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Abstract

Let w := exp(�Q), where Q is of faster than smooth polynomial

growth at 1, for example w

k;�

(x) := exp (� exp

k

(jxj

�

)) ; � > 1. We

obtain a necessary and su�cient condition for mean convergence of La-

grange interpolation for such weights in L

p

(0 < p � 1) completing earlier

investigations by the �rst author and D.S. Lubinsky in L

p

(1 < p <1).
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1 Introduction and Statement of Results

Let

�

n

:=

�

�

1;n

; �

2;n

; : : : ; �

n;n

	

; n � 1

be an arbitrary real interpolation matrix and f : R ! R a given continuous

function. Then if �

n�1

denotes the class of polynomials of degree � n�1; n � 1

and `

j;n

(�

n

) 2 �

n�1

; 1 � j � n are the fundamental polynomials of Lagrange

interpolation at the �

j

; 1 � j � n satisfying for 1 � k � n

`

j;n

(�

n

)(�

j;n

) =

�

1; j = k

0; otherwise;

then the Lagrange interpolation polynomial of degree n � 1 to f with respect

to �

n

is denoted by L

n

(f; �

n

) and admits the representation

L

n

(f; �

n

)(x) :=

n

X

j=1

f(�

j;n

)`

j;n

(�

n

)(x); x 2 R:
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In this note, we obtain a necessary and su�cient condition which ensures

mean convergence of Lagrange interpolation in L

p

(0 < p � 1) for a class of even

Erd}os weights such as the weight w

k;�

on the real line. This completes earlier

work of the �rst author and D.S. Lubinsky in L

p

(1 < p < 1), see [1] and [2].

To formulate our results, we need to de�ne an admissible class of weights and a

suitable interpolation matrix. Our class of weights w will be called admissible

and we shall write w 2 E if w is of the form w

2

:= e

�2Q

where:

� Q : R ! [0;1) is even and continuous.

� Q

(2)

exists and Q

(j)

; j = 0; 1; 2 is non negative in (0;1).

� The function

T (x) := 1 +

xQ

00

(x)

Q

0

(x)

is increasing in (0;1) with

lim

x!1

T (x) =1;

and

T (0

+

) := lim

x!0

+

T (x) > 1:

� There exists A > 0 such that for su�ciently large x

1

A

�

T (x)

xQ

0

(x)

Q(x)

� A:

� For every � > 0, there exists a positive constant A

1

so that uniformly for

large enough x,

T (x) � A

1

(Q(x))

�

:

Our class of weights is broad enough to easily cover the classical examples

below, see [4]:

w

k;�

(x) := exp

�

�Q

k;�

(x)

�

(1.1)

where

Q

k;�

(x) := exp

k

(jxj

�

); k � 1; � > 1:

w

D;B

(x) := exp

�

�Q

D;B

(x)

�

(1.2)

where

Q

D;B

(x) = exp

�

log(D + x

2

)

�

B

; B > 1:

Here, exp

k

(; ) = exp

�

exp(exp(; ))

�

denotes the kth iterated exponential and D

is a large enough but �xed absolute constant.
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Given an admissible weight w, see [3], we may de�ne orthonormal polyno-

mials

p

n

(x) := p

n

(w

2

; x) = 

n

x

n

+ � � � ; 

n

= 

n

(w

2

) > 0; x 2 R

satisfying

Z

R

p

n

(w

2

; x)p

m

(w

2

; x)w

2

(x)dx =

�

0; n 6= m

1; n = m

and with zeros denoted by

�1 < x

n;n

< x

n�1;n

< � � � < x

2;n

< x

1;n

<1:

For each n � 1 and for the given weight w, we de�ne the interpolatory matrix

U

n

:=

�

x

j;n

: 1 � j � n

	

: (1.3)

In [1, Theorem 1.2], one of us and D.S. Lubinsky showed the following result:

Theorem 1.1 Let w 2 E , 1 < p <1 ;� 2 R and � > 0. Then for

lim

n!1







(f � L

n

(f; U

n

)))w (1 +Q)

��







L

p

(R)

= 0

to hold for every continuous function f : R ! R satisfying,

lim

jxj!1

jfwj(x) (log jxj)

1+�

= 0

it is necessary and su�cient that,

� > max

�

0;

2

3

�

1

4

�

1

p

��

:

In this note we prove:

Theorem 1.2 Let w 2 E, 0 < p � 1, � 2 R, and � > 0. Then for

lim

n!1

jj(f � L

n

(f; U

n

))w(1 +Q)

��

jj

L

p

(R)

= 0 (1.4)

to hold for every continuous function f : R ! R satisfying

lim

jxj!1

jf(x)jw(x)(log jxj)

1+�

= 0 (1.5)

it is necessary and su�cient that � > 0.

Corollary 1.3 Let 0 < p < 1, � 2 R, and � > 0. Then (1:4) holds for every

continuous function f : R ! R satisfying (1:5) if and only if

� > max

�

0;

2

3

�

1

4

�

1

p

��

:
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2 Proofs

The proof of Theorem 1.2

To prove the su�ciency of the condition � > 0, we reduce the problem to

an application of Theorem 1.1. This idea �rst appeared in [5]. Throughout, C

will denote a positive absolute constant which may take on di�erent values at

di�erent times.

We choose q > 1 with 1 < pq < 4. Since � > 0, we may choose �

1

2 R

satisfying � > �

1

> 0. Then

jj(f � L

n

(f; U

n

)w(1 +Q)

��

jj

p

L

p

(R)

�

�

Z

�

�

(f � L

n

(f; U

n

)(x)w(x)(1 +Q(x))

��

1

�

�

pq

dx

�

1=q

�

�

�

Z

�

�

(1 +Q(x))

�(���

1

)

�

�

pq

0

dx

�

1=q

0

:

Since 1 < pq and �

1

> 0 = maxf0;

2

3

(

1

4

�

1

pq

)g, we have from Theorem 1.1 that

lim

n!1

�

Z

�

�

(f � L

n

(f; U

n

)(x)w(x)(1 +Q(x))

��

1

�

�

pq

dx

�

1=q

= 0:

Since (���

1

)pq

0

> 0, we have

�

Z

�

�

(1 +Q(x))

�(���

1

)

�

�

pq

0

dx

�

1=q

0

<1:

Therefore

lim

n!1

jj(f � L

n

(f; U

n

))w(1 +Q)

��

jj

L

p

(R)

= 0:

To estabish the necessity in Theorem 1.2, we proceed much as in the proof of

[5, Theorem 1.1] and [1, Theorem 1.2]. Let � > 1+ � and X be the space of all

continuous functions f : R ! R with

jjf jj

X

:= sup

x2R

jf(x)jw(x)(log(2 + jxj))

�

<1:

Moreover, let Y be the space of all measurable functions f : R ! R with

jjf jj

Y

:= jjfw(1 +Q)

��

jj

p

L

p

(R)

<1: (2.1)

We then note that Y is not a normed space with respect to (2.1) for 0 < p � 1

but is a metric space with metric

d(f; g) := jj(f � g)w(1 +Q)

��

jj

p

L

p

(R)

:
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Now each f 2 X satis�es (1.5) so that

lim

n!1

jjf � L

n

(f; U

n

)]jj

Y

= 0:

That is, for each f 2 X , there exists � > 0 such that for all n � C

jjf � L

n

(f; U

n

)jj

Y

� �:

By the generalized uniform boundedness principle, see [6, pp 189-190], the norm

of the operator I � L

n

(; U

n

) is uniformly bounded. That is, for every f 2 X

with jjf jj

X

� 1 and n � 1, there exists a constant M such that

jjf � L

n

(f; U

n

)jj

Y

�M jjf jj

p

X

: (2.2)

In particular, as L

1

(f; U

n

) = f(0) (recall p

1

(x) = x), we derive from (2.2) that

for every continous function f : R ! R with f(0) = 0, and for every n � 1

jjL

n

(f; U

n

)jj

Y

� 2M jjf jj

p

X

(2.3)

provided the right hand side of (2.3) is �nite. We stress thatM does not depend

on f or n.

For every u > 0, let a

u

denote the positive root of the equation

u :=

2

�

1

Z

0

a

u

tQ

0

(a

u

t)dt

p

1� t

2

which exists and is increasing with u, see [1]. Moreover, choose continuous

functions g

n

, n � 1 with

g

n

= 0 in [0;1) [ (�1;�a

n

=2);

jjg

n

jj

X

= 1; (2.4)

and for x

jn

2 [�a

n

=2; 0),

(g

n

w)(x

jn

)(log(2 + jx

jn

j))

�

sign(p

0

n

(x

j

n)) = 1:

Then for x 2 [1; a

n

], much as in the proof of the necessary condition of [1,

Theorem 1.2], we have for large enough n that

jL

n

(g

n

; U

n

)(x)j � Ca

1=2

n

jp

n

(x)j(log a

n

)

��

:

It follows that using (2.3), (2.4) and an application of [1, Lemma 5.1], that we

have uniformly for large enough n,

1 = jjg

n

jj

p

X

� C jjL

n

(g

n

; U

n

)jj

Y

� C a

p=2

n

(log a

n

)

��p

jjp

n

w(1 +Q)

��

jj

p

L

p

([1;a

n

])

� C a

n

(log a

n

)

��p

Q(a

n

)

minf0;��pg

:
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If � � 0, the above equation implies that

a

n

(log a

n

)

��p

� C

for every large enough n but this is impossible as a

n

increases with n. Thus

necessarily � > 0. This completes the proof of Theorem 1.2 2.
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