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Abstract

Given a continuous real valued function f which vanishes outside a

�xed �nite interval, we establish necessary conditions for weighted mean

convergence of Lagrange interpolation for a general class of even weights

w which are of exponential decay on the real line or at the endpoints of

(�1; 1).
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1 Introduction and Statement of Results

Let I denote either the open interval (�1; 1) or R and let w : I ! (0;1) be an

even continuous weight function with all power moments,

Z

I

x

n

w

2

(x)dx; n � 0

�nite. Then we may de�ne orthonormal polynomials

p

n

(x) := p

n

(w

2

; x) = 

n

x

n

+ � � � ; 

n

= 

n

(w

2

) > 0; x 2 R

satisfying

Z

I

p

n

(w

2

; x)p

m

(w

2

; x)w

2

(x)dx =

�

0; n 6= m

1; n = m

and with zeros denoted by

�1 < x

n;n

< x

n�1;n

< � � � < x

2;n

< x

1;n

<1:
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For each n � 1 and for the given weight w, we de�ne interpolatory matrices

U

n

:=

�

x

j;n

: 1 � j � n

	

(1.1)

and

V

n+2

= U

n

[ fy

0

g [ f�y

0

g (1.2)

where y

0

maximizes kPwk

L

1

(R)

over every P 2 �

n

. Let f : I ! R be a

given continuous function and denote by L

n

[f; U

n

] and L

n

[f; V

n+2

] the Lagrange

interpolation polynomials of degree n�1 and n+1 interpolating f at the points

in U

n

and V

n+2

respectively.

In this article, we establish a necessary condition for weighted mean conver-

gence of Lagrange interpolation in L

p

(0 < p < 1) for continuous functions f

which vanish outside �nite �xed intervals J � I and for even weights on R that

are both of polynomial and of faster than polynomial decay at in�nity as well

as even weights on (�1; 1) that are of exponential decay near �1. Our class of

functions is the smallest for which convergence questions in weighted L

p

spaces

are meaningful and so our main result is the least we can expect to achieve

convergence simultaneously for all three classes of weights considered, for both

interpolation schemes (1.1) and (1.2) and for every 0 < p <1.

To formulate our main result, we need a suitable class of admissible weights

and to this end, let us agree that I+ will denote either (0;1) if I is R and (0; 1)

if I is (�1; 1). Our class of weights w will then be assumed to be admissible in

the sense of the following de�nition:

1.1 Class of admissible weights

De�nition 1.1 Let w

Q

= exp(�Q) where Q : I ! R is even and continuous.

(a) Assume that Q

00

is continuous in I+ and Q

00

, Q

0

� 0 in I+.

(b) The function

T (x) := 1 +

xQ

00

(x)

Q

0

(x)

; x 2 I+

satis�es for large enough x or x close enough to �1

T (x) �

xQ

0

(x)

Q(x)

:

Moreover T satis�es either:

(b1) There exist A > 1 and B > 1 such that

A � T (x) � B; x 2 I + :
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(b2) T is increasing in I+ with lim

x!0+

T (x) > 1. If I = R,

lim

jxj!1

T (x) =1

and if I = (�1; 1), for x close enough to �1,

T (x) �

A

1� x

2

for some A > 2.

Then w shall be called an admissible weight and we shall write w 2 A.

Canonical examples of the class A are:

(a)

w

�

(x) := exp (�jxj

�

) ; � > 1; x 2 R: (1.3)

(b)

w

k;�

(x) := exp

�

� exp

k

�

jxj

�

��

; � > 0; k � 1; x 2 R: (1.4)

(c)

w

k;

(x) := exp

�

� exp

k

(1� x

2

)

�

�

;  > 0; k � 0; x 2 (�1; 1) (1.5)

where exp

k

denotes the kth iterated exponential.

The weights listed above are respectively examples of Freud, Erd}os and gen-

eralized Pollaczek weights. Freud weights are characterized by their smooth

polynomial decay at in�nity and Erd}os weights by their faster than smooth

polynomial decay at in�nity. Generalized Pollaczek weights decay strongly near

�1 as exponentials and are of faster decay than classical Jacobi weights. They

violate the well known Szeg}o condition for orthogonal polynomials, ([9], Chapter

5, pg 208).

Following is our main result:

Theorem 1.2 Let w

Q

2 A, w � 0 2 L

1

(R) and 0 < p <1 be given.

(a) If for every continuous function f vanishing outside a �xed �nite interval

J � I

lim

n!1

Z

I

[jf(x)� L

n

(f; U

n

)(x)j

p

w(x)] dx = 0 (1.6)

holds, then we have

Z

I

h

w

�1

Q

(x)=(1 + jxj)

i

p

w(x)dx <1: (1.7)
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(b) Moreover if for every continuous function f vanishing outside a �xed �nite

interval

lim

n!1

Z

I

[jf(x)� L

n+2

(f; V

n+2

)(x)j

p

w(x)] dx = 0 (1.8)

holds, then we have (1:7).

Our theorem shows that if for a certain w � 0 2 L

1

(R), (1.7) fails, then there

exists a continuous function f which vanishes outside a �nite �xed interval for

which there is no convergence in (1.6) and (1.8). As our class of functions is the

smallest class for which convergence questions in weighted L

p

are meaningful,

(1.7) is the least we should expect to conclude that we have convergence in

general for every p. Our main emphasis in this paper is to derive a necessary

condition for mean convergence of Lagrange interpolation which works for as

small a class of functions as possible and simultaneously for Freud, Erd}os and

exponential type weights on R and (�1; 1). At the same time, our main result

applies to both interpolation arrays U

n

and V

n+2

and so makes more precise

and general earlier necessary conditions obtained by Matjila, Lubinsky and the

authors. There is a vast literature dealing with necessary and su�cient con-

ditions for mean convergence of Lagrange interpolation for even Freud, Erd}os,

and generalized Pollaczek weights for larger classes of functions and for these

results, we refer the reader to ([1], [5], [4], [6] [7], [8]), ([9], [12], [14], [15]), ([16],

[17], [18], [19], [20]), ([21], [22], [25], [26], [27]) and the many references cited

therein. For those who are not familiar, the array V

n+2

has recently been shown

to yield typically better su�cient results for mean and uniform convergence of

weighted Lagrange interpolation and for these results we refer the reader to [26],

[2], [3], [16], [15], [6], [4] and the references cited therein.

We now show that under certain conditions, we may modify the bound in

(1:7). This result is contained in:

Corollary 1.3 Let w

Q

2 A under the assumption (b2). Let w � 0 2 L

1

(I) and

assume it satis�es the following condition:

Let 0 < A < B <1 and suppose that uniformly for n � 1 and 1 � j � n,

A � w(x)=w(x

jn

) � B x 2 [x

j+1;n

; x

jn

]: (1.9)

Then for every continuous function f vanishing outside a �xed �nite interval

J � I for which (1:6) holds, we have

Z

x

1n

x

nn

(j1� jxj=a

n

j+ �

n

)

�p=4

h

w

�1

Q

(x)=(1 + jxj)

i

p

w(x)dx <1 (1.10)

where

�

n

:= (nT (a

n

))

�2=3
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and a

n

is the well known Mhaskar�Rakhmanov� Sa� number for w

2

Q

, see

[24, Chapter 2].

The remainder of this paper is organized as follows. In Section 2, we provide

numerous examples from the literature as to how our main results may be

understood while in Section 3, we present our proofs.

2 Examples

In this section, we will illustrate our main results with numerous examples

from the literature where for typically larger classes of functions necessary and

su�cient conditions for mean convergence are obtained. Because the class of

functions that we consider is much smaller than those considered below, a com-

pletely new proof of Theorem 1.1 is needed for the various weights considered.

Throughout, for any two sequences b

n

and c

n

of non zero real numbers, we

shall write b

n

<

� (

>

�)c

n

if there exists a positive constant C, independent of n,

such that

b

n

� (�)C

1

c

n

; n!1

and b

n

� c

n

if

b

n

<

� c

n

and b

n

>

� c

n

:

Similar notation will be used for functions and sequences of functions.

Freud weights

Theorem 1.2(a) was �rst proved by Nevai in ([21], Theorem 2) for the Hermite

weight w

Q

= exp(�x

2

=2) and its present form for a related class of Freud weights

is due to Sakai in ([25], (1.2) and (1.3)). Let us de�ne w(x) := w

p

Q

(x)(1+jxj)

��p

for � + 1 > 1=p. Then it is easy to see that we have (1:7). Indeed for a larger

class of functions and for w as above, Lubinsky and Matjila and Matjila in ([17],

Theorem 1.3) and ([19], Theorem 1.1) have shown the following:

Let w

Q

2 A, 0 < p <1, � 2 R, � > 0 and �̂ := minf1; �g. Then for

lim

n!1

jj

�

f(x)� L

n

(f; U

n

)(x)

�

w

Q

(x)(1 + jxj)

��

jj

L

p

(R)

= 0

to hold for every continuous function f : R ! R satisfying

lim

jxj!1

jf(x)jw

Q

(x)(1 + jxj)

�

= 0 :
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if p � 4, it is necessary that

�̂+� >

1

p

;

if p > 4 and � 6= 1, it is necessary that

a

1=p�(�̂+�)

n

n

(1�4=p)=6

= O(1); n!1

and if p > 4 and � = 1, it is necessary that

a

1=p�(�̂+�)

n

n

(1�4=p)=6

= O(1= logn); n!1:

Moreover, in [16, Theorem 1.4], it was shown that for the same class of functions

as above, �̂+� >

1

p

is necessary for mean convergence for every 1 < p <1 if

U

n

is replaced by V

n+2

. Clearly, if �̂+� >

1

p

, then 1 +� >

1

p

.

Erd}os weights

For larger classes of functions, the following results of Damelin and Lubinsky

and Damelin, Jung and Kwon, are given in ([7], Theorem 1.3), ([8], Theorems

1.3-1.4), ([5], Theorem 1.1), ([6], Theorems 1.2-1.3) and ([4], Corollaries 2.3-

2.4). To illustrate these results let us choose 0 < p < 1, �; � 2 R, �; � > 0,

�̂ := f1; �g and w

Q

2 A satisfying (b2) and for every � > 0,

T (x)

<

� O (Q

�

(x)) : (2.1)

(a) Functions that decay as logarithms:

Let f : R ! R be continuous and suppose that

lim

jxj!1

jf(x)jw

Q

(x)(log jxj)

1+�

= 0: (2.2)

For

lim

n!1

jj(f � L

n

(f; U

n

))(x)w

Q

(x)(1 +Q(x))

��

jj

L

p

(R)

= 0

to hold, it is necessary that

� > max

�

0;

2

3

�

1

4

�

1

p

��

:

Moreover if we assume for every � > 0, the stronger condition

T (x)

<

� (logQ

0

(x))

1+�

6



holds instead of (2:1), then for

lim

n!1







�

f � L

n+2

(f; V

n+2

)

�

w

Q

(x)(1 + jxj)

��

�

log(2 +Q(x))

�

�1







L

p

(R)

= 0

to hold it is necessary that � � 1=p and for

lim

n!1







�

f � L

n+2

(f; V

n+2

)

�

w

Q

(x)(1 + jxj)

�1=p

�

log(2 +Q(x))

�

��







L

p

(R)

= 0

to hold it is necessary that � � 1.

(b) Functions that decay as polynomials:

Let f : R ! R be continuous and suppose that

lim

jxj!1

jf(x)jw

Q

(x)(1 + jxj)

�

= 0: (2.3)

For

lim

n!1





(f � L

n+2

(f; V

n+2

))w(1 + jxj)

��





L

p

(R)

= 0

to hold it is necessary that

�̂+� > 1=p: (2.4)

Moreover if 0 < p < 4, then for

lim

n!1





(f � L

n

(f; U

n

))w(1 + jxj)

��





L

p

(R)

= 0

to hold it is necessary that (2:4) holds.

Let us de�ne w(x) :=

�

w

Q

(x)(1 +Q(x))

��

�

p

for � > max

n

0;

2

3

�

1

4

�

1

p

�o

.

Then w satis�es the condition (1:9). Moreover, using Lemma 2.3 (a), (2.24),

(2.16) and Lemma 2.4 of [7] together with (2:1), we see that there exists � > 0

such that for any 0 < � < 1,

Z

x

1n

x

nn

(j1� jxj=a

n

j+ �

n

)

�p=4

h

w

�1

Q

(x)=(1 + jxj)

i

p

w(x)dx

<

�

Z

0�jxj�a

�n

+

Z

a

�n

�jxj<x

1n

(j1� jxj=a

n

j+ �

n

)

�p=4

�

(1 +Q(x))

��

=(1 + jxj)

�

p

dx

<

�

Z

0�jxj�a

�n

h

T

1=4

(x)(1 +Q(x))

��

=(1 + jxj)

i

p

dx

+Q

��p

(a

n

)=a

p

n

Z

a

�n

�jxj<x

1n

(j1� jxj=a

n

j+ �

n

)

�p=4

dx

<

�

Z

0�jxj�a

�n

�

1=(1 + jxj)

2

�

dx+ a

�p

n

Q

��p

(a

n

)a

n

�

minf0;1�p=4g

n

logn

<

� 1 + n

�(��maxf0;2=3(1=4�1=p)g)p+�

<

� 1:
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Thus we have (1.10) and so (1.7) follows. In the case where we use the extended

Lagrange interpolation polynomial L

n+2

[V

n+2

], we may de�ne

w(x) :=

�

w

Q

(x)(1 + jxj)

��

(log(2 +Q(x))

�1

�

p

; � � 1=p;

or

w

1

(x) :=

�

w

Q

(x)(1 + jxj)

�1=p

(log(2 +Q(x))

��

�

p

; � � 1;

respectively. Then using Lemma 2.3 (a) in [7], we may deduce that

Z

I

h

w

�1

Q

(x)=(1 + jxj)

i

p

w(x)dx

=

Z

I

h

(log(2 +Q(x)))

�1

=(1 + jxj)

1+�

i

p

<

�

Z

I

h

(log(2 +Q(x)))

�1

=(1 + jxj)

1+1=p

i

p

<

�

Z

I

h

(log(2 + jxj))

�p

=(1 + jxj)

p+1

i

<

� 1

and proceed similarly for w

1

. Thus we have (1.7) for both cases.

Exponential weights on (�1; 1).

Let w

Q

2 A, 4 < p < 1 and � 2 R. In ([14], Theorem 1.5), Lubinsky

established the following result:

For

lim

n!1

jj(f � L

n

(f; U

n

))w

Q

(1 +Q

2=3

T )

��

jj

L

p

(�1;1)

= 0

to hold for every continuous function

f : (�1; 1)! R

vanishing outside [�1=2; 1=2] it is necessary that

� � 1=4� 1=p:

Motivated by this result, let us set w(x) := w

p

Q

(x)(1 +Q(x)

2=3

T (x))

��p

for

� � 1=4�1=p. Then w satis�es the condition (1.9). Moreover, given 0 < � < 1,

Z

x

1n

x

nn

(j1� jxj=a

n

j+ �

n

)

�p=4

h

w

�1

Q

(x)=(1 + jxj)

i

p

w(x)dx

=

Z

x

1n

x

nn

(j1� jxj=a

n

j+ �

n

)

�p=4

(1 +Q(x)

2=3

T (x))

��p

dx

<

�

Z

x

1n

x

nn

(j1� jxj=a

n

j+ �

n

)

�p=4

(1 +Q(x)

2=3

T (x))

�(p=4�1)

dx

<

�

Z

jxj�a

�n

+

Z

a

�n

�jxj�x

1n

(j1� jxj=a

n

j+ �

n

)

�p=4

(Q(x)

2=3

T (x))

�(p=4�1)

dx:
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Now choose l such that

2

l�1

� �n � 2

l

:

Then using [14, Lemma 2.2], we deduce that there exists a constant � > 0 such

that

Z

jxj�a

�n

(j1� jxj=a

n

j+ �

n

)

�p=4

(Q(x)

2=3

T (x))

�(p=4�1)

dx

<

�

l

X

k=0

Z

a

2

k+1

a

2

k

(j1� jxj=a

n

j+ �

n

)

�p=4

(Q(x)

2=3

T (x))

�(p=4�1)

dx

<

�

l

X

k=0

Q

�

2

3

(p=4�1)

(a

2

k )

<

�

l

X

k=0

2

��k(p=4�1)

<

� 1

and

Z

a

�n

�jxj�x

1n

(j1� jxj=a

n

j+ �

n

)

�p=4

(Q(x)

2=3

T (x))

�(p=4�1)

dx

<

� (Q(a

n

)

2=3

T (a

n

))

�(p=4�1)

Z

a

�n

�jxj�x

1n

(j1� jxj=a

n

j+ �

n

)

�p=4

<

� a

n

(Q(a

n

)

2=3

T (a

n

))

�(p=4�1)

(�

n

)

�p=4+1

� (nT (a

n

))

�2=3(p=4�1)

(�

n

)

�p=4+1

� (�

n

)

(p=4�1)

(�

n

)

�p=4+1

� 1:

It follows that

Z

x

1n

x

nn

(j1� jxj=a

n

j+ �

n

)

�p=4

h

w

�1

Q

(x)=(1 + jxj)

i

p

w(x)dx

<

�

Z

jxj�a

�n

+

Z

a

�n

�jxj�x

1n

(j1� jxj=a

n

j+ �

n

)

�p=4

(Q(x)

2=3

T (x))

�(p=4�1)

dx

<

� 1;

which gives (1.10) and hence (1.7).

Concerning the array V

n+2

, Lubinsky has shown in [15, Theorem 1.9] that

for 1 < p <1 and every Riemann integrable f with fw bounded

lim

n!1

jj(f � L

n

(f; V

n+2

))w

Q

(1� t

2

)

d

jj

L

p

(�1;1)

= 0

whenever d > �1=p. An easy calculation then shows that w(x) := w

p

Q

(1�x

2

)

dp

gives (1.7) when d > �1=p and so for a smaller class of functions, Theorem 1.1

gives a necessary condition for the above theorem of Lubinsky to hold.
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3 The Proofs of Theorem 1.2 and Corollary 1.3

In this section, we give our proofs.

Proof of Theorem 1.2.

We shall prove Theorem 1.2(b) for Theorem 1.2(a) is similar. We shall as-

sume �rst that (b2) holds and that I = R. Using ideas from [21] and [25], we let

C

0

(�2;�1) be the space of continuous functions on R with support in [�2;�1].

Since for this space, (1.8) holds for the linear functional L

n+2

(; ; V

n+2

), we may

apply the generalized uniform boundedness theorem, see [23], and conclude that

for all f 2 C

0

(�2;�1), we have

Z

1

�1

jL

n+2

(f; V

n+2

)(x)j

p

w(x)dx

<

� max

�2�x��1

jf(x)j

p

: (3.1)

Let fp

n

g

n=1

be the orthonormal polynomials with respect to the admissible

weight w

2

Q

and for each n = 1; 2; 3; � � � , let us consider a sequence of functions

fg

n

g 2 C

0

(�2;�1) satisfying

max

�2�x��1

jg

n

(x)j = 1;

and

g

n

(x

kn

) = sign(~p

0

n

(x

kn

)); x

kn

2 (�2;�1)

where ~p

n

(x) = p

n

(x)(x � y

0

)(x + y

0

). Thus we learn that for each n and for

every x 2 R

L

n+2

(g

n

;V

n+2

)(x) = ~p

n

(x)

X

�2�x

kn

��1

j~p

0

n

(x

kn

)j

�1

(x� x

kn

)

�1

:

Moreover, using ([11], Corollary 1.4(b), p.205) and the identity jx

kn

� y

0

j � a

n

,

uniformly for n, we obtain for �2 < x

kn

< �1 and uniformly for n

j~p

0

n

(x

kn

)j

�1

= jp

0

n

(x

kn

)(x

kn

� y

0

)(x

kn

+ y

0

)j

�1

� n

�1

a

�1=2

n

:

Then for x > 0 and using ([11], Corollary 1.3, p.205), we deduce that

jL

n+2

(g

n

;V

n+2

)(x)j

>

�

�

�

�

�

~p

n

(x)

x+ 1

�

�

�

�

X

�2�x

kn

��1

n

�1

a

�1=2

n

(3.2)

� a

�3=2

n

�

�

�

�

~p

n

(x)

x+ 1

�

�

�

�

X

�2�x

kn

��1

x

kn

� x

k+1;n

�

�

�

�

�

�

a

�3=2

n

~p

n

(x)

x+ 1

�

�

�

�

�

:
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From (3.1) and (3.2) we deduce that

L : = lim sup

n!1

Z

1

0

�

�

�

�

a

�3=2

n

~p

n

(x)

1 + x

�

�

�

�

p

w(x)dx

<

� lim sup

n!1

Z

1

0

jL

n+2

(g

n

;V

n+2

)(x)j

p

w(x)dx

<

� max

�2�x��1

jg

n

(x)j

p

<1:

The proof will be complete if we can show that the integral in (1.7) is bounded

by L as L is �nite.

To see this, we proceed as follows: Let us de�ne for " > 0

I

jn

= I

jn

(�) = [x

jn

+ �a

n

=n; x

j�1;n

� �a

n

=n]; j = 2; 3; :::n

and

�

I

jn

=

�

I

jn

(�) = [x

j�1;n

� �a

n

=n; x

j�1;n

+ �a

n

=n]; j = 2; 3; :::n:

Firstly using ([13]), we have for x 2 [x

jn

; x

j�1;n

], the Erd}os-Turan identity

l

jn

(x)w

Q

(x)w

�1

Q

(x

jn

) + l

j�1;n

(x)w

Q

(x)w

�1

Q

(x

j�1;n

) � 1:

Applying the triangle inequality to this identity we see that

jp

n

w

Q

(x)j �

�

�

1

jp

0

n

(x

jn

)w

Q

(x

jn

)(x � x

jn

)j

+

1

jp

0

n

(x

j�1;n

)w

Q

(x

j�1;n

)(x� x

j�1;n

)j

�

� 1:

Next let 0 < � < 1. Since for

x 2 I

jn

(�) \ [0; �a

n

]

jx � x

jn

j � �a

n

=n and jx � x

j�1;n

j � �a

n

=n, we have using ([11], Corollary

1.4(b), p.205) that for

x 2 I

jn

(�) \ [0; �a

n

];

1 � jp

n

w

Q

(x)j �

�

�

1

jp

0

n

(x

jn

)w

Q

(x

jn

)(x � x

jn

)j

+

1

jp

0

n

(x

j�1;n

)w

Q

(x

j�1;n

)(x� x

j�1;n

)j

�

� �

n

a

n

jp

n

w

Q

(x)j

�

1

jp

0

n

(x

jn

)w

Q

(x

jn

)j

+

1

jp

0

n

(x

j�1;n

)w

Q

(x

j�1;n

)j

�

� �a

1=2

n

jp

n

w

Q

(x)j:
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Thus for x 2 I

jn

(�) \ [0; �a

n

], we learn that

j~p

n

w

Q

(x)j = jp

n

w

Q

(x)jj(x � y

0

)(x + y

0

)j � a

2

n

jp

n

w

Q

(x)j

>

� a

3=2

n

and so consequently

n

X

j=2

Z

I

jn

\[0;�a

n

]

�

�

�

w

�1

Q

(x)=(1 + x)

�

�

�

p

w(x)dx

<

� L: (3.3)

By interchanging n for n+ 1, we deduce that

n+1

X

j=2

Z

I

j;n+1

\[0;�a

n+1

]

�

�

�

w

�1

Q

(x)=(1 + x)

�

�

�

p

w(x)dx

<

� L: (3.4)

We now claim that for a certain "

�

I

jn

(�) \ [0; �a

n

] � I

j;n+1

(�) \ [0; �a

n

]: (3.5)

To see this, observe �rst that using ([11], Corollary 1.4(b) p.205) and ([11],

Corollary 1.3, (1.24), p.205), we have for jx

jn

j � �a

n

and uniformly for n the

identity

jx

j;n+1

� x

jn

j

>

�

�

�

�

�

p

n

(x

j;n+1

)w

Q

(x

j;n+1

)

p

0

n

(x

jn

)w

Q

(x

jn

)

�

�

�

�

�

a

n

n

:

Moreover, using the interlacing properties of the zeros it follows quite easily

that indeed

jx

j;n+1

� x

jn

j � jx

j�1;n

� x

j;n+1

j �

a

n

n

:

Thus (3.5) holds for some ". Hence, (3.3) becomes

n

X

j=2

Z

�

I

j;n

\[0;�a

n

]

�

�

�

w

�1

Q

(x)=(1 + x)

�

�

�

p

w(x)dx (3.6)

<

�

n+1

X

j=2

Z

I

j;n+1

\[0;�a

n+1

]

�

�

�

w

�1

Q

(x)=(1 + x)

�

�

�

p

w(x)dx

<

� L:

By (3.4) and (3.6), we have

Z

�a

n

0

�

�

�

w

�1

Q

(x)=(1 + x)

�

�

�

p

w(x)dx

<

� L:

Thus we deduce that

Z

1

0

�

�

�

w

�1

Q

(x)=(1 + x)

�

�

�

p

w(x)dx

<

� L

12



as required. The case x � 0 is similar. Suppose next that (b2) holds and that

I = (�1; 1). We then proceed as above with some changes. Firstly in place of

(3.1) we conclude that for all f 2 C

0

(�1=2;�1=4), we have

Z

1

�1

jL

n+2

(f; V

n+2

)(x)j

p

w(x)dx

<

� max

�1=2�x��1=4

jf(x)w

Q

(x)j

p

: (3.7)

Then using ([10], Theorem 1.2, pg 7), ([10], Corollary 1.5 (iii), pg 10) and ([10],

Corollary 1.4 (ii), pg 9), we conclude that for 0 < x < 1 and uniformly for large

enough n

jL

n+2

(g

n

;x)j

>

�

�

�

�

�

~p

n

(x)

x+ 1=4

�

�

�

�

X

�1=2�x

kn

��1=4

n

�1

(3.8)

�

�

�

�

�

~p

n

(x)

x+ 1=4

�

�

�

�

X

�1=2�x

kn

��1=4

x

kn

� x

k+1;n

�

�

�

�

�

~p

n

(x)

x+ 1=4

�

�

�

�

�

�

�

�

�

~p

n

(x)

x+ 1

�

�

�

�

:

This shows as above that

L := lim sup

n!1

Z

1

0

�

�

�

�

~p

n

(x)

1 + x

�

�

�

�

p

w(x)dx

is �nite and so the proof is complete if we can show that the integral in (1.7) is

bounded by L. We now proceed exactly as in the case I = R except we use ([2],

(3.1)) and ([13]). Finally suppose that I = R and (b1) holds. Then we proceed

as in [25] and the above using ([26], Lemma 2). This completes the proof of

Theorem 1.1. 2

The Proof of Corollary 1.3 Under the assumptions of Corollary 1.2, we may

apply the method of Lemma 2.3 in [14] and deduce that









a

1=2

n

p

n

(x)

w

1=p

(x)

1 + jxj









p

L

p

[0;x

1n

)

>

�











w

�1

Q

(x)

1 + jxj

w

1=p

(x) (1� jxj=a

n

+ �

n

)

�1=4











p

L

p

[0;x

1n

)

:

By the same argument as the proof of Theorem 1.1, we then have









a

1=2

n

p

n

(x)

1 + x

w

1=p

(x)









L

p

[0;1)

<1:

Applying a similar estimate to the case x < 0, gives the result. 2
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