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1 Introduction

Let

�

n

:=

�

�

1;n

; �

2;n

; : : : ; �

n;n

	

; n � 1

be a triangular array of points on the real line. In this paper, we prove converse

weighted Marcinkiewicz-Zygmund inequalities. Such inequalities have the form

Z

jP j

p

(x)w(x)dx � C

n

X

j=1

�

j;n

jP (x

j;n

)V (x

j;n

)j

p

; P 2 P

n�1

; p > 0

with P

n�1

the class of polynomials of degree at most n� 1, n � 1, C a positive

constant independent of P and n, w and V suitable positive weights and �

jn

the Cotes numbers with respect to w and the array �

n

, see [9]. Such inequalities

are in particular, useful in proving theorems on mean convergence of Lagrange

interpolation. Let us recall that that if f : R ! R is a given continuous function,
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then denoting by `

j;n

(�

n

) 2 �

n�1

; 1 � j � n the fundamental polynomials of

Lagrange interpolation satisfying for 1 � k � n

`

j;n

(�

n

)(�

j;n

) =

�

1; j = k

0; otherwise;

the Lagrange interpolation polynomial of degree n� 1 to f with respect

to �

n

, L

n

(f; �

n

), admits the representation

L

n

(f; �

n

)(x) :=

n

X

j=1

f(�

j;n

)`

j;n

(�

n

)(x); x 2 R:

One method to prove weighted Marcinkiewicz-Zygmund inequalities uses mean

convergence of orthonormal expansions, see [33], [34], [35], [20], [21], [22] and

the references cited therein. Another method, originally due to K}onig for the

Hermite weight, see [10], has also been studied rather extensively recently and

was �rst adapted for a general class of Erd}os weights on the real line by the

�rst author and D.S. Lubinsky in [7]. Subsequently, the method was applied

to other classes of weights by D. S. Lubinsky in [14], [15] and [16]. In particu-

lar, in the interesting paper [16], D. S. Lubinsky has recently proved converse

Marcinkiewicz-Zygmund inequalities using the method of K}onig for rather gen-

eral arrays on [�1; 1] and weights with applications to mean convergence of

Lagrange interpolation for a class of exponential weights on [�1; 1]. For the real

line, the situation is typically more di�cult and it is the aim of this paper to

investigate several new Marcinkiewicz-Zygmund inequalities for a class of fast

decaying weights on the real line adapting the method of K}onig above. We then

use these inequalities to prove new theorems on mean convergence of Lagrange

and extended Lagrange interpolation extending earlier work of [2] and [3]. In

this paper, we choose as our class of weights on the real line, a class of even

Erd}os weights which are of faster than polynomial growth at in�nity. We em-

phasize that we wish to describe our technique rather than dwell on technical

assumptions on our weight class. To this end, we mention that we believe our

methods apply to more general classes of weights such as even Freud weights

and/or even weights with less smoothness but we do not pursue this later inves-

tigation here. Our class of weights includes as examples, see [13], the weights

w

k;�

(x) := exp

�

�Q

k;�

(x)

�

(1.1)

where

Q

k;�

(x) := exp

k

(jxj

�

); k � 1; � > 1

and

w

A;B

(x) := exp

�

�Q

A;B

(x)

�

(1.2)
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where

Q

A;B

(x) = exp

�

log(A+ x

2

)

�

B

; B > 1:

Here, exp

k

(; ) = exp

�

exp(exp(; ))

�

denotes the kth iterated exponential and A

is a large enough but �xed absolute constant.

More precisely, we shall treat weights of the form w

2

:= e

�2Q

where:

� Q : R ! [0;1) is even and continuous.

� Q

(2)

exists and Q

(j)

; j = 0; 1; 2 is non negative in (0;1).

� The function

T (x) := 1 +

xQ

00

(x)

Q

0

(x)

is increasing in (0;1) with

lim

x!1

T (x) =1;

and

T (0

+

) := lim

x!0

+

T (x) > 1:

� There exists C > 0 such that for su�ciently large x

1

C

�

T (x)

xQ

0

(x)

Q(x)

� C:

� For every � > 0, there exists a positive constant A

1

so that uniformly for

jxj � C,

T (x) � A

1

(Q(x))

�

:

Such weights, see [13] and [7] will be denoted by E .

Interpolation points

Given w 2 E , see [9], we may de�ne orthonormal polynomials

p

n

(x) := p

n

(w

2

; x) = 


n

x

n

+ � � � ; 


n

= 


n

(w

2

) > 0; x 2 R

satisfying

Z

R

p

n

(w

2

; x)p

m

(w

2

; x)w

2

(x)dx =

�

0; n 6= m

1; n = m
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and with zeros denoted by

�1 < x

n;n

< x

n�1;n

< � � � < x

2;n

< x

1;n

<1:

For each n � 1 and for the given weight w, we de�ne interpolatory matrices

U

n

:=

�

x

j;n

: 1 � j � n

	

(1.3)

and

V

n+2

= U

n

[ fy

0

g [ f�y

0

g (1.4)

where y

0

maximizes kp

n

wk

L

1

(R)

. It is important to note that �y

0

62 U

n

.

The existence of y

0

follows from the Mhaskar-Rakhmanov-Sa� identity, see

([30], Theorem 3.2.1),

kPwk

L

1

(R)

= kPwk

L

1

[�a

n

;a

n

]

valid for every P 2 �

n

; n � 1 where the number a

u

is de�ned for every u > 0

as the positive root of the equation

u :=

2

�

1

Z

0

a

u

tQ

0

(a

u

t)dt

p

1� t

2

:

De�ning for x 2 R

~p

n

(x) := p

n

(x)(x � y

0

)(x+ y

0

);

we de�ne

l

j;n+2

(V

n+2

)(x) =

~p

n

(x)

~p

0

n

(x

jn

)(x� x

jn

)

for j = 0; � � � ; n+ 1

and let

L

n+2

(f; V

n+2

)(x) =

n

X

j=1

f(x

j;n

)`

j;n+2

(V

n+2

)(x)

+ f(y

0

)`

n+1;n+2

(V

n+2

)(x) + f(�y

0

)`

n+2;n+2

(V

n+2

)(x)

denote the extended Lagrange interpolation polynomial of degree at most n+2

to f where we may consider x

0n

:= y

0

and x

n+1;n

:= �y

0

.

2 Converse Quadrature Formulae

2.1 Converse quadrature formula with �xed weight (1 +

jxj)

r

In this section, we present two converse quadrature formulae from which we

deduce theorems on Lagrange interpolation. We begin with:
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Theorem 2.1 Let w 2 E, 1 < p < 4 and R; r 2 R. Moreover assume that

r < 1� 1=p; r � R; R > �1=p (2.1)

and let �

j;n

=�

n

(w

2

; x

j;n

), 1 � j � n be the Cotes numbers for the weight w

2

.

Then there exists a positive constant C such that for every polynomial P 2 P

n�1

kPw(x)(1 + jxj)

r

k

L

p

(R)

(2.2)

� C

8

<

:

n

X

j=1

�

jn

jPw(x

jn

)j

p

w

�2

(x

jn

)(1 + jx

jn

j)

Rp

9

=

;

1=p

:

Theorem 2.2 Let w 2 E, 4 < p < 1 and R; r 2 R. Moreover assume (2:1)

and let �

j;n

=�

n

(w

2

; x

j;n

), 1 � j � n be the Cotes numbers for the weight w

2

.

Then there exists a positive constant C such that for every polynomial P 2 P

n+1

kPw(x)(1 + jxj)

r

k

L

p

(R)

(2.3)

� C

8

<

:

n

X

j=1

�

jn

jPw(x

jn

)j

p

w

�2

(x

jn

)(1 + jx

jn

j)

Rp

9

=

;

1=p

+B;

where for some s > 1

B : = kPw(y

0

)(1 + jxj)

R

k

L

p

(jxj�a

sn

)

+ kPw(�y

0

)(1 + jxj)

R

k

L

p

(jxj�a

sn

)

+ sup

jx

jn

j�2a

n

=3

jPw(x

jn

)j







(1 + jxj)

R







L

p

(jxj�a

n

=2)

: (2.4)

Lagrange interpolation

As consequences of Theorems 2.1 and 2.2, we are able to deduce the following

corollaries on mean convergence of Lagrange interpolation.

Corollary 2.3 Let w 2 E, 0 < p < 4, � 2 R, � 2 R and �̂ := minf�; 1g. Then

if � > 0, for

lim

n!1







(L

n

(f; U

n

)� f) (x)w(x)(1 + jxj)

��







L

p

(R)

= 0; (2.5)

to hold for every continuous function f satisfying

lim

jxj!1

fw(x)(1 + jxj)

�

= 0 (2.6)

it is su�cient that

�̂+� > 1=p: (2.7)

Moreover, for (2:5) to hold for every continuous function f satisfying (2:6), it

is necessary that (2:7) holds.
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Corollary 2.3 is interesting in that it includes the necessary and su�cient

conditions of Theorem 1.2 and Theorem 1.3 of [8] as special cases. For p > 4,

the �rst author and D. S. Lubinsky showed in [7], that a weight factor which

decays as a power of 1 +Q was necessary and su�cient for convergence under

the same decay conditions on fw given by (2.6). Our next Corollary shows that

replacing U

n

in (2.5) by V

n+2

, allows us to extend the range of p in Corollary

2.3 to 0 < p <1.

Corollary 2.4 Let w 2 E, 0 < p < 1, � 2 R, � 2 R and �̂ := minf�; 1g .

Then if � > 0, for

lim

n!1







(L

n+2

(f; V

n+2

)� f) (x)w(x)(1 + jxj)

��







L

p

(R)

= 0 (2.8)

to hold for every continuous function f satisfying (2:6) it is su�cient that (2:7)

holds. Moreover for (2:8) to hold for every continuous function f satisfying (2:6)

it is necessary that (2:7) holds.

Corollary 2.4 shows that under a polynomial decay condition on fw, a

polynomial decay term is necessary and su�cient for weighted convergence in

L

p

(0 < p <1) with respect to the interpolatory matrix V

n+2

. That means that

for Erd}os weights, mean convergence of extended Lagrange interpolation is al-

most the same as mean convergence of Lagrange interpolation in L

p

(0 < p < 4)

with respect to U

n

. Finally we mention that in [5], theorems on extended La-

grange interpolation for 0 < p < 1 are proved but under a logarithmic decay

condition of fw. This typically forces stronger weighting factors than the ones

above but still weaker ones to those in [7] where interpolation with respect to

U

n

is studied.

2.2 Converse quadrature formulae with (j1�jxj=a

n

j+L�

n

)

�

In this section, we record a converse quadrature inequality but with varying

weight (j1� jxj=a

n

j+L�

n

)

�

for some natural exponent � and state some useful

corollaries on boundedness and mean convergence of Lagrange interpolation.

Our choice of weight is in
uenced by the fact that close to a

n

, this factor behaves

as a power of n which is su�cient to conclude mean convergence of Lagrange

interpolation with respect to U

n

for 1 < p < 1 over the entire real line. We

do not provide proofs but refer the reader to the papers [2] and [15] where the

details may be found.

Theorem 2.5 Let w 2 E, 1 < p <1 and let �

j;n

=�

n

(w

2

; x

j;n

), 1 � j � n be

the Cotes numbers for the weight w

2

. Let � satisfy

1=4� 1=p < � < minf5=4� 1=p; 3=4+ 1=2pg: (2.9)
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Then there exists a positive constant C such that uniformly for n � 1 and

P 2 �

n�1
















Pw(x)

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

+ Ln

�2=3

T (a

n

)

�2=3

�

�
















L

p

(R)

(2.10)

� C

8

<

:

n

X

j=1

�

j;n

w

�2

(x

j;n

) jPwj

p

(x

j;n

)

�

�

�

�

�

1�

jx

j;n

j

a

n

�

�

�

�

+ Ln

�2=3

T (a

n

)

�2=3

�

�p

9

=

;

1

p

:

A special case of Theorem 2.5 was �rst proved for 1 < p < 4 in ([8], Theorem

3.1) although an earlier formulation for the Hermite weight appeared �rst in

([10], Theorem 1(a)) for 1 < p < 4. (2.10) has also been established for 1 < p < 4

for a class of Freud weights by D. S. Lubinsky in ([14], Theorem 1.2) and for

p � 1 for a class of exponential weights on (�1; 1) by D. S. Lubinsky in ([15],

Theorem 1.2). We observe that the parameter � in (2.9) may be taken as 0 for

1 < p < 4. This is consistent with the results of [8]. One of the main ideas

in Theorem 2.5, in our opinion, is that it explains why no weighting factor is

needed for 1 < p < 4, while at the same time, it illustrates that a weighting

factor, which is really only signi�cant near a

n

, is also su�cient for p � 4. This

weighting factor actually grows as a power of n near a

n

much as Q(a

n

) does.

The signi�cance of this observation is important and is discussed further after

the statement of Corollary 2.6.

As a consequence of Theorem 2.5, we record:

Corollary 2.6 Let w 2 E, p > 1, � > 0 and � as in (2:9). Further let f :

R �! R be continuous with

lim

jxj�!1

jf(x)jw(x) (1 + jxj)

�

= 0:

Then given � > 0, there exists a positive constant C, such that for all n � C
















(f � L

n

(f; U

n

))(x)w(x)

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

+ Ln

�2=3

T (a

n

)

�2=3

�

�
















L

p

(R)

(2.11)

� �
















(1 + jxj)

��

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

+ Ln

�2=3

T (a

n

)

�2=3

�

�
















L

p

(jxj�a

2n

)

:

Thus if 1 < p < 4, we may take � = 0 and the right hand side of (2.11) can

be made arbitrary small, if � > 1=p. Moreover, if p � 4 and then � > 0, the

right hand side of (2.11) is arbitrary small if � > 1=p and the factor on the left

hand side of (2.11) grows as a power of n, (see (4.9) below), close to a

n

. As

7



Q(a

n

) also grows as a power of n, (see (4.10) below), this explains why a factor

1 +Q was necessary in Theorem 1.3 of [7]. The factor

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

+ Ln

�2=3

T (a

n

)

�2=3

�

�

is in a sense more natural, as for p � 4, it is signi�cant near a

n

as it should be

and is identically 1 for 1 < p < 4. This is also consistent with the results of ([8],

Theorem 1.3).

Unboundedness of fL

n

g

Finally we deduce results on the unboundedness of fL

n

g as a sequence of oper-

ators from weighted L

p

to weighted L

1

. Corresponding results from weighted

L

1

to L

1

may be found in [3] and [4] and similar results from weighted L

p

to

L

p

may be deduced from the results of [11].

Corollary 2.7 Let w 2 E, 1 < p < 1, n � 1 and � as in (2:9). Then for

every f : R ! R continuous, there exists a constant C independent of f and n

such that
















L

n

(f; U

n

)(x)w(x)

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

+ Ln

�2=3

T (a

n

)

�2=3

�

�
















L

p

(R)

(2.12)

� Ckfwk

L

1

(R)
















�

�

�

�

�

1�

jxj

a

n

�

�

�

�

+ Ln

�2=3

T (a

n

)

�2=3

�

�
















L

p

(jxj�a

2n

)

:

In particular, if 1 < p < 4

kL

n

(f; U

n

)wk

L

p

(R)

� Ca

1=p

n

kfwk

L

1

(R)

and if p � 4
















L

n

(f; U

n

)(x)w(x)

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

+ Ln

�2=3

T (a

n

)

�2=3

�

�
















L

p

(R)

� Ca

1=p

n

kfwk

L

1

(R)

:

Remark 2.8

(a) The appearance of the factor a

1=p

n

in Corollary 2.7 is unfortunate but

necessary. This is illustrated by the following result which follows easily

using the methods of ([8], Theorem 1.3).

Let w 2 E and 1 < p < 4. There exists a continuous function g : R ! R

with

lim

jxj!1

jgwj(x) = 0

and satisfying for some positive constant C

kL

n

(g; U

n

)wk

L

p

(R)

� Ca

1=p

n

kgwk

L

1

(R)

: (2.13)

8



(b) Recalling that a

n

increases with n we see that even with an extra weighting

factor depending on n in the left hand side of (2.12), the weighted Lagrange

operator is unbounded as a sequence of operators from L

p

to L

1

and thus

decay conditions on f are necessary to ensure mean convergence.

Section 3, is devoted to the proofs of Theorems 2.1, 2.2 and their corollaries.

3 Proofs of Results

We begin with the proof of Theorem 2.2. The main idea of the proof, due to

K}onig, is to write the Lagrange interpolation polynomial partly as a discrete

Hilbert transform. To this end, we �nd it convenient to break up the proof

of Theorem 2.2 into several auxiliary lemmas following the format of [10] and

[8]. We will often need information regarding p

n

(w

2

) and its zeros and for this

we will refer to the paper [7] where this information is readily available. The

estimates themselves appeared �rst in [13].

We �nd it convenient to �x the following notation which will be used through-

out.

Firstly, for any two sequences (b

n

) and (c

n

) of nonzero real numbers, we

shall write

b

n

<

� c

n

;

if there exists a constant C > 0, independent of n such that b

n

� Cc

n

for n

large enough and write b

n

� c

n

if b

n

<

� c

n

and c

n

<

� b

n

. Similar notation will

be used for functions and sequences of functions.

Next we set:

(a)

I

jn

:= (x

jn

; x

j�1;n

) and jI

jn

j := x

j�1;n

� x

jn

; 1 � j � n:

(b)

�

jn

:= �

I

jn

:= the indicator function of I

jn

; 1 � j � n:

(c)

	

b

(x) := (1 + jxj)

b

; for b; x 2 R:

(d)

�

n

(x) :=

�

j1� jxj=a

n

j+ (nT (a

n

))

�2=3

�

1=4

; x 2 R:

9



(e)

~p

n

(x) := p

n

(x)(x � y

0

)(x+ y

0

):

Following the format of [10], we break up the proof of Theorem 2.2 into

several auxiliary lemmas.

Bound for the Hilbert Transform

We recall that given g 2 L

1

(R), the Hilbert transform of g exists a.e and is

denoted by

H [g](x) := lim

"!0

+

Z

jt�xj�"

g(t)

x� t

dt:

The following lemma has not appeared in the literature and so we state it and

provide a short proof.

Lemma 3.1 Let b; B 2 R, K � 2, n � C and p > 4. Assume that

b < 1� 1=p; b � B and B > �1=p:

Then for g 2 L

p

(�Ka

n

;Ka

n

),










H [g](x)	

b

(x) j1� jxj=a

n

j

3=4










L

p

(a

n

=2�jxj�Ka

n

)

(3.1)

<

�










g(x)	

B

(x) j1� jxj=a

n

j

3=4










L

p

(jxj�Ka

n

)

:

Proof We write g = g

1

+ g

2

where g

1

vanishes outside [�a

n

=4; a

n

=4] and g

2

vanishes inside [�a

n

=4; a

n

=4]. Firstly, it is a well known result of Riez that

H is a bounded operator from L

p

(1 < p < 1) to L

p

(1 < p < 1). Indeed,

the following modi�cation is also true and follows easily using [15, Lemma 3.1]

which follows from ideas in [25].

For f 2 L

p

(R) and 1 < p <1,
















H [g](x)

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

+ n

�2=3

T (a

n

)

�2=3

�

b
















L

p

(�Ka

n

;Ka

n

)

(3.2)

<

�
















g(x)

�

�

�

�

�

1�

jxj

a

n

�

�

�

�

+ n

�2=3

T (a

n

)

�2=3

�

b
















L

p

(�Ka

n

;Ka

n

)

:

Then applying (3.2) and recalling that p > 4 gives

kH [g

2

](x)	

b

(x) j1� jxj=a

n

j

3=4

k

L

p

(a

n

=2�jxj�Ka

n

)

<

� a

b

n

kH [g

2

](x) j1� jxj=a

n

j

3=4

k

L

p

(a

n

=2�jxj�Ka

n

)

<

� kg(x)	

B

(x) j1� jxj=a

n

j

3=4

k

L

p

(a

n

=4�jxj�Ka

n

)

:
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Finally recalling the identity, cf ([26], Lemma 8, pg 440),

kH [g]	

b

k

L

p

(R)

<

� kg	

B

k

L

p

(R)

;

allows us to write

kH [g

1

](x)	

b

(x) j1� jxj=a

n

j

3=4

k

L

p

(a

n

=2�jxj�Ka

n

)

<

� kg	

B

(x)k

L

p

(jxj�a

n

=4)

<

� kg	

B

(x) j1� jxj=a

n

j

3=4

k

L

p

(jxj�a

n

=4)

:

Combining our two identities for g

1

and g

2

then gives the lemma. 2

Operator inequality

We now state an operator inequality of K}onig, see [8, Lemma 2.5, p. 745].

Lemma 3.2 Let 1 < p < 1 and q :=

p

(p�1)

. Let (
; �) be a measure space,

k; r : 


2

�! R and set

T

k

[f ](u) :=

Z




k(u; v)f(v)d�(v)

for � measurable f : 
 �! R . Assume that,

sup

u

Z




jk(u; v)j jr(u; v)j

q

d�(v) �M

and

sup

v

Z




jk(u; v)j jr(u; v)j

�p

d�(u) �M:

Then T

k

is a bounded operator from L

p

(d�) to L

p

(d�).

Replacement of H[�I

jn

]

Next we record a lemma whereby we replace the fraction

1

x�x

j;n

by H [�I

jn

] for

every 1 � j � n. The idea appeared �rst in [10] and the proof is very similar to

that of [8].

Lemma 3.3 Uniformly for n � 1, 1 � j � n, x 2 [x

nn

; x

1n

] and �xed R 2 R,

�

jn

(x) = �

jn

:=

�

�

�

�

	

�R

(x

jn

)

x� x

jn

�

1

jI

jn

j

H [�

jn

	

�R

](x)

�

�

�

�

a

1=2

n

j~p

n

wj(x) (3.3)

<

� a

2

n

f

jn

(x)�

3

n

(x)

where f

jn

is de�ned by

f

jn

(x) := 	

�R

(x

jn

)

(

jI

jn

j

�1

if jx� x

jn

j � 2jI

jn

j

jI

jn

j

jx�x

jn

j

�

1

jx�x

jn

j

+

1

1+jx

jn

j

�

if jx� x

jn

j > 2jI

jn

j:

11



We are now in a position to present:

The Proof of Theorem 2.2 We �rst note that it is su�cient to prove that







L

n+2

(P; V

n+2

)(x)w(x)(1 + jxj)

R







L

p

(R)

<

�

8

<

:

n

X

j=1

�

jn

jPw(x

jn

)j

p

w

�2

(x

jn

)(1 + jx

jn

j)

Rp

9

=

;

1=p

+B

where B is given by (2.4).

Step 1: Express L

n+2

(P; V

n+2

)(x)w(x)(1 + jxj)

R

as a sum of two terms.

Let us write for x 2 R

L

n+2

(P; V

n+2

)(x)w(x)(1 + jxj)

R

= A

1

(x) +A

2

(x)

where

A

1

(x) :=

n

X

j=1

P (x

jn

)l

j;n+2

(V

n+2

)(x)w(x)(1 + jxj)

R

and

A

2

(x) := P (y

0

)l

0;n+2

(V

n+2

)(x)w(x)(1 + jxj)

R

+

+P (�y

0

)l

n+1;n+2

(V

n+2

)(x)w(x)(1 + jxj)

R

:

Firstly, we estimate A

2

(x). It su�ces to assume that jxj � a

sn

for some s > 1.

Observe that for this range of jxj, we have using [3, (2.12)]

�

�

P (y

0

)w(x)l

n+1;n+2

(x)(1 + jxj)

R

�

�

=

�

�

�

�

P (y

0

)w(y

0

)(1 + jxj)

R

p

n

(x)w(x)(x + y

0

)(x� y

0

)

p

n

(y

0

)w(y

0

)(2y

0

)(x� y

0

)

�

�

�

�

<

� jPwj(y

0

)(1 + jxj)

R

�

�

�

�

(x + y

0

)

a

n

�

�

�

�

<

� jPwj(y

0

)(1 + jxj)

R

:

Similarly estimating the second term in A

2

, we see that

kA

2

(x)k

L

p

(jxj�a

sn

)

<

� B: (3.4)

Step 2: Express A

1

as a sum of two terms.

A

1

(x) =

n

X

j=1

P (x

jn

)l

j;n+2

(x)w(x)(1 + jxj)

R

= a

1=2

n

~p

n

w(x)(1 + jxj)

R

n

X

j=1

P (x

jn

)w(x

jn

)

a

�1=2

n

~p

0

n

(x

jn

)w(x

jn

)(x� x

jn

)

= a

1=2

n

~p

n

w(x)(1 + jxj)

R

n

X

j=1

y

jn

	

�R

(x

jn

)

(x� x

jn

)

12



where y

jn

is de�ned by

y

jn

:=

a

�1=2

n

P (x

jn

)w(x

jn

)

~p

0

n

(x

jn

)w(x

jn

)

	

R

(x

jn

)

for 1 � j � n. We observe that using [7, (2.11)] below and ([3], (2.24)), we have

jy

jn

j � jP (x

jn

)w(x

jn

)	

R

(x

jn

)j

jI

jn

j�

�3

n

(x

jn

)

a

2

n

: (3.5)

Step 2-A: Now, we will estimate A

1

(x). It su�ces to consider two cases.

jxj � a

n

=2 and a

n

=2 � jxj � 2a

n

. We begin with the case a

n

=2 � jxj � 2a

n

.

Now let us write

A

1

(x) = a

1=2

n

~p

n

w(x)(1 + jxj)

R

n

X

j=1

y

jn

�

	

�R

(x

jn

)

x� x

jn

�

1

jI

jn

j

H [�

jn

	

�R

](x)

�

+a

1=2

n

~p

n

w(x)(1 + jxj)

R

H

2

4

n

X

j=1

y

jn

jI

jn

j

�

jn

	

�R

3

5

(x)

:= J

1

(x) + J

2

(x)

Step 3-A: Estimate kJ

2

(x)k

L

p

(a

n

=2�jxj�2a

n

)

.

Since

Z

I

jn

j1� jxj=a

n

j

3p=4

dx � �

3p

n

(x

jn

)jI

jn

j;

we have using Lemma 3.1 and (3.5),

kJ

2

(x)k

L

p

(a

n

=2�jxj�2a

n

)

(3.6)

<

� a

2

n



















j1� jxj=a

n

j

3=4

	

R

(x)H

2

4

n

X

j=1

y

jn

jI

jn

j

�

jn

	

�R

3

5

(x)



















L

p

(a

n

=2�jxj�2a

n

)

<

� a

2

n



















j1� jxj=a

n

j

3=4

	

R

(x)

n

X

j=1

y

jn

jI

jn

j

�

jn

	

�R

(x)



















L

p

[�2a

n

;2a

n

]

= a

2

n

8

<

:

n

X

j=1

�

y

jn

jI

jn

j

�

p

Z

I

jn

j1� jxj=a

n

j

3p=4

dx

9

=

;

1=p

�

8

<

:

n

X

j=1

jPw(x

jn

)	

R

(x

jn

)j

p

jI

jn

j

9

=

;

1=p

:

Step 4-A: Estimate kJ

1

(x)k

L

p

(a

n

=2�jxj�2a

n

)

.

13



By Lemma 3.3

jJ

1

(x)j

<

� a

2

n

n

X

j=1

jy

jn

jf

jn

(x)�

3

n

(x)(1 + jxj)

R

; x 2 [x

nn

; x

1n

]:

Thus

kJ

1

(x)k

L

p

(a

n

=2�jxj�x

1n

)

<

� a

2

n

8

<

:

X

jx

kn

j�a

n

=2

2

4

Z

I

kn

n

X

j=1

jy

jn

jf

jn

(x)�

3

n

(x)(1 + jxj)

R

3

5

p

dx

9

=

;

1=p

<

� a

2

n

8

<

:

X

jx

kn

j�a

n

=2

jI

kn

j

2

4

n

X

j=1

jy

jn

jf

jn

(x

kn

)�

3

n

(x

kn

)	

R

(x

kn

)

3

5

p

9

=

;

1=p

:

Here we have used the fact that f

jn

does not change much in I

kn

. Using the

de�nition of f

jn

, we see that

kJ

1

(x)k

L

p

[a

n

=2�jxj�x

1n

]

<

� (S

1

+ S

2

+ S

3

);

where:

S

1

:= a

2

n

8

<

:

X

jx

kn

j�a

n

=2

jI

kn

j

2

4

X

j=1;j 6=k

jy

jn

j	

�R

(x

jn

)

jI

jn

j

(x

kn

� x

jn

)

2

�

3

n

(x

kn

)	

R

(x

kn

)

3

5

p

9

=

;

1=p

;

S

2

:= a

2

n

8

<

:

X

jx

kn

j�a

n

=2

jI

kn

j

2

4

X

j=1;j 6=k

jy

jn

j	

�R

(x

jn

)

jI

jn

j

jx

kn

� x

jn

j(1 + jx

jn

j)

�

3

n

(x

kn

)	

R

(x

kn

)

3

5

p

9

=

;

1=p

and

S

3

:= a

2

n

8

<

:

X

jx

kn

j�a

n

=2

jI

kn

j

�

y

kn

jI

kn

j

	

�R

(x

kn

)�

3

n

(x

kn

)	

R

(x

kn

)

�

p

9

=

;

1=p

:

Step 5-A: Estimate S

j

; j = 1; 2; 3.

Firstly we see that we may easily deduce that

S

3

<

�

(

n

X

k=2

jI

kn

j jPw(x

kn

)	

R

(x

kn

)j

p

)

1=p

: (3.7)

Next,

S

1

<

�

8

<

:

n

X

k=1

2

4

n

X

j=1

b

kj

jI

jn

j

1=p

jPw(x

jn

)j	

R

(x

jn

)

3

5

p

9

=

;

1=p

;
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where,

b

k;k

:= 0 = b

1;k

for every k

and for j 6= k,

b

k;j

:= �

jx

kn

j�a

n

=2

jI

j;n

j

2�1=p

jI

k;n

j

1=p

(x

j;n

� x

k;n

)

�2

�

�

n

(x

kn

)

�

n

(x

jn

)

�

3

�	

�R

(x

jn

)	

R

(x

kn

):

Here �

S(k)

equals 1 if for k, S(k) holds, otherwise it is 0. Thus

S

1

<

� kBk

L

n

p

�!L

n

p

8

<

:

n

X

j=1

jI

j;n

j [jPw(x

jn

)j	

R

(x

jn

)]

p

9

=

;

1=p

and so we must show that independently of n,

kBk

L

n

p

�!L

n

p

<

� 1:

We apply Lemma 3.2 with the discrete measure space 
 := f1; 2; : : : ng and

� (fjg) = 1; j = 1; 2; : : : n. Moreover, we set there,

k(k; j) := b

k;j

; r

k;j

:=

�

jI

j;n

j

jI

k;n

j

1 + jx

kn

j

1 + jx

jn

j

�

1=pq

:

Thus it su�ces to show that

sup

fkjjx

kn

j�

a

n

2

g

n

X

j=1

j 6=k

jI

j;n

j

2

(x

j;n

� x

k;n

)

2

�

�

n

(x

kn

)

�

n

(x

jn

)

�

3

�

1 + jx

kn

j

1 + jx

jn

j

�

R+1=p

<

� 1; (3.8)

and

sup

j

n

X

jx

kn

j�

a

n

2

k 6=j

jI

j;n

j jI

k;n

j

(x

j;n

� x

k;n

)

2

�

�

n

(x

kn

)

�

n

(x

jn

)

�

3

�

1 + jx

kn

j

1 + jx

jn

j

�

1=q�R

<

� 1: (3.9)

This follows using the method of ([8], pp 750-753), recalling that given �xed

� 2 (0; 1), we have uniformly for n and 1 � l � n

jI

l;n

j �

a

n

n

�

1�

jx

l;n

j

a

n

+ (nT (a

n

))

�2=3

�

1=2

�

a

n

n

�

2

n

(x

ln

); jx

l;n

j � a

�n

and

jI

l;n

j �

a

n

n

T (a

n

)

�1

�

1�

jx

l;n

j

a

n

+ (nT (a

n

))

�2=3

�

�1=2

�

a

n

n

T (a

n

)

�1

�

�2

n

(x

ln

); jx

l;n

j � a

�n

:
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Now we will prove (3.8) and (3.9). For notational simplicity, we will often write

just � together with the indices of summation instead of the full sum. Firstly

for (3.8), we may write

sup

fkjjx

kn

j�

a

n

2

g

n

X

j=1

j 6=k

� sup

fkjjx

kn

j�

a

n

2

g

X

jx

jn

j�

a

n

3

+ sup

fkjjx

kn

j�

a

n

2

g

X

jx

jn

j�

a

n

3

j 6=k

:

For jx

kn

j � a

n

=2 and jx

jn

j � a

n

=3, since jx

kn

� x

jn

j � a

n

, �

n

(x

kn

)

<

� 1 and

�

n

(x

jn

) � 1, we have

X

jx

jn

j�

a

n

3

<

�

a

R+1=p

n

a

2

n

X

jx

jn

j�

a

n

3

jI

jn

j

2

<

�

a

R+1=p

n

n

<

� 1:

On the other hand, for jx

kn

j � a

n

=2,

X

jx

jn

j�a

n

=3

j 6=k

<

�

X

a

n

=3�jx

jn

j�a

n=3

j 6=k

+

X

a

n=3

�jx

jn

j�(1+L�

n

)a

n

j 6=k

jI

j;n

j

2

(x

j;n

� x

k;n

)

2

�

�

n

(x

kn

)

�

n

(x

jn

)

�

3

:

Thus for the �rst term in the above, we have

X

a

n

=3�jx

jn

j�a

n=3

j 6=k

<

�

a

n

n

�

3

n

(x

kn

)

X

a

n

=3�jx

jn

j�a

n=3

j 6=k

jI

j;n

j

(x

j;n

� x

k;n

)

2

1

�

n

(x

jn

)

and then for a

n

=2 � jx

kn

j � a

n=2

X

a

n

=3�jx

jn

j�a

n=3

j 6=k

jI

j;n

j

(x

j;n

� x

k;n

)

2

1

�

n

(x

jn

)

<

�

Z

a

n

=3�jtj�a

n=3

jt�x

kn

j�C

a

n

n

�

2

n

(x

kn

)

�

�1

n

(t)

(t� x

kn

)

2

dt

<

�

Z

x

kn

�

a

n

=3

+

Z

a

n

+x

kn

�

2

x

kn

�

+

Z

a

n

a

n

+x

kn

�

2

�

�1

n

(t)

(t� x

kn

)

2

dt

<

�

n

a

n

�

�3

n

(x

kn

) + a

�1

n

�

�5

n

(x

kn

)

where x

kn

�

:= x

kn

� C

a

n

n

�

2

n

(x

kn

) and x

kn

�

:= x

kn

+ C

a

n

n

�

2

n

(x

kn

). So we have

a

n

n

�

3

n

(x

kn

)

X

a

n

=3�jx

jn

j�a

n=3

j 6=k

jI

j;n

j

(x

j;n

� x

k;n

)

2

1

�

n

(x

jn

)

<

� 1 +

�

�2

n

(x

kn

)

n

<

� 1:
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At the same time, for jx

kn

j � a

n=2

, we may easily show that

a

n

n

�

3

n

(x

kn

)

X

a

n

=3�jx

jn

j�a

n=3

j 6=k

jI

j;n

j

(x

j;n

� x

k;n

)

2

1

�

n

(x

jn

)

<

� 1:

Now, we estimate the second term:

Firstly observe that

X

a

n=3

�jx

jn

j�(1+L�

n

)a

n

j 6=k

jI

j;n

j

2

(x

j;n

� x

k;n

)

2

�

�

n

(x

kn

)

�

n

(x

jn

)

�

3

<

�

a

n

n

1

T (a

n

)

�

3

n

(x

kn

)

X

a

n=3

�jx

jn

j�(1+L�

n

)a

n

j 6=k

jI

j;n

j �

�5

n

(x

jn

)

(x

j;n

� x

k;n

)

2

:

Then for a

n

=2 � jx

kn

j � a

n=4

,

a

n

n

1

T (a

n

)

�

3

n

(x

kn

)

X

a

n=3

�jx

jn

j�(1+L�

n

)a

n

j 6=k

jI

j;n

j �

�5

n

(x

jn

)

(x

j;n

� x

k;n

)

2

<

� �

3

n

(x

kn

)

T (a

n

)a

�1

n

n

X

a

n=3

�jx

jn

j�(1+L�

n

)a

n

j 6=k

jI

j;n

j �

�5

n

(x

jn

)

<

�

T (a

n

)a

�1

n

n

�

�5=4

n

<

� 1

and for a

n=4

� jx

kn

j � a

n

(1 + L�

n

)

a

n

n

1

T (a

n

)

�

3

n

(x

kn

)

X

a

n=3

�jx

jn

j�(1+L�

n

)a

n

j 6=k

jI

j;n

j �

�5

n

(x

jn

)

(x

j;n

� x

k;n

)

2

<

�

a

n

n

1

T (a

n

)

�

3

n

(x

kn

)

Z

a

n=3

�jtj�a

n

(1+L�

n

)

jt�x

kn

j�

a

n

n

�

�2

n

(x

kn

)

T (a

n

)

�

�5

n

(t)

(t� x

kn

)

2

dt

<

�

a

n

n

1

T (a

n

)

�

3

n

(x

kn

)

Z

x

kn

�

a

n=3

+

Z

a

n

(1+L�

n

)+x

kn

�

2

x

kn

�

+

Z

a

n

(1+L�

n

)

a

n

(1+L�

n

)+x

kn

�

2

�

�5

n

(t)

(t� x

kn

)

2

dt

<

� 1
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where x

kn

�

and x

kn

�

are as above. Thus (3.8) is proved completely. Now, we

prove (3.9). Firstly

sup

j

n

X

jx

kn

j�

a

n

2

k 6=j

jI

j;n

j jI

k;n

j

(x

j;n

� x

k;n

)

2

�

�

n

(x

kn

)

�

n

(x

jn

)

�

3

�

1 + jx

kn

j

1 + jx

jn

j

�

1=q�R

<

� sup

jx

jn

j�a

n

=3

n

X

jx

kn

j�

a

n

2

k 6=j

+ sup

jx

jn

j�a

n

=3

n

X

jx

kn

j�

a

n

2

k 6=j

:

Since for jx

jn

j � a

n

=3

n

X

jx

kn

j�

a

n

2

k 6=j

<

�

a

n

n

1

a

2

n

X

jx

kn

j�

a

n

2

a

1=q�R

n

<

�

a

1=q�R

n

n

<

� 1;

we have

sup

jx

jn

j�a

n

=3

n

X

jx

kn

j�

a

n

2

k 6=j

<

� 1:

For the second term, since jx

jn

j � a

n

=3

n

X

jx

kn

j�

a

n

2

k 6=j

<

�

n

X

k=1

k 6=j

jI

j;n

j jI

k;n

j

(x

j;n

� x

k;n

)

2

�

�

n

(x

kn

)

�

n

(x

jn

)

�

3

:

Thus by [15, Step 4], we have

n

X

k=1

k 6=j

jI

j;n

j jI

k;n

j

(x

j;n

� x

k;n

)

2

�

�

n

(x

kn

)

�

n

(x

jn

)

�

3

<

� 1:

Therefore, (3.9) is also completely proved. Thus

S

1

<

�

8

<

:

n

X

j=1

jI

j;n

j [jPw(x

jn

)j	

R

(x

jn

)]

p

9

=

;

1=p

: (3.10)

Similarly it follows that

S

2

<

�

8

<

:

n

X

j=1

jI

j;n

j [jPw(x

jn

)j	

R

(x

jn

)]

p

9

=

;

1=p

: (3.11)
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Our estimates (3.6), (3.7), (3.10) and (3.11) then show that

jjA

1

(x)jj

L

p

(a

n

=2�jxj�2a

n

)

(3.12)

<

�

8

<

:

n

X

j=1

�

jn

jPw(x

jn

)j

p

w

�2

(x

jn

)(1 + jx

jn

j)

Rp

9

=

;

1=p

:

Step 2-B: Now we suppose that jxj � a

n

=2. We write

A

1

(x) = a

1=2

n

~p

n

w(x)(1 + jxj)

R

n

X

j=1

y

jn

	

�R

(x

jn

)

(x� x

jn

)

= a

1=2

n

~p

n

w(x)(1 + jxj)

R

X

jx

jn

j�2a

n

=3

+

X

jx

jn

j�2a

n

=3

y

jn

	

�R

(x

jn

)

(x� x

jn

)

:= A

11

(x) +A

12

(x):

Let us estimate both A

11

and A

12

.

Step 3-B: Estimate jjA

11

(x)jj

L

p

(jxj�a

n

=2)

. Let us write for the given range of

x,

jA

11

(x)j

� a

2

n

(1 + jxj)

R

X

jx

jn

j�2a

n

=3

a

�1=2

n

jPw(x

jn

)j

a

2

n

jp

0

n

w(x

jn

)j jjy

0

j � jx

jn

jj

� (1 + jxj)

R

X

jx

jn

j�2a

n

=3

jPw(x

jn

)j jI

jn

j(1� jx

jn

j=a

n

+ L�

n

)

�3=4

<

� (1 + jxj)

R

sup

2a

n

=3�jx

jn

j

jPw(x

jn

)j :

Thus,

jjA

11

(x)jj

L

p

(jxj�a

n

=2)

<

� sup

2a

n

=3�jx

jn

j

jPw(x

jn

)j







(1 + jxj)

R







L

p

(jxj�a

n

=2)

: (3.13)

Next we consider:

Step 4-B: To estimate jjA

12

(x)jj

L

p

(jxj�a

n

=2)

, express A

12

as a sum of two

terms. Let us write

A

12

(x) = a

1=2

n

~p

n

(x)w(x)(1 + jxj)

R

X

jx

jn

j�2a

n

=3

y

jn

�

	

�R

(x

jn

)

x� x

jn

�

1

jI

jn

j

H [�

jn

	

�R

](x)

�

+a

1=2

n

~p

n

(x)w(x)(1 + jxj)

R

H

2

4

X

jx

jn

j�2a

n

=3

y

jn

jI

jn

j

�

jn

	

�R

3

5

(x)

:= J

3

(x) + J

4

(x):
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Step 5-B: Estimate jjJ

3

(x)jj

L

p

(jxj�a

n

=2)

.

For J

3

(x) we use the same methods as J

1

(x) with

b

k;j

:= �

jx

kn

j�a

n

=2

jI

j;n

j

2�1=p

jI

k;n

j

1=p

(x

j;n

� x

k;n

)

�2

�

�

n

(x

kn

)

�

n

(x

jn

)

�

3

�	

�R

(x

jn

)	

R

(x

kn

) for j 6= k:

Thus it su�ces to show that

sup

fkjjx

kn

j�

a

n

2

g

n

X

j=1

j 6=k

jI

j;n

j

2

(x

j;n

� x

k;n

)

2

�

�

n

(x

kn

)

�

n

(x

jn

)

�

3

�

1 + jx

kn

j

1 + jx

jn

j

�

R+1=p

<

� 1; (3.14)

and

sup

j

n

X

jx

kn

j�

a

n

2

k 6=j

jI

j;n

j jI

k;n

j

(x

j;n

� x

k;n

)

2

�

�

n

(x

kn

)

�

n

(x

jn

)

�

3

�

1 + jx

kn

j

1 + jx

jn

j

�

1=q�R

<

� 1: (3.15)

To proceed, we see that in the summations of (3.14) and (3.15), it is enough

to show that for jx

kn

j � a

n

=2

X

jx

jn

j�

2a

n

3

j 6=k

jI

j;n

j

2

(x

j;n

� x

k;n

)

2

�

�

n

(x

kn

)

�

n

(x

jn

)

�

3

�

1 + jx

kn

j

1 + jx

jn

j

�

R+1=p

<

� 1;

and for jx

jn

j � 2a

n

=3

n

X

jx

kn

j�

a

n

2

k 6=j

jI

j;n

j jI

k;n

j

(x

j;n

� x

k;n

)

2

�

�

n

(x

kn

)

�

n

(x

jn

)

�

3

�

1 + jx

kn

j

1 + jx

jn

j

�

1=q�R

<

� 1:

Then since for these ranges, �

n

(x

kn

)

<

� 1 and �

n

(x

jn

)

<

� 1, it is enough to show

that for jx

kn

j � a

n

=2

X

jx

jn

j�

2a

n

3

j 6=k

jI

j;n

j

2

(x

j;n

� x

k;n

)

2

�

1 + jx

kn

j

1 + jx

jn

j

�

R+1=p

<

� 1;

and for jx

jn

j � 2a

n

=3

n

X

jx

kn

j�

a

n

2

k 6=j

jI

j;n

j jI

k;n

j

(x

j;n

� x

k;n

)

2

�

1 + jx

kn

j

1 + jx

jn

j

�

1=q�R

<

� 1:
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The above estimates then easily follow as before using the method of [7, (6.12)

and (6.13)].

Therefore, we have shown that

jjJ

3

(x)jj

L

p

(jxj�a

n

=2)

(3.16)

<

�

8

<

:

n

X

j=1

�

jn

jPw(x

jn

)j

p

w

�2

(x

jn

)(1 + jx

jn

j)

Rp

9

=

;

1=p

:

Step 6-B: Estimate jjJ

4

(x)jj

L

p

(jxj�a

n

=2)

.

Finally, we estimate J

4

. Much as before, we deduce that

kH [f ]	

r

k

L

p

(R)

<

� kf	

R

k

L

p

(R)

and so

kJ

4

(x)k

L

p

(jxj�a

n

=2)

<

� a

2

n



















j1� jxj=a

n

j

3=4

	

R

(x)H

2

4

X

jx

jn

j�2a

n

=3

y

jn

jI

jn

j

�

jn

	

�R

3

5

(x)



















L

p

(jxj�a

n

=2)

<

� a

2

n



















	

R

(x)H

2

4

X

jx

jn

j�2a

n

=3

y

jn

jI

jn

j

�

jn

	

�R

3

5

(x)



















L

p

[�2a

n

;2a

n

]

<

� a

2

n



















	

R

(x)

X

jx

jn

j�2a

n

=3

y

jn

jI

jn

j

�

jn

	

�R

(x)



















L

p

[�2a

n

;2a

n

]

:

Since jx

jn

j � 2a

n

=3, we have using (3.5) and [7, (2.4)] below

jy

jn

j � jPw(x

jn

)	

R

(x

jn

)j

jI

jn

j

a

2

n

:

Thus

kJ

4

(x)k

L

p

(jxj�a

n

=2)

<

�

8

<

:

X

jx

jn

j�2a

n

=3

jPw(x

jn

)	

R

(x

jn

)j

p

jI

jn

j

9

=

;

1=p

(3.17)

<

�

8

<

:

n

X

j=1

jPw(x

jn

)	

R

(x

jn

)j

p

jI

jn

j

9

=

;

1=p

:

21



(3.13), (3.16) and (3.17) then show that

jjA

1

(x)jj

L

p

(jxj�a

n

=2)

(3.18)

<

�

8

<

:

n

X

j=1

�

jn

jPw(x

jn

)j

p

w

�2

(x

jn

)(1 + jx

jn

j)

Rp

9

=

;

1=p

+ sup

2a

n

=3�jx

jn

j

jPw(x

jn

)j







(1 + jxj)

R







L

p

(jxj�a

n

=2)

<

�

8

<

:

n

X

j=1

�

jn

jPw(x

jn

)j

p

w

�2

(x

jn

)(1 + jx

jn

j)

Rp

9

=

;

1=p

+B

as required. It remains to combine (3.18) with (3.12) and (3.4) to deduce (2.3).

2

Next we present:

The Proof of Theorem 2.1 This follows using the same method as [14,

Theorem 1.1]. 2

We now consider the proofs of Corollary 2.3 and 2.4. We shall prove Corol-

lary 2.4. The proof of Corollary 2.3 is similar and easier.

The Proof of Corollary 2.4 Firstly we show that it is enough to assume that

p > 4. Indeed, assume that Corollary 2.4 holds for p > 4. Then for 0 < p � 4,

let us choose some constant q > 4 satisfying pq > 4. Since � + �̂ > 1=p, we

may choose �

1

satisfying

�� 1=p+ 1=pq > �

1

> ��̂+ 1=pq

and let q

0

be a conjugate of q (that is, 1=q + 1=q

0

= 1). Then by H�older's

inequality







(L

n+2

(f; V

n+2

)� f) (x)w(x)(1 + jxj)

��







p

L

p

(R)

<

�

Z

(L

n+2

(f; V

n+2

)� f)

p

(x)w

p

(x)(1 + jxj)

��p

dx

<

�

�

Z

(L

n+2

(f; V

n+2

)� f)

pq

(x)w

pq

(x)(1 + jxj)

��

1

pq

dx

�

1=q

�

�

Z

(1 + jxj)

�(���

1

)pq

0

dx

�

1=q

0

:

Since �

1

+ �̂ > 1=pq, by the result for p > 4 we have

lim

n!1

�

Z

(L

n+2

(f; V

n+2

)� f)

pq

(x)w

pq

(x)(1 + jxj)

��

1

pq

dx

�

1=q

= 0
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and since (���

1

)pq

0

> 1, we have

�

Z

(1 + jxj)

�(���

1

)pq

0

dx

�

1=q

0

<1:

Therefore, we have the result for 0 < p � 4.

Thus without loss of generality, assume that p > 4. We let � > 0 and choose

a polynomial P so that

k(f � P )(x)w(x)(1 + jxj)

�

k

L

1

(R)

< �:

Let s be as in the de�nition of B in (2.4). Then using (2.3), [7, (2.1) and (2.3)]

(4.11) and the fact that for large enough n

(1 + jy

0

j)

��

<

� (1 + jxj)

��

; jxj � a

sn

gives for suitable R satisfying � � �R and R > �1=p

lim sup

n!1







(L

n+2

(f; V

n+2

)� f) (x)w(x)(1 + jxj)

��







L

p

(R)

<

� �k(1 + jxj)

����

k

L

p

(R)

+ �k(1 + jxj)

R��

k

L

p

(R)

:

Here the constants in

<

� depend on �, � and p but are independent of �. We

now choose

0 < " < minf�; �+�� 1=pg

and put

R := �� 1=p� ":

Then � � �R and R > �1=p. Moreover, (R � �)p < �1 and so

lim sup

n!1







(L

n+2

(f; V

n+2

)� f) (x)w(x)(1 + jxj)

��







L

p

(R)

<

� � (3.19)

where the constants in

<

� depend on �, � and p but are independent of �.

Letting � ! 0

+

in the above gives the su�ciency of the result. The necessity

of Corollary 2.4 follows using the method of [17, Theorem 1.4] and [6, Theorem

1.1]. 2
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