+1=p

n

n

maxf1=6�2=(3p);0g

(logn)

�

1;p

= "d

n

where

d

n

:= a

�(�+�)+1=p

n

+ a

�(�+�)+1=p

n

n

maxf1=6�2=(3p);0g

(logn)

�

1;p

:

First assume that m � 2. Then for b

n

, we have

b

n

� a

�(�+�)+1=p

n

(logn)

1=p

(1 + n

(m�1)=3�2=(3p)

):

Case (a): If 1 < p � 4=m and (1.5) are satis�ed, then (m � 1)=3 � 2=(3p) �

m=6� 1=3 and 2 � m < 4, (1.5) implies

b

n

<

� a

�(�+�)+1=p

n

n

m=6�1=3

(logn)

1=p

� a

�(�+�)+1=p

n

n

m=6�1=3

(logn)

�

m;p

= O(1):

Case (b): If p > 4=m and (1.11),(1.12) are satis�ed, then

b

n

= a

�(�+�)+1=p

n

(logn)

1=p

(1 + n

(m�1)=3�2=(3p)

)

� a

�(�+b�)+1=p

n

n

m

6p

(p�

4

m

)

(logn)

1=p

+a

�(�+�)+1=p

n

n

m�1

3

�

2

3p

(logn)

1=p

� a

�(�+b�)+1=p

n

n

m=6�2=(3p)

logn

+a

�(�+�)+1=p

n

n

m�1

3

�

2

3p

logn

= O(1):

For c

n

,
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Case (a): If 1 < p � 4=m and (1.5) are satis�ed, then (m � 1)=3 � 2=(3p) �

m=6� 1=3, (1.5) implies

c

n

= a

�(�+�)+1=p

n

n

m=6�1=3

(logn)

�

m;p

= O(1):

Case (b): If p > 4=m and (1.11) are satis�ed, then (m � 1)=3 � 2=(3p) �

m=6� 1=p, (1.11) implies

c

n

= a

�(�+�)+1=p

n

n

(m�1)=3�2=(3p)

(logn)

�

m;p

= a

�(�+�)+1=p

n

n

(m�1)=3�2=(3p)

logn

= O(1):

Hence for m � 2, we have

lim sup

n!1

�

(3)

n

<

� ":

If m = 1,

Case (a): if 1 < p � 4 and (1.6) is satis�ed, then 1=6 � 2=(3p) � 0 and (1.6)

implies

d

n

= a

�(�+�)+1=p

n

+ a

�(�+�)+1=p

n

n

maxf1=6�2=(3p);0g

(logn)

�

1;p

<

� a

�(�+�)+1=p

n

(logn)

�

1;p

<

� a

�(�+b�)+1=p

n

(logn)

�

1;p

= O(1):

Case (b): if p > 4 and (1.12) is satis�ed, then 1=6 � 2=(3p) > 0 and (1.12)

implies

d

n

<

� a

�(�+b�)+1=p

n

n

maxf1=6�2=(3p);0g

(logn)

�

1;p

= a

�(�+b�)+1=p

n

n

1=6�2=(3p)

logn = O(1):

Therefore, we have for m = 1,

lim sup

n!1

�

(3)

n

<

� ":

We consider two further cases. Firstly using Case 3

�

(4)

n

:= jjH

nmr

[f

n

](x)w

m

(x)(1 + jxj)

��

jj

L

p

(A

4

)

<

� "a

�(�+�)

n

�

n

a

n

�

r

jj(jxj � (1� C

3

n

�2=3

)a

n

)

r

jj

L

p

(A

4

)

+"a

�(�+�)+1=p

n

n

maxf(m�1)=3�2=(3p);m=6�1=3g

(logn)

�

m;p

:

Since

jj(jxj � (1� Cn

�2=3

)a

n

)

r

jj

L

p

(A

4

)

=

 

Z

(1+Cn

�2=3

)a

n

(1�Cn

�2=3

)a

n

(jxj � (1� 2Cn

�2=3

)a

n

)

rp

dx

!

1=p

<

� (n

�2=3

a

n

)

r+1=p
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it follows that we deduce for m � 2 that

�

(4)

n

<

� "a

�(�+�)+1=p

n

n

r=3�2=(3p)

+ "a

�(�+�)+1=p

n

n

maxf(m�1)=3�2=(3p);m=6�1=3g

(logn)

�

m;p

� "(b

n

+ c

n

)

and for m = 1,

�

(4)

n

<

� "a

�(�+�)+1=p

n

+ "a

�(�+�)+1=p

n

n

1=6�2=(3p)

(logn)

�

1;p

= "d

n

:

Hence, much as in Case 3,

lim sup

n!1

�

(4)

n

<

� ":

Finally, we see that for m � 2, �

(5)

n

<

� "c

n

and for m = 1, �

(5)

n

<

� "d

n

; where

�

(5)

n

:= jjH

nmr

[f

n

]w

m

(x)(1 + jxj)

��

jj

L

p

(A

5

)

:

Hence, we also have

lim sup

n!1

�

(5)

n

<

� "

Therefore, we have for r = 0; 1; � � � ;m� 1,

lim sup

n!1

jjH

nmr

[f

n

](x)w

m

(x)(1 + jxj)

��

jj

L

p

(R)

<

� "

and this last statement proves the lemma. 2

Having dealt with functions that vanish inside [��a

n

; �a

n

], we turn to

functions that vanish outside that interval.

We begin with:

Lemma 3.2 Let 1 < p < 1, � 2 R, � > 0 and b� := minf1; �g. Let

� 2 (0; 1=2), " > 0 and assume that f 

n

g

1

n=1

is a sequence of measurable

functions from R to R satisfying

 

n

(x) = 0; jxj > �a

n

and

j 

n

w

m

j(x) � "(1 + jxj)

��

; x 2 R; n � 1: (3.3)

Let m � 1.

(a) Suppose for the given m, 1 < p � 4=m. Then assume that (1.6) holds.

(b) Suppose that for the given m, p > 4=m. Then assume that (1.12) holds.

23



Then for r = 0; 1; � � � ;m� 1,

lim sup

n!1

jjH

nmr

[ 

n

](x)w

m

(x)(1 + jxj)

��

jj

L

p

(jxj�2�a

n

)

<

� ":

Proof. Indeed from (2.5), (3.3) and (4.7), we have for jxj � 2�a

n

jw

m

(x)H

nmr

[ 

n

](x)(1 + jxj)

��

j (3.4)

<

� a

��

n

w

m

(x)

�

�

�

�

�

n

X

k=1

e

rk

l

m

kn

(x) 

n

(x

kn

)(x � x

kn

)

r

�

�

�

�

�

<

� "a

��

n

�

n

a

n

�

r

X

jx

kn

j��a

n

�

�

l

kn

(x)w

�1

(x

kn

)w(x)

�

�

m

�jx� x

kn

j

r

(1 + jx

kn

j)

��

<

� "a

��

n

�

n

a

n

�

r

�

�

X

jx

kn

j��a

n

 

a

3=2

n

n

maxfn

�2=3

; 1� jx

kn

j=a

n

g

�1=4

jp

n

(x)w(x)j

jx� x

kn

j

!

m

�jx� x

kn

j

r

(1 + jx

kn

j)

��

<

� "a

��

n

�

a

n

n

�

m�r

�

a

1=2

n

p

n

(x)w(x)

�

m

�

�

X

jx

kn

j��a

n

jx� x

kn

j

�(m�r)

(1 + jx

kn

j)

��

<

� "a

��

n

�

a

n

n

�

m�r�1

jxj

�(m�r)

�

a

1=2

n

p

n

(x)w(x)

�

m

�

X

jx

kn

j��a

n

(1 + jx

kn

j)

��

(x

k�1;n

� x

k+1;n

)

<

� "a

��

n

�

a

n

n

�

m�r�1

jxj

�(m�r)

�

a

1=2

n

p

n

(x)w(x)

�

m

�

�

Z

2�a

n

�2�a

n

(1 + jtj)

��

dt

<

� "a

��

n

�

a

1=2

n

p

n

(x)w(x)

�

m

a

�(m�r)

n

a

1�b�

n

logn

<

� "a

�(b�+�)

n

�

a

1=2

n

p

n

(x)w(x)

�

m

logn:

It follows that using (3.4) and (4.6) we have

jjH

nmr

[ 

n

](x)w

m

(x)(1 + jxj)

��

jj

L

p

(jxj�2�a

n

)

<

� "a

�(b�+�)+1=p

n

n

maxfm=6�2=(3p);0g

(logn)

�

m;p

:

Now observe that if mp > 4,

maxfm=6� 2=(3p); 0g = m=6� 2=(3p):
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Thus by (1.12), the polynomial growth of a

n

and (1.6) we have,

lim sup

n!1

jjH

nmr

[ 

n

](x)w

m

(x)(1 + jxj)

��

jj

L

p

(jxj�2�a

n

)

<

� "

and this proves the lemma. 2

Next we present

Lemma 3.3 Let 1 < p < 1 and assume (1.6). Let " > 0, � 2 (0; 1=4)

and assume that f 

n

g

1

n=1

is a sequence of measurable functions from R to R

satisfying

 

n

(x) = 0; jxj > �a

n

and

j 

n

w

m

j(x) � "(1 + jxj)

��

; x 2 R; n � 1: (3.5)

Then for r = 0; 1; � � � ;m� 1,

lim sup

n!1

jjH

nmr

[ 

n

](x)w

m

(x)(1 + jxj)

��

jj

L

p

(jxj�2�a

n

)

<

� ":

Proof. We �nd it convenient to consider the estimation of the sequence of

operators H

n;m;m�1

�rst and then the sequence H

n;m;r

for r � m� 2. Thus let

jxj � 2�a

n

and observe that using (4.3) we have

�

�

�

a

1=2

n

p

n

(x)w(x)

�

�

�

<

� 1:

Thus for this range of jxj we have

jw

m

(x)H

n;m;m�1

[ 

n

](x)j

=

�

�

�

�

�

n

X

k=1

e

m�1;k

l

m

kn

(x)w

m

(x)(x � x

kn

)

m�1

 

n

(x

kn

)

�

�

�

�

�

=

�

�

�

�

�

n

X

k=1

e

m�1;k

l

kn

(x)w(x)(l

kn

(x)w(x)(x � x

kn

))

m�1

 

n

(x

kn

)

�

�

�

�

�

= jp

n

(x)w(x)j

m�1

�

�

�

�

�

n

X

k=1

e

m�1;k

l

kn

(x)w(x)(p

0

n

(x

kn

))

�(m�1)

 

n

(x

kn

)

�

�

�

�

�

<

�

�

�

�

�

�

n

X

k=1

e

m�1;k

l

kn

(x)w(x)

�

a

1=2

n

p

0

n

(x

kn

)

�

�(m�1)

 

n

(x

kn

)

�

�

�

�

�

:

For each n � 1, we de�ne two sequences of functions �

n

and

e

 

n

as follows: Set

for x 2 R

�

n

(x) :=

(

e

m�1;k

�

a

1=2

n

p

0

n

(x

kn

)

�

�(m�1)

; x = x

k;n

k = 1; 2; � � � ; n

0; otherwise
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and

e

 

n

(x) :=  

n

(x)�

n

(x); x 2 R and n � 1:

Then clearly

e

 

n

(x) = 0; jxj > �a

n

: (3.6)

Moreover, applying (2.5), (4.9) and (3.5) yields for jx

kn

j � �a

n

j

e

 

n

(x

kn

)w(x

kn

)j

<

� j 

n

(x

kn

)jw

m

(x

kn

)

<

� "(1 + jx

kn

j)

��

: (3.7)

Thus we have shown that for jxj � 2�a

n

jw

m

(x)H

n;m;m�1

[ 

n

](x)(1 + jxj)

��

j

<

� j

n

X

k=1

l

kn

(x)w(x)

e

 

n

(x

kn

)(1 + jxj)

��

j

= jL

n

[

e

 

n

](x)w(x)(1 + jxj)

��

j

where

e

 

n

satisfy (3.6) and (3.7). Then applying ([11], Lemma 3.4) gives

lim sup

n!1

jjH

n;m;m�1

[ 

n

](x)w

m

(x)(1 + jxj)

��

jj

L

p

(jxj�2�a

n

)

(3.8)

<

� lim sup

n!1

jjL

n

[

e

 

n

](x)w(x)(1 + jxj)

��

jj

L

p

(jxj�2�a

n

)

<

� ":

Next we turn to the estimation of the sequence of operatorsH

n;m;r

for r � m�2.

Set

b

 

n

(x) := j 

n

(x)jw

m�2

(x); x 2 R; n � 1:

Then it is easy to see that

b

 

n

(x) = 0; jxj > �a

n

(3.9)

and

j

b

 

n

(x)w

2

(x)j = j 

n

(x)w

m

(x)j � "(1 + jxj)

��

; x 2 R: (3.10)

Moreover for r � m� 2 and jxj � 2�a

n

, we apply (2.5) and obtain

jw

m

(x)H

nmr

[ 

n

](x)j

=

�

�

�

�

�

n

X

k=1

e

rk

l

m

kn

(x)w

m

(x)(x � x

kn

)

r

 

n

(x

kn

)

�

�

�

�

�

<

�

�

n

a

n

�

r

n

X

k=1

jl

kn

(x)w(x)(x � x

kn

)j

r

jl

kn

(x)w(x)j

m�r�2

l

2

kn

(x)w

2

(x)j �

�j 

n

(x

kn

)j:
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Since

jl

kn

(x)w(x)(x � x

kn

)j

r

=

�

�

�

�

p

n

(x)w(x)

p

0

n

(x

kn

)

�

�

�

�

r

and

jl

kn

(x)w(x)j

m�r�2

<

� w

m�r�2

(x

kn

);

we have

jw

m

(x)H

nmr

[ 

n

](x)j

<

�

�

n

a

n

�

r

n

X

k=1

�

�

�

�

p

n

(x)w(x)

p

0

n

(x

kn

)w(x

kn

)

�

�

�

�

r

l

2

kn

(x)w

2

(x)w

m�2

(x

kn

)j 

n

(x

kn

)j

<

�

�

n

a

n

�

r

n

X

k=1

�

a

n

n

�

r

�

�

�

a

1=2

n

p

n

(x)w(x)

�

�

�

r

l

2

kn

(x)w

2

(x)w

m�2

(x

kn

)j 

n

(x

kn

)j

<

�

n

X

k=1

l

2

kn

(x)w

2

(x)w

m�2

(x

kn

)j 

n

(x

kn

)j

=

n

X

k=1

l

2

kn

(x)w

2

(x)

b

 

n

(x

kn

):

Thus we have shown that

jjH

nmr

[ 

n

](x)w

m

(x)(1 + jxj)

��

jj

L

p

(jxj�2�a

n

)

<

� jj

n

X

k=1

l

2

kn

(x)w

2

(x)

b

 

n

(x

kn

)(1 + jxj)

��

jj

L

p

(jxj�2�a

n

)

;

where the sequence of functions

b

 

n

satisfy (3.9) and (3.10). Thus we may apply

([4], Lemma 3.3) and obtain for r = 0; 1; � � � ;m� 2,

lim sup

n!1

jjH

nmr

[ 

n

](x)w

m

(x)(1 + jxj)

��

jj

L

p

(jxj�2�a

n

)

<

� ": (3.11)

Combining (3.8) and (3.11) proves Lemma 3.3. 2

For x 2 R, let

e

H

nmr

[f ](x) :=

�

n

a

n

�

r

n

X

k=1

l

m

kn

(x)(x � x

kn

)

r

f(x

kn

):

If we inspect the proofs of Lemma 3.1, Lemma 3.2, and Lemma 3.3, we see

that they hold for this operator as well under all the hypotheses of these former

lemmas and under the weaker condition that the real variable x in (3.1), (3.3)

and (3.5) may be replaced by the subsequence fx

kn

g; k = 1; :::; n. That is, for

f ,

jf(x

kn

)w

m

(x

kn

)j � "(1 + jx

kn

j)

��

; k = 1; :::; n; � > 0:
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With this observation, we prove our �nal lemma in this section, namely:

Lemma 3.4 Let 1 < p < 1, � 2 R, � > 0 and b� := minf1; �g. Let m � 1

and " > 0.

(a) Suppose for the given m, 1 < p � 4=m. Then assume that (1.5) and (1.6)

hold.

(b) Suppose that for the given m, p > 4=m. Then assume that (1.11) and

(1.12) hold. Moreover, if m > 6, assume that (1.13) always holds.

Then for any �xed polynomial R,

lim sup

jxj!1

jj(H

nm

[R](x) �R(x))w

m

(x)(1 + jxj)

��

jj

L

p

(R)

<

� ":

Proof. For any �xed polynomial R, by (4.4)

jR

(t)

(x)w

m

(x)(1 + jxj)

�

j �M x 2 R; t = 0; 1; � � � ;m� 1;

where M is a constant independent of x and t. Then for n � degR(x),

R(x)�H

nm

[R](x) =

m�1

X

t=1

n

X

k=1

R

(t)

(x

kn

)h

tk

(x):

Here, for 1 � t � m� 1

h

tk

(x) = l

m

kn

(x)

(x � x

kn

)

t

t!

m�1�t

X

i=0

e

tik

(x � x

kn

)

i

=

1

t!

m�1�t

X

i=0

e

tik

l

m

kn

(x)(x � x

kn

)

t+i

=

1

t!

m�1�t

X

i=0

e

tik

�

n

a

n

�

t+i

�

n

a

n

�

t+i

l

m

kn

(x)(x � x

kn

)

t+i

:

If we set

R

[t;i]

n

(x) := R

(t)

(x)r

[t;i]

n

(x)

where r

[t;i]

n

(x) is a function satisfying

r

[t;i]

n

(x

kn

) =

e

tik

�

n

a

n

�

t+i

k = 1; 2; � � � ; n;
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then for su�ciently large n,

jR

[t;i]

n

(x

kn

)w

m

(x

kn

)(1 + jx

kn

j)

�

j

=

�

�

�

�

�

�

�

e

tik

�

n

a

n

�

t+i

�

�

�

�

�

�

�

jR

(t)

(x

kn

)w

m

(x

kn

)(1 + jx

kn

j)

�

j

<

�

�

�

�

�

�

�

�

e

tik

�

n

a

n

�

t+i

�

�

�

�

�

�

�

<

�

�

n

a

n

�

�t

� ":

Then

R(x)�H

nm

[R](x)

=

m�1

X

t=1

n

X

k=1

R

(t)

(x

kn

)

1

t!

m�1�t

X

i=0

e

tik

�

n

a

n

�

t+i

�

n

a

n

�

t+i

l

m

kn

(x)(x � x

kn

)

t+i

=

m�1

X

t=1

m�1�t

X

i=0

1

t!

n

X

k=1

R

[t;i]

n

(x

kn

)

�

n

a

n

�

t+i

l

m

kn

(x)(x � x

kn

)

t+i

=

m�1

X

t=1

m�1�t

X

i=0

1

t!

e

H

n;m;t+i

[R

[t;i]

n

](x)

and

jj(H

nm

[R](x)�R(x))w

m

(x)(1 + jxj)

��

jj

L

p

(R)

�

m�1

X

t=1

m�1�t

X

i=0

1

t!

jj

e

H

n;m;t+i

[R

[t;i]

n

](x)w

m

(x)(1 + jxj)

��

jj

L

p

(R)

:

Let �

n

be the characteristic function of [�a

n

=4; a

n

=4 ] and

R

[t;i]

n

= �

n

R

[t;i]

n

+ (1� �

n

)R

[t;i]

n

:= f

n

+  

n

:

Then using the observation just before the statement of the lemma,

lim sup

n!1

jj(H

nm

[R](x) �R(x))w

m

(x)(1 + jxj)

��

jj

L

p

(R)

<

� ":

2

We are now ready to present the:

Proof of Theorems 1.1a and 1.1b We assume �rstly that 1 < p <1. Since

the conditions of Theorem 1.1a and Theorem 1.1b ensure the assumptions of

Lemma 3.1, Lemma 3.2 and Lemma 3.3, we will use the results of these lemmas

in our proof. Given any " > 0, we may �nd a polynomial P satisfying

jf � P j(x)w

m

(x)(1 + jxj)

�

� "; x 2 R:
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Then for n � C, we may write

jj(f �H

nm

[f ])(x)w

m

(x)(1 + jxj)

��

jj

L

p

(R)

� jj(f � P )(x)w

m

(x)(1 + jxj)

��

jj

L

p

(R)

+ jj(P �H

nm

[P ])(x)w

m

(x)(1 + jxj)

��

jj

L

p

(R)

+ jjH

nm

[P � f ](x)w

m

(x)(1 + jxj)

��

jj

L

p

(R)

:

Here, (�+�)p � (b�+�)p > 1 so that �rstly

jj(f � P )(x)w

m

(x)(1 + jxj)

��

jj

L

p

(R)

� "jj(1 + jxj)

�(�+�)

jj

L

p

(R)

<

� ":

Moreover by Lemma 3.4, we have

lim

n!1

jj(P �H

nm

[P ])(x)w

m

(x)(1 + jxj)

��

jj

L

p

(R)

= 0:

Let �

n

be the characteristic function of [�a

n

=4; a

n

=4 ] and let us write

P � f = (P � f)�

n

+ (P � f)(1� �

n

) :=  

n

+ f

n

:

Then applying Lemmas 3.1-3.3 with � = 1=4 yields

lim sup

n!1

jjH

nm

[P � f ](x)w

m

(x)(1 + jxj)

��

jj

L

p

(R)

�

m�1

X

r=0

lim sup

n!1

jjH

nmr

[P � f ](x)w

m

(x)(1 + jxj)

��

jj

L

p

(R)

<

� ":

Thus

lim sup

n!1

jj(f �H

nm

[f ])(x)w

m

(x)(1 + jxj)

��

jj

L

p

(R)

<

� "

and so letting " ! 0+ yields (1.7). To see (1.9), we apply the representation

(1.4), the method of proof of Lemma 3.4 and (1.7). This completes the proof of

Theorems 1.1a and 1.1b for the case 1 < p <1.

Now, we assume that 0 < p � 1.

The idea of the proof is simple. We �rst apply an idea of ([14], Theorem 1.1)

whereby we reduce the problem to an application of Theorems 1.1a and 1.1b

for p > 1. This is accomplished as follows. Let q > 1 and q

0

be its conjugate

satisfying the relation

1

q

+

1

q

0

= 1:

Using H�older's inequality, we observe that for any such q and any real �

1

we
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have the inequality

jj(f �H

nm

[f ](x))w

m

(x)(1 + jxj)

��

jj

p

L

p

(R)

=

Z

R

�

�

(f �H

nm

[f ](x))w

m

(x)(1 + jxj)

��

1

(1 + jxj)

�(���

1

)

�

�

p

dx

�

�

Z

R

�

�

(f �H

nm

[f ](x))w

m

(x)(1 + jxj)

��

1

�

�

pq

dx

�

1=q

(3.12)

�

�

Z

R

(1 + jxj)

�(���

1

)pq

0

dx

�

1=q

0

: (3.13)

Next we analyze the su�cient conditions (1.5)-(1.6), (1.11)-(1.12) and (1.14)-

(1.15) carefully and prove the existence of a q with pq > 1 and �

1

so that

Theorems 1.1a and 1.1b may be applied to (3.12). We will also show that with

this careful choice of q and �

1

, the term in (3.13) is also uniformly bounded.

This will establish Theorems 1.1a and 1.1b for 0 < p < 1 as required.

First, we consider the case 1 � m < 4. Note that in this case we have

0 < p < 4=m and so we may choose q with 1 < pq < 4=m. By (1.5) and (1.6),

there exists some constant A > 0 such that for the given n � C

a

�(�+�)+1=p

n

n

m=6�1=3

(logn)

�

m;p

< A (3.14)

and

a

�(b�+�)+1=p

n

< 1: (3.15)

From (3.14) and (3.15) we obtain respectively the relations

a

��+1=pq

n

n

m=6�1=3

(logn)

�

m;p

=A < a

��1=p+1=pq

n

and

a

�b�+1=pq

n

< a

��1=p+1=pq

n

:

Thus from the above, we may choose �

1

satisfying

a

��+1=pq

n

n

m=6�1=3

(logn)

�

m;p

=A < a

�

1

n

< a

��1=p+1=pq

n

(3.16)

and

a

�b�+1=pq

n

< a

�

1

n

< a

��1=p+1=pq

n

: (3.17)

We summarize our �ndings as follows:

From the left most inequality in (3.16) we obtain the relation

a

�(�+�

1

)+1=pq

n

n

m=6�1=3

(logn)

�

m;p

< A; (3.18)
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from the left most inequality in (3.17) we obtain the relation

�(b�+�

1

) + 1=pq < 0 (3.19)

and �nally from the right most inequality in (3.17) we obtain the relation

�(���

1

) + 1=p� 1=pq < 0: (3.20)

Thus (3.18) and (3.19) are just (1.5) and (1.6) respectively with p replaced by pq

and � replaced by �

1

. Thus Theorems 1.1a and 1.1b for the case p > 1 together

with (3.20) ensure that Theorems 1.1a and 1.1b hold indeed for 0 < p < 1 in

this case.

Now, we consider the case m � 4. Clearly if 0 < p � 4=m, we may apply

exactly the same argument as above, so without loss of generality we assume

that 4=m < p < 1. We choose q with

1 < pq < maxf1� 3�

1

=4; 1� 3�

2

=4; 0g

�1

where �

1

and �

2

are as in (1.14) and (1.15). Then since

(logn)

�1=p

� (logn)

�1=pq

;

we have

a

��

n

n

m=6�1

<

� (logn)

�1=pq

and since (1.14) and (1.15) hold we also have the relations

a

�(�+�)+1=p

n

n

(m�1)=3�2=(3pq)

logn < n

2=3�2=(3pq)��

1

=2

< 1

and

a

�(b�+�)+1=p

n

n

m=6�2=(3pq)

logn < n

2=3�2=(3pq)��

2

=2

< 1:

From the above two relations we deduce that

a

��+1=pq

n

n

(m�1)=3�2=(3pq)

logn < a

��1=p+1=pq

n

and

a

�b�+1=pq

n

n

m=6�2=(3pq)

logn < a

��1=p+1=pq

n

:

Let us now choose �

1

satisfying

a

��+1=pq

n

n

(m�1)=3�2=(3pq)

logn < a

�

1

n

< a

��1=p+1=pq

n

and

a

�b�+1=pq

n

n

m=6�2=(3pq)

logn < a

�

1

n

< a

��1=p+1=pq

n

:
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It follows that we have (1.11) and (1.12) with p replaced by pq and � replaced

by �

1

. Moreover (3.20) again holds. Thus we conclude that

lim

n!1

Z

R

�

�

(f �H

nm

[f ](x))w

m

(x)(1 + jxj)

��

1

�

�

pq

dx = 0

and

Z

R

(1 + jxj)

�(���

1

)pq

0

dx <1:

Therefore,

lim

n!1

jj(f �H

nm

[f ](x))w

m

(x)(1 + jxj)

��

jj

p

L

p

(R)

= 0:

By the same method as above, we also have

lim

n!1

jj(f �

b

H

nm

[f ](x))w

m

(x)(1 + jxj)

��

jj

p

L

p

(R)

= 0:

This completes the proof of Theorems 1.1a and 1.1b. 2

4 Appendix

In this last section we present a technical lemma concerning some estimates for

the orthogonal polynomials for our class of weights. This lemma was used in

Sections 2 and 3 and its statement in its present form can be found in ([11],

Theorems 2.1-2.2). We emphasize that it is only included as a reference for

easier reading.

Lemma 4.1

(a) For n � 2;

j1� x

1n

=a

n

j

<

� n

�2=3

(4.1)

and uniformly for 1 � k � n� 1;

x

k;n

� x

k+1;n

�

a

n

n

max

n

1� jx

k;n

j=a

n

; n

�2=3

o

�1=2

: (4.2)

(b) For n � 1,

sup

x2R

jp

n

(x)jw(x)j1 � jxj=a

n

j

1=4

� a

�1=2

n

(4.3)

and

sup

x2R

jp

n

(x)jw(x) � n

1=6

a

�1=2

n

:
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(c) Let 0 < p � 1: For n � 1 and P 2 �

n

,

jjPwjj

L

p

(R)

<

� jjPwjj

L

p

[�a

n

;a

n

]

: (4.4)

(d) Uniformly for n � 2 and 1 � k � n� 1,

(1� jx

k;n

j=a

n

) � (1� jx

k+1;n

j=a

n

): (4.5)

(e) Let 0 < p <1: Uniformly for n � 1;

jjp

n

wjj

L

p

(R)

� a

n

1=p�1=2

�

8

<

:

1; p < 4;

(logn)

1=4

; p = 4;

n

(1=6)(1�4=p)

; p > 4:

(4.6)

(f) Uniformly for n � 1; 1 � k � n; and x 2 R,

jl

kn

(x)j �

a

3=2

n

n

w(x

k;n

)max

n

n

�2=3

; 1� jx

k;n

j=a

n

o

�1=4

�

�

�

�

p

n

(x)

x� x

k;n

�

�

�

�

(4.7)

and

jl

k;n

(x)jw

�1

(x

k;n

)w(x)

<

� 1: (4.8)

(g) Uniformly for n � 1 and 1 � k � n;

p

0

n

(x

k;n

)w(x

k;n

) �

n

a

3=2

n

�

maxfn

�2=3

; 1� jx

k;n

j=a

n

g

�

1=4

: (4.9)
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