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1 Introduction

Let

Xn = {517717 E2,n5 - '7571777,}7 n>l1

be a triangular array of points on the real line. In this paper, we prove converse
weighted Marcinkiewicz-Zygmund inequalities. Such inequalities have the form

/ PP (@w(@)de < 3 Ajn [PV (@)l s P EPat,p>0

j=1

with P,,—1 the class of polynomials of degree at most n —1, n > 1, C' a positive
constant independent of P and n, w and V suitable positive weights and Aj;,
the Cotes numbers with respect to w and the array xy, see [9]. Such inequalities
are in particular, useful in proving theorems on mean convergence of Lagrange
interpolation. Let us recall that that if f : R — R is a given continuous function,



then denoting by ¢; ,(x») € Ip—1, 1 < j < n the fundamental polynomials of
Lagrange interpolation satisfying for 1 <k <n

(1, j=k
Cin(Xn) (&) _{ 0, otherwise,

the Lagrange interpolation polynomial of degree n — 1 to f with respect
t0 Xny Ln(f, Xn), admits the representation

n

L(f,xn) (@) 3= D f(&.n)ln(xn) (@), = € R.

j=1

One method to prove weighted Marcinkiewicz-Zygmund inequalities uses mean
convergence of orthonormal expansions, see [33], [34], [35], [20], [21], [22] and
the references cited therein. Another method, originally due to Kénig for the
Hermite weight, see [10], has also been studied rather extensively recently and
was first adapted for a general class of Erdds weights on the real line by the
first author and D.S. Lubinsky in [7]. Subsequently, the method was applied
to other classes of weights by D. S. Lubinsky in [14], [15] and [16]. In particu-
lar, in the interesting paper [16], D. S. Lubinsky has recently proved converse
Marcinkiewicz-Zygmund inequalities using the method of Koénig for rather gen-
eral arrays on [—1,1] and weights with applications to mean convergence of
Lagrange interpolation for a class of exponential weights on [—1,1]. For the real
line, the situation is typically more difficult and it is the aim of this paper to
investigate several new Marcinkiewicz-Zygmund inequalities for a class of fast
decaying weights on the real line adapting the method of Kénig above. We then
use these inequalities to prove new theorems on mean convergence of Lagrange
and extended Lagrange interpolation extending earlier work of [2] and [3]. In
this paper, we choose as our class of weights on the real line, a class of even
Erd6s weights which are of faster than polynomial growth at infinity. We em-
phasize that we wish to describe our technique rather than dwell on technical
assumptions on our weight class. To this end, we mention that we believe our
methods apply to more general classes of weights such as even Freud weights
and/or even weights with less smoothness but we do not pursue this later inves-
tigation here. Our class of weights includes as examples, see [13], the weights

Wha (@) = exp (= Qr.al@)) (L1)
where
Qua(@) == expy(|e]*), k> La> 1
and

wa,B(r) :=exp (- Qa 5(x)) (1.2)



where
Qa,5(z) = exp (log(4 +w2))B, B> 1.

Here, exp,(;) = exp (exp(exp(;))) denotes the kth iterated exponential and A
is a large enough but fixed absolute constant.

2 := 729 where:

More precisely, we shall treat weights of the form w
e ():R —[0,00) is even and continuous.
o Q® exists and Q\¥), j =0,1,2 is non negative in (0, c0).

e The function

Q" ()
T(z):=1+
AP
is increasing in (0, 0o0) with
lim T'(z) = oo,

Tr—r0o0

and

T(0%) := lim T(z) > 1.

z—0t

e There exists C' > 0 such that for sufficiently large x

1 T(x)
C = 2Q'(w) <C.
Q(z)

e For every € > 0, there exists a positive constant A; so that uniformly for
7| = C,

T(x) < A1(Q(x))".

Such weights, see [13] and [7] will be denoted by &.

Interpolation points
Given w € &, see [9], we may define orthonormal polynomials
2

pu(z) = pn(w‘ yT) =Y+, Y = 7n(w2> >0, reR

satisfying

/R pa(w?, 2)py (w?, r)w? (z)dz = {



and with zeros denoted by
—0 < Tpn < Tp-1,n < " < T2p <Tpn <O

For each n > 1 and for the given weight w, we define interpolatory matrices

Un:={zjn:1<j<n} (1.3)
and

Va2 = Un Ud{yo} U {-yo} (1.4)
where yo maximizes ||p,w||L_, (=) It is important to note that +yo & Up.

The existence of yg follows from the Mhaskar-Rakhmanov-Saff identity, see
([30], Theorem 3.2.1),
I1Pwl|r.. ) = |1PW]|L[-an,00]

valid for every P € II,,, n > 1 where the number a,, is defined for every u > 0
as the positive root of the equation

1
. 2/ aytQ' (ayt)dt
o ) V1-12

Defining for z € R

we define

Li o (Vngo)(z) = < for j=0,--- ,;n+1
75 +2( +2)( ) P;l(l']n)(l'—l'gn) J

and let
Lngs(f, Vara)@) = Y f(@5n)ljnt2(Vara) (@)
j=1

+  fWo)lnt1nr2(Var2)(@) + F(—=v0)lnt2nt2(Vate) ()

denote the extended Lagrange interpolation polynomial of degree at most n + 2
to f where we may consider z, := yo and zp41., (= —Yo-

2 Converse Quadrature Formulae

2.1 Converse quadrature formula with fixed weight (1 +

)"

In this section, we present two converse quadrature formulae from which we
deduce theorems on Lagrange interpolation. We begin with:



Theorem 2.1 Letw € £, 1 <p <4 and R,r € R. Moreover assume that
r<l—1/p,r<R,R>-1/p (2.1)

and let \j =X (w?, z;,), 1 < j <n be the Cotes numbers for the weight w?.
Then there exists a positive constant C such that for every polynomial P € P,

1Pw(@) (L + [#])7Il,, ) (2:2)
1/p

<C S N Pwlen) P w (@) (L + |zja])

j=1

Theorem 2.2 Let w € £, 4 < p < 00 and R,r € R. Moreover assume (2.1)
and let \j =X (w?, z;,), 1 < j <n be the Cotes numbers for the weight w?.
Then there exists a positive constant C such that for every polynomial P € Ppi1

IPw(@)(L+ [2]) 1|,z (2.3)
n 1/p
<C 3 N |Pwlein) P o™ (@) (L + |za)™ p + B,
j=1

where for some s > 1

B: = ||PU)(y0>(]- + |m|)R||Lp(|$|Sasn) + ||Pw(_y0>(1 + |:L,|)R||Lp(|$|§am)
. R
t s (Pula)] I+ 12D, (<o 2 - (2.4)

Lagrange interpolation

As consequences of Theorems 2.1 and 2.2, we are able to deduce the following
corollaries on mean convergence of Lagrange interpolation.

Corollary 2.3 Letw e £,0<p<4, A€eR, a € R and & := min{a,1}. Then
if a >0, for

lim || (La(f,Un) = f) @w(@) (L + |27, ) =0, (2.5)

n—oo

to hold for every continuous function f satisfying

Jm fu(@)(1 +]e])” =0 (2.6)

it is sufficient that
a+A>1/p. (2.7)

Moreover, for (2.5) to hold for every continuous function f satisfying (2.6), it
is necessary that (2.7) holds.



Corollary 2.3 is interesting in that it includes the necessary and sufficient
conditions of Theorem 1.2 and Theorem 1.3 of [8] as special cases. For p > 4,
the first author and D. S. Lubinsky showed in [7], that a weight factor which
decays as a power of 1 4+ Q was necessary and sufficient for convergence under
the same decay conditions on fw given by (2.6). Our next, Corollary shows that
replacing U, in (2.5) by V42, allows us to extend the range of p in Corollary
23t00<p<oo.

Corollary 2.4 Let w € £, 0 < p < oo, A € R, a € R and & := min{a, 1} .
Then if a > 0, for

T || (Lo (f, Viea) — ) @w@)@ +2) 2], o =0 28)
to hold for every continuous function f satisfying (2.6) it is sufficient that (2.7)
holds. Moreover for (2.8) to hold for every continuous function f satisfying (2.6)
it is necessary that (2.7) holds.

Corollary 2.4 shows that under a polynomial decay condition on fw, a
polynomial decay term is necessary and sufficient for weighted convergence in
L,(0 < p < 00) with respect to the interpolatory matrix V;, 2. That means that
for Erdés weights, mean convergence of extended Lagrange interpolation is al-
most the same as mean convergence of Lagrange interpolation in L,(0 < p < 4)
with respect to U,,. Finally we mention that in [5], theorems on extended La-
grange interpolation for 0 < p < oo are proved but under a logarithmic decay
condition of fw. This typically forces stronger weighting factors than the ones
above but still weaker ones to those in [7] where interpolation with respect to
U, is studied.

2.2 Converse quadrature formulae with (|1 — |z|/a,|+ Ld,)"

In this section, we record a converse quadrature inequality but with varying
weight (|1 — |z|/ay| + Ld,)? for some natural exponent 3 and state some useful
corollaries on boundedness and mean convergence of Lagrange interpolation.
Our choice of weight is influenced by the fact that close to a,,, this factor behaves
as a power of n which is sufficient to conclude mean convergence of Lagrange
interpolation with respect to U, for 1 < p < oo over the entire real line. We
do not provide proofs but refer the reader to the papers [2] and [15] where the
details may be found.

Theorem 2.5 Let w € £, 1 < p < oo and let \j =\, (w?, z;,), 1 <j<n be
the Cotes numbers for the weight w?. Let 3 satisfy

1/4—1/p < B <min{5/4—-1/p,3/4+ 1/2p}. (2.9)



Then there ezists a positive constant C such that uniformly for n > 1 and
Pell, ;

Pu(z) (‘1_M

Qn

&)
+ Ln_2/3T(an)_2/3> (2.10)

Lp(R)

- ; Bp
< O N (@) [Pwl” (z0) (‘1 -l +Ln2/3T(an)2/3>
j=1

Qp

A special case of Theorem 2.5 was first proved for 1 < p < 4 in ([8], Theorem
3.1) although an earlier formulation for the Hermite weight appeared first in
([10], Theorem 1(a)) for 1 < p < 4. (2.10) has also been established for 1 < p < 4
for a class of Freud weights by D. S. Lubinsky in ([14], Theorem 1.2) and for
p > 1 for a class of exponential weights on (—1,1) by D. S. Lubinsky in ([15],
Theorem 1.2). We observe that the parameter 5 in (2.9) may be taken as 0 for
1 < p < 4. This is consistent with the results of [8]. One of the main ideas
in Theorem 2.5, in our opinion, is that it explains why no weighting factor is
needed for 1 < p < 4, while at the same time, it illustrates that a weighting
factor, which is really only significant near a,,, is also sufficient for p > 4. This
weighting factor actually grows as a power of n near a,, much as }(a,) does.
The significance of this observation is important and is discussed further after
the statement of Corollary 2.6.

As a consequence of Theorem 2.5, we record:

Corollary 2.6 Let w € £, p > 1, a > 0 and 8 as in (2.9). Further let f :
R — R be continuous with

lim |f(z)|w(z)(1+ |z))* =0.

J&]— 00

Then given § > 0, there exists a positive constant C, such that for alln > C

_ Izl

H(f = Ln(f, Up)) (x)w(2) (‘1 — +Ln—2/3T(an)—2/3)ﬁ

(2.11)

an
Lp(R)

e (-

n

&)
<46 + Ln2/3T(an)2/3>

Lp(lz|<azn)

Thus if 1 < p < 4, we may take 8 = 0 and the right hand side of (2.11) can
be made arbitrary small, if @ > 1/p. Moreover, if p > 4 and then 8 > 0, the
right hand side of (2.11) is arbitrary small if > 1/p and the factor on the left
hand side of (2.11) grows as a power of n, (see (4.9) below), close to a,. As



Q(ay) also grows as a power of n, (see (4.10) below), this explains why a factor
1+ @ was necessary in Theorem 1.3 of [7]. The factor

(-2
an

is in a sense more natural, as for p > 4, it is significant near a,, as it should be
and is identically 1 for 1 < p < 4. This is also consistent with the results of ([8],
Theorem 1.3).

8
+ Ln—z/man)—w)

Unboundedness of {L,}

Finally we deduce results on the unboundedness of {L,} as a sequence of oper-
ators from weighted L, to weighted Lo,. Corresponding results from weighted
Ly to Lo may be found in [3] and [4] and similar results from weighted L, to
L, may be deduced from the results of [11].

Corollary 2.7 Let w € £, 1 < p < oo, n > 1 and B as in (2.9). Then for
every f : R — R continuous, there exists a constant C' independent of f and n
such that

e

B
+ Ln_2/3T(an)_2/3> (2.12)

L, Un) (&)u(a) (‘1

an
Ly(R)

&)
T .

Qp

Lp(lz|<azn)

In particular, if 1 <p <4

1L (£ Un)wlly, gy < Car/| fwll L m)
and if p>4

< Call?|| fwlly. )

Qn
Lp(R)

B
+ an/?’T(an)2/3>

Lo (f,U) (2)w(z) (‘1 el

Remark 2.8

(a) The appearance of the factor aX/? in Corollary 2.7 is unfortunate but

necessary. This is illustrated by the following result which follows easily
using the methods of ([8], Theorem 1.3).

Letw € £ and 1 < p < 4. There exists a continuous function g : R - R
with

lim |gw|(z) =0

|z]|—o0

and satisfying for some positive constant C'

ILa(g, Un)wllr, @) > Cay/Pllgwll.. )- (2.13)



(b) Recalling that a,, increases with n we see that even with an extra weighting
factor depending on n in the left hand side of (2.12), the weighted Lagrange
operator is unbounded as a sequence of operators from L, to Lo, and thus
decay conditions on f are necessary to ensure mean convergence.

Section 3, is devoted to the proofs of Theorems 2.1, 2.2 and their corollaries.

3 Proofs of Results

We begin with the proof of Theorem 2.2. The main idea of the proof, due to
Koénig, is to write the Lagrange interpolation polynomial partly as a discrete
Hilbert transform. To this end, we find it convenient to break up the proof
of Theorem 2.2 into several auxiliary lemmas following the format of [10] and
[8]. We will often need information regarding p,(w?) and its zeros and for this
we will refer to the paper [7] where this information is readily available. The
estimates themselves appeared first in [13].

We find it convenient to fix the following notation which will be used through-
out.

Firstly, for any two sequences (b,) and (¢,) of nonzero real numbers, we
shall write

<
b ~ cp,

if there exists a constant C' > 0, independent of n such that b, < Ce¢, for n
large enough and write b,, ~ ¢, if b, < cp and ¢, N b,,. Similar notation will
be used for functions and sequences of functions.

Next we set:

(a)

Lin = (&jn,Tj—1,n) and |Ijn| =21 p — Tjn, 1<j<n.
Xjn = XI;, = the indicator function of I;,, 1<j <n.
Uy(x) == (1+|z|)b, forb,z € R

Cnlz) == (|1 — |x|/an| + (nT(an))_2/3)1/4, z€R



(e)

Pn(®) 1= pa()(z — yo) (= + Yo).

Following the format of [10], we break up the proof of Theorem 2.2 into
several auxiliary lemmas.

Bound for the Hilbert Transform

We recall that given g € L;(R), the Hilbert transform of g exists a.e and is
denoted by

Hlgl(x) := lim 9(t)

e—0+ [t—z|>e T —1

dt.

The following lemma has not appeared in the literature and so we state it and
provide a short proof.

Lemma 3.1 Let b, Be R, K >2, n>C and p > 4. Assume that
b<1-1/p, b< B and B> —1/p.
Then for g € Lp(—Kap, Kay,),

HH[Q](CU)‘I’b(CL') |1 — |$|/an|3/4‘

Lp(an/2<|x|<Kay)

S |o@wa@) 11— ol /a*"|

Lp(|z|<Kan)

Proof We write ¢ = g1 + g2 where g; vanishes outside [—a,/4,a,/4] and g2
vanishes inside [—ay/4,an/4]. Firstly, it is a well known result of Riez that
H is a bounded operator from L,(1 < p < 00) to Ly(1l < p < o0). Indeed,
the following modification is also true and follows easily using [15, Lemma 3.1]
which follows from ideas in [25].

For f € L,(R) and 1 < p < o0,

HH[g](x) (‘1 - % + n—2/3T(an)—2/3> b (3.2)

g9(x) (‘1 _ el

an

L,(—Kan,Kan)

b
S + n_z/?’T(an)_Z/3>

L,(—Kan,Kay)

Then applying (3.2) and recalling that p > 4 gives

1 [g2)(2) Ty (2) 11 = |2l /an|*" |1, (a0 2l < Kan)

A

al || H ga) (@) |1 — |z|/anl** 11, (an j< 2| <Kan)

A

lg(@) U5 () |1 — |2l /anl®* I, (0 /1< le]< Kan)-

10



Finally recalling the identity, cf ([26], Lemma 8, pg 440),

IH 91Tl 1, ) ~ l9¥ 5]l (R),
allows us to write
|Hg1](2) Ty (2) |1 — |z|/a, 1L, (an /2< 2| <Kan)
S 9T s@)In, (el<ansa) < 1985 @) 11— |2l/anl** |2, (zl<an/1)-

Combining our two identities for ¢; and g» then gives the lemma. O

Operator inequality

We now state an operator inequality of Konig, see [8, Lemma 2.5, p. 745].
Lemma 3.2 Let 1 < p < oo and q := (pfl). Let (2, 1) be a measure space,
kE,r: Q% — R and set

Tyif)(w) = [ bla,o)f(0)du(o)
Q
for p measurable f : Q — R . Assume that,
sup [ ko)l o) duo) < 21
and
sup [ 1,0 I, 0)| 7 du(e) < M.

Then T}, is a bounded operator from L,(du) to Ly(dp).

Replacement of H[x/;,]

Next we record a lemma whereby we replace the fraction ,x_,}vj ~ by H [xI;y] for

every 1 < j <n. The idea appeared first in [10] and the proofyis very similar to
that of [8].

Lemma 3.3 Uniformly forn >1,1<j<n, € € [€nn, T1n] and fized R € R,
U_ ; 1
R(Tjn) _ H
= zjn |l
S fin(@)G (@)
where fj, is defined by

ay/?|pawl|(z) (3.3)

[Xjn‘l’—R] (.T)

Tin(T) = Tjn

|| if |z — zjn| < 2|15
in(x) ;= V_pg(x; - .
fin(@) R(%jn) { [ Zjn | (|zflen| + 1+\§c]~n|) if |[v — 2| > 2|Ljn].




We are now in a position to present:

The Proof of Theorem 2.2 We first note that it is sufficient to prove that
| Ena(P, Vo) @) (@) (1 + ),

1/p
s {Z/\jn |Pw(@jn) " w™(2jn)(1 + |~’an|)Rp} +B

j=1
where B is given by (2.4).
Step 1: Express Ly 2(P, Vpyo)(z)w(z)(1 + |#])® as a sum of two terms.

Let us write for ¢ € R
L2 (P, Vogo) (@)w(@) (1 + |2) = Ay (z) + Az(2)

where

n

Av(@) =Y Plaju)ljmse(Vasrz) (@)w(@) (1 + o))"

and
Ay (z) := P(yo)lonte(Vasa) (@)w(z)(1 + |2)) 7 +
+P(=y0)lnt1,nt2(Vaga) (@)w(@) (1 + Jz|) 7.

Firstly, we estimate As(z). It suffices to assume that |z| < a4, for some s > 1.
Observe that for this range of |z|, we have using [3, (2.12)]

| P(yo)ew(@)lgs mpa () (1 + [2]) 7]
B . RPa@w@) @+ 30)(e — o)
= | Plodwlio) el o 0) o) (& = vo)
(z + o)

A

|Pwl(yo) (1 + |2)*

n

N

| Pwl(yo) (1 + |z .

Similarly estimating the second term in As, we see that

1 42(2) |1, (2| <aun) ~ B- (3.4)

Step 2: Express A; as a sum of two terms.

Ay(z) = P(@jn)ljnt2(@)w(@)(1 + 2"

1

mn

J

n —-1/2
= a*paw(@)(1+|e))* Y Plajn)w(wsm)
j=1

an

P (Tjn)w(zjn) (T — jn)

_ o 1/2x R - Y_r(zjn)
= a*haw@) 1+ [2)" Yy
j=1 J

(x — jn)

12



where y;,, is defined by

an 2 P(@jn)w(5n)

P(@jn)w(wjn)

Yjn = l:[JR(-CL']n)

for 1 < j <n. We observe that using [7, (2.11)] below and ([3], (2.24)), we have

| |IJH|C7:3($j’n>

2

; (3.5)

|yjn| ~ |P(wjn>w(m]n>lIIR(m]n)
Step 2-A: Now, we will estimate A;(x). It suffices to consider two cases.
|z| < an/2 and a,/2 < |z|] < 2a,. We begin with the case a,/2 < |z| < 2ay.
Now let us write

Ai(z) = a*Ppw(z)(1 + |z|) Zy]n{ p—— R(Zin) _ |I:n|H[Xjn\I’—R](JJ)}

in

2~ Yjn
+ay/*paw(@) (1 + |2))*H Z |[jn|xgn‘1’ | (@)

= Jl(l') + JQ(Z’)

Step 3-A: Estimate ||J2(J,‘)||Lp(an/2§|w|§2an).
Since

1= lel anf?* do ~ G0 i,

jn

we have using Lemma 3.1 and (3.5),

T2 (@) |z, (. /2< 2] <2an) (3.6)
S al |1 = |ol/anlt Cr(2) H Zﬁxjnm ()
. n
=1 Ly(an/2<|2|<2a,)
< 4 Yjn
S a2 (11— fel/ant @ Z|; Xin¥-r (@)
n
! Ly[—2an,2ax]
n 1/p
= a2 <y9"> / 11— |z|/an*""* dx
— \ Ljnl
j_
1/p

n
~ O Pw(@n) ¥R )I” [ jnl
j=1

Step 4-A: Estimate ||J1(J,‘)||Lp(an/2§|w|§2an).

13



By Lemma 3.3

11 (@)] = @ Y [yial fin(@)Gh @) (L + 12D, @ € [@an, @1a):

j=1

Thus

T ()|, (an 2< 2] <a1n)

" P 1/p
<
Sl X | Sl @c@a | i
(@pn|>an/2 |0 j=1
py 1/p
n
S al ST el | D inl fin(@rn)Co (k) ¥ r(2kn)
‘wkn‘zan/Q Jj=1

Here we have used the fact that f;, does not change much in Ij,. Using the
definition of f;,, we see that

11 (@), fan j2< 0] <a1n] ~ (S1+ S2 + S5),

where:
[ py 1/p
. 2
Sl = ai Z |Ik:n| Z |y3”|lIJ*R("rL’J") (SL’ |_jn1[ )2<7?;(-Tkn>‘IJR($kn) ,
[@kn]|>an /2 |i=1,i#k kn in
[ py 1/p
. I
Sem @9 Il | X alonCa) ) Walen)
|Tkn|>an/2 Li=1.i#k kn in in

1/p

p
Syi=ap< > |kl [%‘P—R($kn)CZ(kan)‘I’R(wkn)}
2o |>an /2 "

Step 5-A: Estimate S;, j =1,2,3.

Firstly we see that we may easily deduce that

n 1/p
S5~ {Z [Zin | |PW($kn)‘I’R($kn)|p} : (3.7)

k=2
Next,
py 1/p
n

S92 {i bkj|Ijn|1/p|Pw(5an)I‘I’R(%’n)} ;

k=1 | j=1

14



where,
bk =0 =0y for every k

and for j # k,

Cn(:vzm)>3

2-1 1 P
bhi = Xow zans2 il " Lien] ' (@0 — 1) (C @m)
n\Ljn

X‘IJ,R(.%'jn)‘IJR(.%'kn).
Here xs(x) equals 1 if for k, S(k) holds, otherwise it is 0. Thus

1/p

S1 X NBlly sy § D il [Pw(@jn)| ¥ r(zjn))”

j=1
and so we must show that independently of n,
<
IBlleg—ry ~ 1.

We apply Lemma 3.2 with the discrete measure space Q := {1,2,...n} and
w({i}) =1, j=1,2,...n. Moreover, we set there,

|l m> Vv

k(k,7) = by j; =
( 7]) k,jr Tk,j <|Ik,n| 1+|-Tjn|

Thus it suffices to show that

n I'n2 . " 3 1 " R+1/p
sup Y inl (C (= )) ( * I |) 1, (38)

(hllokn]> 2} = (g0 — Thon)” \Cn(Tjn) L+ |2
J#k

and

n ' 3 1/q—R
J

(Tjn — wkm)Q Cn(@jn) L+ |zl

a
12 g | 2 S

k#j

This follows using the method of ([8], pp 750-753), recalling that given fixed
B8 € (0,1), we have uniformly for n and 1 <1 <n

1/2
a .1‘17 e a .
tial ~ 2 (1= B2l @) 2) ), ol < ann

n

and

Qp -1 |5Ul n| —2/3 1/ Gnp -1 .2
|Il7’ﬂ| ~ FT (a’ﬂ) 1-——+ (nT(an)) ~—T (an> Cn (xln)7 |$l7n| > QBn-

ap n
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Now we will prove (3.8) and (3.9). For notational simplicity, we will often write
just ¥ together with the indices of summation instead of the full sum. Firstly
for (3.8), we may write

sup Z < sup Z + sup Z

{Ic||x1m|>—m}3 ' {k]|zpn|> 3+ }Iw <an {k||wkn|2%l}|zjn‘2%m
J#k
For |zgn| > an/2 and |zj,| < a,/3, since |[Try — Tjn| ~ an, Co(Trn) ~ 1 and
Cn(xjn) ~ 1, we have

R+1/p R+1/p

< Gp Z 2 < Qn <
Z ag | J’ﬂ| n

|@jn| <= el < o

On the other hand, for |xg,| > a,/2,

2 3
Z N Z + Z |Ij7n| Cn(xkn)
(.1" — T )2 Cn (SL’ n) '
i >an/3 an/3<|ejnl<an 3 ap/g<lein|<A+Lin)an \I7 k,n J
JjZk JFk Jj#k

Thus for the first term in the above, we have

< a |15, 1
I D Vet
an /3< |0 |<a, /g an /8<]ejn|<ay, /3 (Zjn = k) onlTjn
7k 7k

and then for a,/2 < |[Tgn| < @y )0

L, 1
Z |J7| .

an /3|2 n|<a, /3 (wjﬂl - Z’kﬂl) Cn(-T]n)
i#k

-1
~/ t
an /3<[t|<a, 7Y
t zkn|>c_mg2/(3zk ) (t xkn)
an+w

< /‘zkn* / Cfl( ) &

an/g M&E_ (t — xkn)
<

a@? (wkn)+a; Cr; (Tkn)

where Tr,, := Trn — C%"C%(»”Ukn) and zg,* = g, + C%Cﬁ(mkn) So we have

a |Z;.n] 1
WO 3 s )
an/3S|2jn\San/3 (wjﬂl - xkﬂl) n\+jn
itk

Cr?z(wkm <

n

S o1+ 1.
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At the same time, for |z,| > ay,/2, we may easily show that

Gn 3 £, 1 <
;Cn(xkn) Z ~ 1

(@i = 2p0)* Cnl@n)

an /8<]@jn|<ay

ik
Now, we estimate the second term:

Firstly observe that

3 |Ljn|® (Cn(ﬂﬁkn))S

Sdt

2 .
an3<]2in [ S(A+Lbn)an (@jn = @hn)” \GnlEin)
7k
< an_ 1 Zj,n] G ° (%)
R
" ap/3<|2jn ] <A +Lon)an (@j,n = Tk,n)
7k
Then for a, /2 < |wn| < apya,
an 1 3 2.l 6 ° (@)
ay3<]2jn | S(A+Lon)an VDT n
7k
T(ay)a;t
< _
~ Ci(wkn)# > Zjnl G ° ()
an3<lejnlSA+LIR)an
7k
< T(an)aﬁl(;f/a; <1
n
and for a, /4 < |opn| < an(l+ Loy)
n 1 CB(mk ) Z |Ij,n| C;5(x]n)
n n 2
n T(an) an3<lejnl S +LIR)an (Zjin = Th,n)
7k
< ap 1 3 C;5(t)
~ a a ————dt
S Fa ) [ G
|thn |2 5 a5
_ an (I Lon)fuy, " (14Ls,, B
< a_”;@(mk )/xk +/ 2 +/a (14+Ldn) M
n T(a,) ™" n/3 Then * Sn(tBoa)torn” (t — kn)
S
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where zy,, and zg,* are as above. Thus (3.8) is proved completely. Now, we
prove (3.9). Firstly

sup 5o sl <<n<wkn>>3 & |:c,m|>””
(wjﬂl - wk7n>2 Cn(wjn) 1+ |;L‘]n|

12 o, |>_m

k#j
mn mn
<
D SIS
lesn[San8 e (il Z0n /3 e
k#j k#j

Since for |z;,| < ayn/3

" < a 1 < al/qu <
n 1/9—R n
Y. M D e/,
@ g 1> 92 " @hn|>
k#j
we have
<
sup ~ 1.
|zjn|<an/3 | zp:gm
knlZ ™2
ke
For the second term, since || > a,/3
Z Z | Ljn| [kn| (Cn(xkn)>3
o |2 25 k=1 x]n L, n) Cn(m]n)
k#j k#j
Thus by [15, Step 4], we have
S~ ol (cn<wkn>>3 <.
2 ~ .
o1 (mjm - l’km) Cn(x]n)
k#j
Therefore, (3.9) is also completely proved. Thus
n 1/p
> il [1Pw(@jn) |9 g )] ~ (3.10)
j=1
Similarly it follows that
n 1/p
SO Gl [Pw(n) ¥k (250)] ~ (3.11)
j=1
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Our estimates (3.6), (3.7), (3.10) and (3.11) then show that

I1A41(@)]|L, (an/2<]2]<2a0) (3.12)
1/p

n
< _
S8 N lPw(@n) P w2 (@) (L + |zj]) 7
j=1

Step 2-B: Now we suppose that |z| < ay, /2. We write

r(Tjn
A(z) = a?*paw(z)(1 + |z|) Zym in)
— Tjn)

o CRT LN SR o

fesn 22003 [ei<oanss & Tin)
= All(SL’) + Alz(l’).
Let us estimate both A4;; and A;».

Step 3-B: Estimate ||A11 ()1, (j¢|<a,/2)- Let us write for the given range of
'T’

|A11 ()]
-1/2 '
~ @+pt Y an [Pz ;)]

|@jn|>2an /3 az, |ppw(@in)| 1yl — |2jnl|

~ @D YT 1Pwn) Ll = |2jal /an + L6,) 72/
|jn|>2an/3

A

1+ |:U|)R sup |Pw(zjy,)] .
2an /3< |2 |

Thus,

1A @Iz, (el ann ¥ sup  Pwlain)l [+ 2D, a<an e - (3-13)

an /3< @ m |
Next we consider:

Step 4-B: To estimate ||A12(2)||L,(|x|<a,/2), €XpPress Az as a sum of two
terms. Let us write

An() = alp @@+ )t Y yjn{

|zjn|<2an/3

‘II,R(.%'jn) _ 1
L = Ljn [ Zjn|

tal2pa(@w@) 1 +e)RH | Y DUk (@)

|25 | <20, /3| Ijn]

= Jg(l‘) + J4(.T)
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Step 5-B: Estimate ||J3(7)]|L, (jz|<a./2)-
For Js(z) we use the same methods as Jy(z) with

)

bhy = Xewnl<ans2 Ll ™" il P (@0 — 2h0) (
X\I’—R(xjn)\pR(xkn) forj # k.

Thus it suffices to show that

. 2 3 R+1/
S T, - (Cn(:vzm)) <1+|~”C'm|) p51, (3.14)

hlln 1<%} =7 (@jn — Tan)” \Cn(Tjn) 1+ |zjn]
J#k

and

3 1/¢—R

sup En | i k.| (Cn(:vzm)> (1 + |~””lm|> e 21 (3.15)
- | < en (‘Z'jm - wkm)z Cn(xjn) 14+ |.T]n|

Thn | S 75

ki

To proceed, we see that in the summations of (3.14) and (3.15), it is enough
to show that for |zg,| < an/2

p R
§ : |Ij7n|2 (Cﬂ(wlm)>3 (1 + |~Tlm|> /e <1
ey | < 220 (Tjn — wkm)z Cnljn) L+ |z ’
jnl> 73

itk

and for |z;,| < 2a,/3

Zn: [ Lin| 1 kn] (Cn(ﬂﬁkn))?’ (1 + |-Tlcn|)1/q—R <
oo (Tjn — n)2 Cn(:z:jn) 1+ |$jn|
EIT N 7> ’

k#j

Then since for these ranges, (p(Tgn) ~ 1 and (¢, (xjn) < 1, it is enough to show
that for |zg,| < a,/2

sl <1+|:ckn|>“””sl
(@jm = rn)® \1+ [n] ’

2a
l#jn < 240

Jj#k
and for |z;,| < 2a,/3
n

> allial (1 |wm|)“q‘R <1
( 1+|£an| ’

2
Tjn = Th,n)

a
|2 g |<—3-

k#j
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The above estimates then easily follow as before using the method of [7, (6.12)
and (6.13)].

Therefore, we have shown that

I1T3(2)|| L, (Je|<an/2) (3.16)
1/p

< _
S N Pw(@ja) P w ™ (@) (L + )PP

j=1

Step 6-B: Estimate ||J4(£L’)||Lp(‘z‘5an/2).
Finally, we estimate Jy. Much as before, we deduce that

IH[1% N, gy ~ £ R L, )

and so
1 Ja(@) L, (je|<an/2)
Soa |- lel/at a@H | Y Dok (2)
|Ijn|
[zjn|<20n/3 Ly(Jz|<an/2)
< Yjn
~ a% ‘IIR(JI)H Z —|IJ |Xjnqu] (.CL’)
n
@] <200 /3 7 Lyp[~2an.2a,]
yi
S TICNE Y ﬁxjnllf_a(w)
|zjn|<2an /3 Jn Ly[—2an,2a,]

Since |z, | < 2a,/3, we have using (3.5) and [7, (2.4)] below

I.
] ~ [Peo(ay) Wres)] ol
an
Thus
1/p
T4 @) |, (e <an /2y ~ Z |Pw(zjn) ¥ r(zjn)|” | Lin| (3.17)
(2 3n | <20 /3
1/p

LA

|Pw(wjn) ¥ e (2jn)|" [ Ijn]

n
=1

J
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(3.13), (3.16) and (3.17) then show that

[[A1(@)]|L, (12| <an/2) (3.18)
1/p
n
S N [Pwin) P w2 () (L + )
=1
+ sup  |Pw(z;,)|||(1+ |z
2an/3§\z]~n|| ( ’ )|||( | |) ||LP(‘z‘§an/2)
1/p
n
AN N lPwlei) P w (@) (1 + 2n)™ 3 +B
j=1

as required. It remains to combine (3.18) with (3.12) and (3.4) to deduce (2.3).
O

Next we present:
The Proof of Theorem 2.1 This follows using the same method as [14,
Theorem 1.1]. O

We now consider the proofs of Corollary 2.3 and 2.4. We shall prove Corol-
lary 2.4. The proof of Corollary 2.3 is similar and easier.

The Proof of Corollary 2.4 Firstly we show that it is enough to assume that
p > 4. Indeed, assume that Corollary 2.4 holds for p > 4. Then for 0 < p < 4,
let us choose some constant g > 4 satisfying pg > 4. Since A + & > 1/p, we
may choose A; satisfying

A—=1/p+1/pg> AL >—-a+1/pg

and let ¢' be a conjugate of ¢ (that is, 1/¢ + 1/¢' = 1). Then by Holder’s
inequality

[(Lnsa(f, Viro) = ) @w(@) 1+ 2) 2] )
/ w2 (s Visa) = £ ()P (2)(1 + o) ~Pda

A

A

1/q
Lyi2(f, Vigo) — f)pq ()wP(z)(1 + |;U|)A1pqdw>

1/d
(/(1+|:c|) (A= Aﬂmczx) .

Since Ay + & > 1/pg, by the result for p > 4 we have

i ([ (Lol Vasa) = 17 o @)1+ al) > ) "o

n—o0o
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and since (A — A;)pg’ > 1, we have

, 1/¢
(/(1 + |z]) T (A= A)pe dac) < 0.

Therefore, we have the result for 0 < p < 4.

Thus without loss of generality, assume that p > 4. We let § > 0 and choose
a polynomial P so that

17 = P)@)w(@)(1 + )|z ) < 6.

Let s be as in the definition of B in (2.4). Then using (2.3), [7, (2.1) and (2.3)]
(4.11) and the fact that for large enough n

(L+ [yol) ™ = (L +[2) ™ |2] < asn
gives for suitable R satisfying A > —R and R > —1/p

lim sup[|(Ln(f, Vasa) = £) (@w(@) (1 +12) "2 )

SOOI ) A, ) + I 2D, )

Here the constants in ~ depend on «, A and p but are independent of §. We
now choose

0 <e <min{e, a + A —1/p}
and put
R=a-1/p—c.

Then A > —R and R > —1/p. Moreover, (R — a)p < —1 and so

liiﬂjolép [(Lasa(f; Vaga) = F) (@)w(z) (1 + |5U|)_A||LP(R) S0 (3.19)

where the constants in ~ depend on «, A and p but are independent of 4.
Letting 6 — 0T in the above gives the sufficiency of the result. The necessity
of Corollary 2.4 follows using the method of [17, Theorem 1.4] and [6, Theorem
1.1]. O
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