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Abstract

Let w := exp(—Q), where @ is of faster than smooth polynomial
growth at oo, for example wg,q(z) := exp (—exp,(|z|¥)), @ > 1. We
obtain a necessary and sufficient condition for mean convergence of La-
grange interpolation for such weights in L,(0 < p < 1) completing earlier
investigations by the first author and D.S. Lubinsky in L,(1 < p < 00).
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1 Introduction and Statement of Results

Let

Xn = {fLm Eamyens :fnm}a n>1
be an arbitrary real interpolation matrix and f : R — R a given continuous
function. Then if II,,_; denotes the class of polynomials of degree <n—1,n > 1
and ¢; ,(xn) € Hp—1, 1 < j < n are the fundamental polynomials of Lagrange
interpolation at the §;, 1 < j < n satisfying for 1 <k <n

[ =k
Cin(xn) (&) = { 0, otherwise,

then the Lagrange interpolation polynomial of degree n — 1 to f with respect
t0 xn is denoted by L,(f, x,) and admits the representation

Lo(f,xn) (@) =Y F(&m)lin(xn) (@), z € R

Jj=1



In this note, we obtain a necessary and sufficient condition which ensures
mean convergence of Lagrange interpolation in L,(0 < p < 1) for a class of even
Erdds weights such as the weight wy  on the real line. This completes earlier
work of the first author and D.S. Lubinsky in L,(1 < p < o0), see [1] and [2].
To formulate our results, we need to define an admissible class of weights and a
suitable interpolation matrix. Our class of weights w will be called admissible
and we shall write w € & if w is of the form w? := e~29 where:

e : R — [0,00) is even and continuous.
e Q) exists and QVY), j = 0,1,2 is non negative in (0, 00).

e The function

xQ"(x)
T(x):=1+
D )
is increasing in (0, 00) with
lim T'(z) = oo,

T—0

and
T(0") := lim T(z) > 1.
z—0t

o There exists A > 0 such that for sufficiently large x

T(x)
Q' (x) —
Q)

A.

<

|

e For every € > 0, there exists a positive constant A; so that uniformly for
large enough «,

T(x) < A1(Q(x))".

Our class of weights is broad enough to easily cover the classical examples
below, see [4]:

wk,a(2) := exp (= Qp,a(x)) (1.1)
where
Qi (@) = expy(|z]®), k> La> 1.
wp,p(w) :=exp (- Qp,p(x)) (1.2)
where

Qp,p(x) = exp (log(D + .1’2))37 B> 1.

Here, exp,(;) = exp (exp(exp(; ))) denotes the kth iterated exponential and D
is a large enough but fixed absolute constant.



Given an admissible weight w, see [3], we may define orthonormal polyno-
mials

Pa(2) := pa(w?,2) = ma” + -,y = a(w?) >0, z €R
satisfying
P02, 2)pr (w2, 2y (2 = { O P
o T 1, n=m

and with zeros denoted by
— X0 < Tpp < Tp-1,n < " < T2p <T1p <X
For each n > 1 and for the given weight w, we define the interpolatory matrix

Up:={zjn:1<j<n}. (1.3)

In [1, Theorem 1.2], one of us and D.S. Lubinsky showed the following result:

Theorem 1.1 Let w € &, 1 <p < oo,A € R and k£ > 0. Then for
tim [[(f = La(f, U w (14 Q)72

n—o0

L®)
to hold for every continuous function f : R — R satisfying,

Jim_|ful(z) (logle) ™" =0

it is necessary and sufficient that,
2/1 1
A > 0,=(-—-1]¢-
maX{ 3 (4 p>}

In this note we prove:

Theorem 1.2 Letw € £, 0<p <1, A€R, and k > 0. Then for

dim I(f = Lo (f, Un))w (1 + Q) 2|z, @) =0 (1.4)
to hold for every continuous function f: R — R satisfying
R |f (@) |w(z)(log |z]) " =0 (1.5)
z|—o00

it is necessary and sufficient that A > 0.

Corollary 1.3 Let 0 < p < 00, A € R, and & > 0. Then (1.4) holds for every
continuous function f: R — R satisfying (1.5) if and only if

2/1 1



2 Proofs

The proof of Theorem 1.2

To prove the sufficiency of the condition A > 0, we reduce the problem to
an application of Theorem 1.1. This idea first appeared in [5]. Throughout, C
will denote a positive absolute constant which may take on different values at
different times.

We choose ¢ > 1 with 1 < pg < 4. Since A > 0, we may choose A; € R
satisfying A > A; > 0. Then

||(f - Ln(f: Un)w(l + Q)iAHI[),p(R)

< ( / |(f = La(f, Un) (@)w(@)(1 + Q(w)) ™™ |”d:c)1/q x

x (/ |(1+Q(w))‘<A—A1)|pq,dw>l/q,.

Since 1 < pq and A; > 0 = max{0, 2(3 — pl—q)}, we have from Theorem 1.1 that

1/q
=0.

n—oo

i ([ (£ = La( U @u(o)(1 + Q(a)) ™[ do)

Since (A — Aq)pg’ > 0, we have

(/ |(1 + Q(w))f(A7A1)|pq,dx)l/ql < 00.

Therefore
Jim (17 = La(f, Un)w (L +Q) |1, ) = 0.

To estabish the necessity in Theorem 1.2, we proceed much as in the proof of
[5, Theorem 1.1] and [1, Theorem 1.2]. Let § > 1+ k and X be the space of all
continuous functions f : R — R with

1 fllx = SlelgIf(ilf)Iw(fﬂ)(lOt?;(2 +2])° < co.
Moreover, let Y be the space of all measurable functions f : R — R with
1lly = [1fw(d +Q) 2l < oo. (2.1)

We then note that Y is not a normed space with respect to (2.1) for 0 < p <1
but is a metric space with metric

d(f,9) = I(f = QL+ Q)" 2II} =)



Now each f € X satisfies (1.5) so that
Jim [[f = Lo (f, Un)]lly =0
That is, for each f € X, there exists > 0 such that for alln > C

f = La(f, Un)lly <.

By the generalized uniform boundedness principle, see [6, pp 189-190], the norm
of the operator I — L,,(; U,) is uniformly bounded. That is, for every f € X
with || f||x <1 and n > 1, there exists a constant M such that

1f = Lu(f, Un)lly < MI|f][- (2.2)

In particular, as Ly (f,U,) = f(0) (recall p;(x) = z), we derive from (2.2) that
for every continous function f: R — R with f(0) =0, and for every n > 1

1L (£, Un)lly < 2M|If1I% (2.3)

provided the right hand side of (2.3) is finite. We stress that M does not depend
on f or n.

For every u > 0, let a,, denote the positive root of the equation

1
B 2/ ayt@Q' (ayt)dt
o V1-—1t2

0

which exists and is increasing with u, see [1]. Moreover, choose continuous
functions g,, n > 1 with

gn = 01in [0,00) U (—00, —a,/2),
llgnllx =1, (2.4)
and for z;, € [—a,/2,0),
(gnw)(2jn)(108(2 + |27n])) sign(p), (z;n)) = 1.

Then for z € [1,ay], much as in the proof of the necessary condition of [1,
Theorem 1.2], we have for large enough n that

| L9, Un) (@)] > Cay/*|pn(@)|(log an) ~°.

It follows that using (2.3), (2.4) and an application of [1, Lemma 5.1], that we
have uniformly for large enough n,

L=llgallx 2 € 1Lalgn, Un)lly
>C ab?(10 @) Pllpa(1+ QI 10
> C an(log an)—5pQ(an)111111{0 Ap}'



If A <0, the above equation implies that

ay, (log an)fap <C

for every large enough n but this is impossible as a,, increases with n. Thus
necessarily A > 0. This completes the proof of Theorem 1.2 O.
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