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Abstract. In this paper, we complete our investigations of mean convergence

of Lagrange interpolation for fast decaying even and smooth exponential weights

on the line. In doing so, we also present a summary of recent related work on

the line and [�1; 1] by the authors, Szabados, Vertesi, Lubinsky and Matjila. We

also emphasize the important and fundamental ideas, applied in our proofs, that

were developed by Erd}os, Turan, Askey, Freud, Nevai, Szabados V�ertesi and their

students and collaborators. These methods include forward quadrature estimates,

orthogonal expansions, Hilbert transforms, bounds on Lebesgue functions and the

uniform boundedness principle.

Keywords: Lagrange interpolation, Mean convergence, Orthonormal polynomial,

Weighted approximation.

1. Introduction and Statement of Results

The idea of this paper arose from recent work of the authors in [6], [7],

[9],work of one of us and Lubinsky in [11] and [12], work of Lubinsky

and Matjila in [22] and [23], work of Lubinsky in [15], [16], [17], work

of Lubinsky and Mastroanni in [20] and [21] and Szabados [26]. The in-

vestigations involved studying weighted mean convergence of Lagrange

interpolation for smooth, even and fast decaying exponential weights

on the line and [�1; 1] for two speci�c choices of interpolation nodes.

Related results on uniform convergence, Hilbert transforms, converse

quadrature, higher order interpolation and distribution of arbitrary

interpolation arrays, can be found in [1], [2], [3], [5], [12], [7], [8], [10],

[13], [15], [16], [17], [19], [21] [27], [29], [30] and the many references

cited therein. All of our results rely heavily on bounds and estimates

for the associated orthogonal polynomials and their zeroes, see [14]

and we will refer to this latter excellent reference many times in what

follows. We do not consider weighted mean convergence of Lagrange

interpolation for non even exponential weights or exponential weights

of less smoothness on the line, [�1; 1] or arcs of [�1; 1] but delay these

c
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for further investigations. See [4]. We also omit the topics of Lebesgue

functions, Birko� interpolation, and distribution of interpolation arrays

for weights on the line, in the plane and [�1; 1]. We refer the reader to

the still largely cited books and survey [28], [24] and [25] for fundamen-

tal earlier work of Freud, Nevai, Bonan, Erd}os, Turan, Muckenhoupt,

Askey and Wagner, Szabados and V�ertesi.

First, we require a general class of strongly admissible weights similar

to those of [11]. The main feature of our weights is that they are of

faster than smooth polynomial decay at in�nity. Thus they di�er from

the well known Freud weight class which are of smooth polynomial

decay at in�nity. For a detailed perspective on this subject, see [18],

[14] and the references cited therein.

DEFINITION 1.1. Let w := e

�Q

where Q(x) : R ! [0;1) is even,

continuous, Q

00

(x) exists in (0;1), Q

(j)

(x) � 1 in (0;1), j = 0; 1; 2;

and the function

T (x) := 1 +

xQ

00

(x)

Q

0

(x)

is increasing in (0;1) with

lim

x!1

T (x) =1; T (0

+

) := lim

x!0

+

T (x) > 1:

Moreover, we assume that

T (x) �

xQ

0

(x)

Q(x)

and for every " > 0

T (x) � C

�

logQ

0

(x)

�

1+�

: (1.1)

Then w will be called strongly admissible.

Given w such as above, we let p

n

(x) := p

n

(w

2

; x) be the n-th or-

thonormal polynomial with a positive leading coe�cient 


n

> 0 and

let

U

n

:= f�1 < x

n;n

< x

n�1;n

< � � � < x

2;n

< x

1;n

<1g

be the set of zeros of p

n

(w

2

; x). For each n � 1 and for the given weight

w, we de�ne an interpolatory matrix

V

n+2

= U

n

[ fy

0

g [ f�y

0

g
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where y

0

maximizes kp

n

wk

L

1

(R)

. The Lagrange interpolation polyno-

mial of degree n + 1 to a continuous f : R ! R with respect to the

array V

n+2

is denoted by L

n+2

(f; V

n+2

). See for example [26].

To set the scene for our investigations, we begin with the main result

of [7, Corollary 2.4].

THEOREM 1.2. ([7, Corollary 2.4]) Let w be strongly admissible and

assume that (1:1) is replaced by the weaker condition:

For every " > 0

T (x) � C(Q(x))

�

:

Let 0 < p <1, �; � 2 R and �̂ := minf�; 1g. Then if � > 0 and

�̂+� > 1=p; (1.2)

lim

n!1










(L

n+2

(f; V

n+2

)� f)w(x)(1 + jxj)

��










L

p

(R)

= 0 (1.3)

for all continuous f : R ! R with

lim

jxj!1

fw(x)(1 + jxj)

�

= 0: (1.4)

Moreover, if (1.3) holds for every continuous function f satisfying (1.4)

for � 2 R then necessarily (1.2) holds.

In particular, if we set � = 0 in the above, we see that necessarily

� > 1=p > 0 which means that we cannot hope for Theorem 1.2 to

hold for continuous functions f where fw is uniformly bounded. See

for example [15] and [16] where this phenomenon occurs for exponential

weights on [�1; 1] and [17] and [20] where it fails for Freud type weights.

We show that for Erd}os weights, we can relax the polynomial decay

condition on fw in (1.4) to allow for logarithmic decay. The price we

pay is that in general, we obtain a stronger weight in the convergence

norm given by (1.3). On its own, this observation is somewhat expected.

See Theorem 1.6 below. The important observation is that the weight

we need for convergence is much weaker than the one which appears

in the main result of [11] under a logarithmic decay condition on f .

The reason for this is that we use an extended system of interpolatory

nodes which gives far better results. The idea of using such extended

systems was �rst applied on the real line to Freud weights by Szabados

in [26] and to Erd}os type weights on the line and [�1; 1] by Damelin in

[1] and [2]. See Theorem 1.6 and its remark below. Our results below,

essentially complete our current investigations for mean convergence of

djk1.tex; 18/07/2002; 10:13; p.3
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Lagrange interpolation for fast decaying even Erd}os weights on the line

for the interpolation points de�ned above.

Following are our new results:

THEOREM 1.3. Let w be strongly admissible, 0 < p <1;

^

k > 0 and

� 2 R. Then for

lim

n!1










�

f � L

n+2

(f; V

n+2

)

�

w(x)(1 + jxj)

��

�

log(2 +Q(x))

�

�1










L

p

(R)

= 0

(1.5)

to hold for every continuous f : R ! R with

lim

jxj!1

�

�

f(x)

�

�

w(x)

�

log jxj

�

1+

^

k

= 0 (1.6)

it is necessary that � � 1=p. Moreover, if p > 1, it is also su�cient

that � � 1=p and if 0 < p � 1, then it is su�cient that � > 1=p.

THEOREM 1.4. Let w be strongly admissible, 0 < p <1;

^

k > 0 and

� 2 R. Then for

lim

n!1










�

f � L

n+2

(f; V

n+2

)

�

w(x)(1 + jxj)

�1=p

�

log(2 +Q(x))

�

��










L

p

(R)

= 0

(1.7)

to hold for every continuous f : R ! R with

lim

jxj!1

�

�

f(x)

�

�

w(x)

�

log jxj

�

1+

^

k

= 0 (1.8)

it is necessary that � � 1. Moreover, if p > 1, it also su�cient that

� � 1, while if 0 < p � 1, it is su�cient that � > 1=p.

REMARK 1.5. Theorems 1.3 and 1.4 are not arti�cial. Indeed, they

constitute substantial improvements on earlier work for strongly ad-

missible weights. To appreciate this, we �nd it appropriate to state

the following Theorem which follows from the main result of [9] and

[11] for strongly admissible weights and which is sharp for the di�erent

interpolation array, U

n

.

THEOREM 1.6. ([9, 11]) Let w be strongly admissible, 0 < p <

1 ;� 2 R and � > 0. Then for

lim

n!1










(f � L

n

(f; U

n

)))w (1 +Q)

��










L

p

(R)

= 0
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to hold for every continuous function f : R ! R satisfying,

lim

jxj!1

jfwj(x) (log jxj)

1+�

= 0

it is necessary and su�cient that,

� > max

�

0;

2

3

�

1

4

�

1

p

��

:

We deduce that under a logarithmic decay condition on fw, a poly-

nomial decay term together with a log(2+Q) decay term are necessary

and su�cient for weighted convergence in L

p

(0 < p <1) with respect

to the interpolatory matrix V

n+2

. A comparison of Theorems 1.2-1.4

with Theorem 1.6 then show that in the sense of mean convergence,

interpolation with the nodes V

n+2

is more optimal than interpolation

with the nodes U

n

.

We close with a brief explanation of the structure of this paper.

In Sections 2 and 3 we prove our su�ciency. To do this, we rely on

two important old ideas. The �rst, see Section 2, is a bound for a

Lebesgue function. The second, see Section 3, is splitting up our func-

tion into smaller pieces which vanish on carefully chosen intervals. We

will also rely on forward quadrature estimates, Hilbert transforms and

orthogonal expansions. In Section 4, we establish our necessity. Here

we illustrate the idea of using the uniform boundedness principle. Our

proofs use the methods above as they are applied in [11], [1], [7] and

[26]. Many of the ideas originate earlier, see [24], [25] and [28].

2. The idea of the Lebesgue Function

In this section, we establish the su�ciency of our results. Throughout,

for any two sequences (b

n

) and (c

n

) of nonzero real numbers, we shall

write

b

n

. c

n

;

if there exists a constant C > 0, independent of n such that

b

n

� Cc

n

for n large enough

and we shall write b

n

� c

n

if b

n

. c

n

and c

n

. b

n

. Similar notation

will be used for functions and sequences of functions. We will also often

need technical estimates on p

n

(w

2

); n � 1 and their zeroes. For these

we refer the reader to [14].

We begin with the following auxiliary lemma which is a Lebesgue

type estimate adapted from [11]. Here, if w satis�es the conditions of

Theorem 1.2, we denote w 2 E

1

.
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LEMMA 2.1. Let w 2 E

1

, � 2 (0; 1=4) and let

�

n

(x) :=

X

jx

j;n

j�a

�n

�

�

`

j;n+2

(V

n+2

)

�

�

w

�1

(x

j;n

)w(x); (2.1)

where fx

n+1;n

; x

n+2;n

g := f�y

0

g. Then uniformly for n � C and x 2 R

�

n

(x) .

(

1 if jxj � a

�

n

2

or jxj � a

2n

logn if a

�

n

2

� jxj � a

2n

:

(2.2)

We remind the reader that in [2, Theorem 1.4], it was shown that if we

sum over all the zeros in (2.1), we obtain a uniform order of logn in

(2.2) and this order is sharp.

Proof of Lemma 2.1 By [2, Theorem 1.4], it is clear that (2.2) holds

for a

�n

2

� jxj � a

2n

and so it su�ces to prove Lemma 2.1 for the range

jxj � a

�n

2

or jxj � a

2n

. To this end, we �x x 2 R and let k(x) denote

the closest zero to x. Write for n � 1

�

n

(x) =

X

j: jx

j;n

j�a

�n

j2[k(x)+2;k(x)�2]

�

�

`

j;n+2

(V

n+2

)

�

�

w

�1

(x

j;n

)w(x) (2.3)

+

X

j: jx

j;n

j�a

�n

j =2[k(x)+2;k(x)�2]

�

�

`

j;n+2

(V

n+2

)

�

�

w

�1

(x

j;n

)w(x) (2.4)

= �

n;1

(x) + �

n;2

(x):

We �rst estimate �

n;1

(x). We have

�

n;1

(x) �

X

jx

j;n

j�a

�n

;x

jn

2U

n

j2[k(x)+2;k(x)�2]

�

�

`

j;n+2

(V

n+2

)

�

�

w

�1

(x

j;n

)w(x)

+

�

�

`

n+1;n+2

(V

n+2

)

�

�

w

�1

(y

0

)w(x) +

�

�

`

n+2;n+2

(V

n+2

)

�

�

w

�1

(�y

0

)w(x):

Then using the estimate

�

�

`

n+j;n+2

(V

n+2

)

�

�

w

�1

(�y

0

)w(x) . 1; j = 1; 2

which is easily established for the class E

1

, see [2, Lemma 2.5], we see

that uniformly for 1 � j � n

�

n;1

(x) . 1 +

X

jx

j;n

j�a

�n

;x

jn

2U

n

j2[k(x)+2;k(x)�2]

�

�

`

j;n+2

(V

n+2

)

�

�

w

�1

(x

j;n

)w(x): (2.5)

Next we need the following identities below which hold uniformly

for x; n � C and j 2

�

k(x) + 2; k(x) � 2

�

. They may be found using

the results of [14] and ([2], (2.33) and (3.19)).

djk1.tex; 18/07/2002; 10:13; p.6
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(a)

`

j;n+2

(V

n+2

)(x) =

 

y

2

0

� x

2

y

2

0

� x

2

j;n

!

`

j;n

(U

n

)(x)

.

0

@

�

�

�

1�

jxj

a

n

�

�

�

+ L(nT (a

n

))

�2=3

�

�

�

1�

jx

jn

j

a

n

�

�

�

+ L(nT (a

n

))

�2=3

1

A

`

j;n

(U

n

)(x): (2.6)

(b)

0

@

�

�

�

1�

jxj

a

n

�

�

�

+ L(nT (a

n

))

�2=3

�

�

�

1�

jx

j;n

j

a

n

�

�

�

+ L(nT (a

n

))

�2=3

1

A

� 1: (2.7)

(c)

�

�

`

j;n

(U

n

)w(x)

�

�

w

�1

(x

j;n

) . 1: (2.8)

Using (2.6)-(2.8), we see that (2.5) becomes,

�

n;1

(x) . 1 (2.9)

uniformly for n � C and the given x.

Next, we estimate �

n;2

(x) so we assume henceforth that j =2 [k(x)+

2; k(x)� 2]. We will need the inequality, see [2, (2.31)],

X

jx

j;n

j�a

�n

�

�

`

j;n+2

(V

n+2

)

�

�

w

�1

(x

j;n

)w(x)

. 1 +

X

jx

j;n

j�a

�n

x

jn

2U

n

0

@

�

�

�

1�

jx

j;n

j

a

n

�

�

�

+ L(nT (a

n

))

�2=3

�

�

�

1�

jxj

a

n

�

�

�

+ L(nT (a

n

))

�2=3

1

A

�3=4

�x

j;n

jx� x

j;n

j

(2.10)

together with two observations which follow using the methods of [11]

and which hold uniformly for n � C; x and 1 � j � n. Firstly

1�

jtj

a

n

+ L(nT (a

n

))

�2=3

� 1�

jx

j;n

j

a

n

+ L(nT (a

n

))

�2=3

; t 2 [x

j+1;n

; x

j;n

]

and secondly

jx� tj � jx� x

j;n

j; t 2 [x

j+1;n

; x

j;n

]; x =2 [x

j+2;n

; x

j�2;n

]:

djk1.tex; 18/07/2002; 10:13; p.7
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In applying these identities we see with the help of [14] that

�

n;2

(x) .

Z

a

�n

�jtj�a

n

jt�xj�C

a

n

 

n

(x)

n

0

@

�

�

�

1�

jxj

a

n

�

�

�

+ L(nT (a

n

))

�2=3

�

�

�

1�

jtj

a

n

�

�

�

+ L(nT (a

n

))

�2=3

1

A

3=4

1

jx� tj

dt

(2.11)

uniformly for the given x and n � C. Here for jxj � a

n

; n � 1

 

n

(x) :==

�

�

�

1�

jxj

a

n

�

�

�

+ (nT (a

n

))

�2=3

+ T (a

n

)

�1

r

�

�

�

1�

jxj

a

n

�

�

�

+ (nT (a

n

))

�2=3

and  

n

(x) =  

n

(a

n

) for jxj � a

n

.

Armed with the estimate (2.11), we realize that to establish Lemma

2.1, it su�ces to estimate (2.11). We suppose without loss of generality

that 0 � x � a

�n

2

for the other case is similar. For notational simplicity,

we set S := fj : j 62 [k(x) + 2; k(x) � 2]g. Then following [2, (3.20) -

(3.23)] and a similar argument to the case a

�n

2

� jxj � a

2n

, we obtain

uniformly for the given x and n � C,

�

n;2

(x) .

X

j2S

�x

j;n

jx� x

j;n

j

+ (2.12)

+

X

j2S

�x

j;n

a

3=4

n

jx� x

j;n

j

1=4

�

�

�

�

1�

jx

j;n

j

a

n

�

�

�

3=4

+ L(nT (a

n

))

�2=3

�

.

Z

a

�n

�jtj�a

n

jt�xj�c

a

n

 

n

(x)

n

1

jt� xj

dt

+

1

a

3=4

n

Z

a

�n

�jtj�a

n

jt�xj�C

a

n

 

n

(x)

n

jt� xj

�1=4

�

1�

jtj

a

n

+ L(nT (a

n

))

�2=3

�

�3=4

dt

. 1 + a

�3=4

n

1

Z

a

�n

a

n

�

�

�

�

�

a

�n

a

n

�

a

�n

2

a

n

�

�

�

�

�

�1=4

1

(1� s)

3=4

ds

. 1 + a

�3=4

n

T (a

n

)

�1=4

T (a

n

)

1=4

. 1: (2.13)

This last estimate proves Lemma 2.1. 2

djk1.tex; 18/07/2002; 10:13; p.8
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3. The idea of splitting

In this section, we establish the su�ciency of our theorems. The es-

sential idea which goes back to [24], is to write the function as a sum

of functions which vanish on carefully chosen intervals and centre our

analysis on each of these subintervals. We now present the details of

this analysis. We �nd it convenient to set for some �xed

^

k > 0,

�(x) :=

�

log(2 + x

2

)

�

�1�

^

k

; x 2 R: (3.1)

We begin with:

LEMMA 3.1. Let w 2 E

1

; p > 1 and let ff

n

g : R ! R be a sequence

of measurable functions satisfying for n � 1,

f

n

(x) = 0; jxj < a

n

9

(3.2)

and

jf

n

wj(x) . �(x); x 2 R: (3.3)

Then,

lim

n!1










L

n+2

(f

n

; V

n+2

)(x)w(x)(1 + jxj)

�1=p

�

log(2 +Q(x))

�

�1










L

p

(R)

= 0:

(3.4)

Proof. We distinguish two cases:

Suppose �rst that jxj � a

n

18

or jxj � a

2n

. Then (2.1), (3.2) and (3.3)

give

�

�

L

n+2

�

f

n

; V

n+2

�

w

�

�

(x) =

�

�

�

�

�

�

�

X

jx

j;n

j�a
n

9

`

j;n

(V

n+2

)w(x)f

n

(x

j;n

)

�

�

�

�

�

�

�

. �(a

n

): (3.5)

(3.5) and the fact that Q grows faster than a polynomial then imply

that










L

n+2

�

f

n

; V

n+2

�

(x)w(x)(1 + jxj)

�1=p

�

log(2 +Q(x))

�

�1










L

p

(

jxj�

a

n

18

)

. �(a

n

) = o(1); n!1: (3.6)
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Next suppose that a

n

18

� jxj � a

2n

. Then (3.5) and [14] give,










L

n+2

�

f

n

; V

n+2

�

(x)w(x)(1 + jxj)

�1=p

�

log(2 +Q(x))

�

�1










L

p

�

a
n

18

�jxj�a

2n

�

.

logn�(a

n

)

lognT (a

n

)

1=p

= o(1); n!1: (3.7)

Combining our estimates (3.6) { (3.7) gives the lemma. 2

Next, we treat functions that vanish for jxj � a

n

9

.

LEMMA 3.2. Let w 2 E

1

; p > 1 and " 2 (0; 1). Let fg

n

g : R ! R be

a sequence of measurable functions such that for n � 1,

g

n

(x) = 0; jxj � a

n

9

(3.8)

and

jg

n

wj(x) . "; x 2 R: (3.9)

Then,

lim

n!1










L

n+2

(g

n

; V

n+2

)(x)w(x)(1 + jxj)

�1=p

�

log(2 +Q(x))

�

�1










L

p

�

jxj�a
n

8

�

= 0:

(3.10)

Proof. Let n � C and �x jxj � a

n=8

. We may further assume that

jxj � a

2n

. Then for such x we may apply the estimate (2.10) together

with the identities (3.8) and (3.9) to obtain

jL

n+2

(g

n

; V

n+2

)wj (x) . "

X

jx

j;n

j�a
n

9

j`

j;n

(V

n+2

)(x)jw

�1

(x

j;n

)

. "

X

jx

j;n

j�a
n

9

�x

j;n

jx� x

j;n

j

0

@

�

�

�

1�

jxj

a

n

�

�

�

+ L(nT (a

n

))

�2=3

�

�

�

1�

jx

j;n

j

a

n

�

�

�

+ L(nT (a

n

))

�2=3

1

A

3=4

. "T (a

n

)

�3=4

a

3=4

n

a
n

9

Z

0

(a

n

� t)

�7=4

dt

. ": (3.11)

Thus using (3.11) and the fact that Q grows faster than a polynomial

gives,










L

n+2

(g

n

; V

n+2

)(x)w(x)(1 + jxj)

�1=p

�

log(2 +Q(x))

�

�1










L

p

�

jxj�a
n

8

�

. "










(1 + jxj)

�1=p

�

log(2 +Q(x))

�

�1










L

p

�

jxj�a
n

8

�

. ": (3.12)
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Letting "! 0

+

in (3.12) gives the lemma. 2

Now we estimate the L

p

norm in (3.10) for the range jxj � a

n

8

. Here

we follow ideas and methods from ([11], Lemmas 4.3 and 4.4). More

precisely we shall prove the following:

LEMMA 3.3. Let w be strong admissible, p > 1; " 2 (0; 1) and let

fg

n

g : R ! R be a sequence of measurable functions satisfying (3.8)

and

jg

n

wj(x) . "�(x); x 2 R: (3.13)

Then

lim

n!1










L

n+2

(g

n

; V

n+2

)(x)w(x)(1 + jxj)

�1=p

�

log(2 +Q(x))

�

�1










L

p

�

jxj�a
n

18

�

= 0:

(3.14)

Proof. We �rst establish the following inequality which is of indepen-

dent interest.

Orthogonal expansion and Hilbert transform lemma :

Let � : R ! R be a bounded measurable function. Then uniformly

for u � C and �










S

n

[��w

�1

]w(1 + jxj)

�1=p

�

log(2 +Q(x)

��

�1)










L

p

�

jxj�a
n

8

�

(3.15)

. k�k

L

1

(R)

:

Here, S

n

[; ] denotes the nth partial orthonormal expansion of ;.

To see this, we assume without loss of generality, that k�k

L

1

(R)

= 1

and write as in ([11], (4.10)) for x 2 R and n � 1

�

�

�

S

n

[��w

�1

]w

�

�

�

(x) . a

1=2

n

�

1�

jxj

a

n

�

�1=4

n

X

j=n�1

�

�

H[��p

j

w]

�

�

(x):

Here for suitable f : R ! R

H[f ](x) := lim

"!0

+

Z

jx�tj�"

f(t)

x� t

dt

denotes the Hilbert transform of f .

We choose ` = `(n) with

2

2

`

�

n

8

� 2

2

`

+1
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so that uniformly for n � C,

` � log logn

and

a

n

� a

2

2

k

+3

; 1 � k � `:

Moreover we de�ne

�

k

:=

�

a

2

2

k

; a

2

2

k

+1

�

; k � 1:

Our choice of ` is motivated in part by the following identity which

follows using [14] below. Uniformly for k � 1,

�

log

�

2 +Q(a

2

2

k

��

� 2

k

: (3.16)

It now follows exactly as in ([11], Lemma 4.3), that we obtain uniformly

for k � 1 and n � C,










S

n

[��w

�1

]w(1 + jxj)

�1=p

�

log(2 +Q(x))

�

�1










L

p

(�

k

)

.

h

�

log(2 +Q(a

2

2

k

)

��

�1

log

�

T (a

2

2

k

+1

)

�

T (a

2

2

k

)

1=2�1=p

i

: (3.17)

Applying (1.1) for suitably small " > 0 which we may, yields a � > 0

so that for the given n � C and uniformly for k � 1,










S

n

[��w

�1

]w(1 + jxj)

�1=p

�

log(2 +Q(x))

�

�1










L

p

(�

k

)

. 2

�k�

: (3.18)

Summing (3.18) then gives for the given n










S

n

[��w

�1

]w(1 + jxj)

�1=p

�

log(2 +Q(x))

�

�1










L

p

�

a

4

�jxj�a
n

8

�

.

`

X

k=1










S

n

[��w

�1

]w(1 + jxj)

�1=p

�

log(2 +Q(x))

�

�1=2��










L

p

(�

k

)

.

`

X

k=1

2

�k�

. 1: (3.19)

Similarly and more easily it also follows that uniformly for n � C,










S

n

[��w

�1

]w(1 + jxj)

�1=p

�

log(2 +Q(x))

�

�1










L

p

(0�jxj�a

4

)

. 1: (3.20)

Thus (3.15) is established.
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Next we shall show that given � 2 (0; 1) and measurable g : R !

[0;1), we have uniformly for n � C

kL

n+2

(g

n

; V

n+2

)wgk

L

p

�

jxj�a
n

8

�

. "










S

n

[�

n

�w

�1

]wg










L

p

�

jxj�a
n

8

�

:

(3.21)

Once this is established, (3.15) and the above prove the lemma. In

order to proceed to prove (3.21), we �nd it convenient to introduce

some notation.

Letting sgn and � denote the usual signum and indicator functions

respectively, we de�ne for n � 1 the following quantities:

H

n

[g

n

](x) :=

n

X

j=1

(y

2

0

� x

2

j;n

)

�1

`

j;n

(U

n

)(x)g

n

(x

j;n

); x 2 R: (3.22)

�

n

:= �

h

�a
n

8

;a
n

8

i

: (3.23)

h

n

(x) := (3.24)

sgn

�

H

n

[g

n

]

�

�

�

H

n

[g

n

]

�

�

p�1

(x)�

n

(x)w

p�2

(x)g

p

(x)jy

2

0

� x

2

j

p�1

; x 2 R:

�

n

:= sgn

�

S

n

[h

n

]

�

: (3.25)

First note that using (3.8), we may conclude that g

n

(�y

0

) = 0. Thus

kL

n+2

(g

n

; V

n+2

)(x)w(x)g(x)k

p

L

p

�

jxj�a
n

8

�

=

Z

jxj�a
n

8

�

�

L

n+2

(g

n

; V

n+2

)

�

�

p

(x)w

p

(x)g

p

(x)dx

=

Z

jxj�a
n

8

�

�

�

�

�

�

n

X

j=1

 

y

2

0

� x

2

y

2

0

� x

2

j;n

!

`

j;n

(U

n

)(x)g

n

(x

j;n

)

�

�

�

�

�

�

p

w

p

(x)g

p

(x)dx

=

Z

jxj�a
n

8

jy

2

0

� x

2

jH

n

[g

n

](x

j;n

)h

n

(x)w

2

(x)dx

.

a

2

n

T (a

n

)

2

Z

R

H

n

[g

n

](x)h

n

(x)w

2

(x)dx: (3.26)
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Now recalling that for n � 1; h

n

� S

n

[h

n

] ? �

n�1

and H

n

[g

n

]S

n

[h

n

] 2

�

2n�1

, we may apply Gauss quadrature and continue (3.26) as

kL

n+2

(g

n

; V

n+2

)w(x)g(x)k

p

L

p

�

jxj�a
n

8

�

.

a

2

n

T (a

n

)

2

Z

R

H

n

[g

n

](x)S

n

[h

n

](x)w

2

(x)dx

.

a

2

n

T (a

n

)

2

n

X

j=1

�

j;n

H

n

[g

n

](x

j;n

)S

n

[h

n

](x

j;n

)

.

a

2

n

T (a

n

)

2

X

jx

j;n

j�a
n

9

�

j;n

g

n

(x

j;n

)

y

2

0

� x

2

j;n

S

n

[h

n

](x

j;n

)

. "

a

2

n

T (a

n

)

2

X

jx

j;n

j�a
n

9

�

j;n

�

�

S

n

(x

j;n

)

�

�

w

�1

(x

j;n

)

�(x

j;n

)

y

2

0

� x

2

j;n

. "

X

jx

j;n

j�a
n

9

�

j;n

�

�

S

n

[h

n

](x

j;n

)

�

�

w

�1

(x

j;n

)�(x

j;n

): (3.27)

Now by ([11], Lemma 3.2), we may continue (3.27) as

kL

n+2

(g

n

; V

n+2

)(x)w(x)g(x)k

p

L

p

�

jxj�a
n

8

�

. "

Z

R

�

�

S

n

[h

n

]

�

�

(x)�w

�1

w

2

(x)dx

. "

Z

R

�

n

(x)S

n

[h

n

](x)�(x)w

�1

(x)w

2

(x)dx

. "

Z

R

h

n

(x)S

n

[�

n

�w

�1

](x)w

2

(x)dx

. "

Z

jxj�a
n

8

h

n

(x)S

n

[�

n

�w

�1

](x)w

2

(x)dx

. "

0

B

B

@

Z

jxj�a
n

8

jh

n

wg

�1

j

q

(x)dx

1

C

C

A

1=q

0

B

B

@

Z

jxj�a
n

8

�

�

S

n

[�

n

�w

�1

]w(x)g(x)

�

�

p

dx

1

C

C

A

1=p

. " kL

n+2

(g

n

; V

n+2

)(x)w(x)g(x)k

p�1

L

p

�

jxj�a
n

8

�

�

�










S

n

[�

n

�w

�1

](x)w(x)g(x)










L

p

�

jxj�a
n

8

�

: (3.28)
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(3.28) then establishes (3.21) and hence the lemma. 2

Armed with Lemmas (3.1) { (3.3) we are ready for the

The Su�ciency Proof of Theorems 1.3 and 1.4 for p > 1.

Let " 2 (0; 1). We may choose a polynomial P such that,







(f � P )w�

�1







L

1

(R)

< �: (3.29)

See for example [12, pg 752]. Let n � C and for x 2 R, let

g

n

(x) := (P � f)(x)�

h

�a
n

9

;a
n

9

i

(x) (3.30)

and

f

n

(x) := (P � f)(x)

0

@

1� �

h

�a
n

9

;a
n

9

i

1

A

(x): (3.31)

Note that g

n

(x) = 0 for jxj � a

n

9

, f

n

(x) = 0 for jxj � a

n

9

and

f � P = f

n

+ g

n

:

Thus Lemmas 3.1-3.3 show that

lim

n!1










L

n

(P � f; V

n+2

)(x)w(x)(1 + jxj)

�1=p

�

log(2 +Q(x)

�

�1

�










L

p

(R)

= 0:

(3.32)

Moreover by choice of P we have










(f � P )(x)w(x)(1 + jxj)

�1=p

�

log(1 +Q(x))

�

�1










L

p

(R)

. "







(1 + jxj)�

p

(x)







1=p

L

1

(R)

. ": (3.33)

Now write,










�

f � L

n+2

(f; V

n+2

)

�

(x)w(x)(1 + jxj)

�1=p

�

log(2 +Q(x))

�

�1










L

p

(R)

�










(f � P )(x)w(x)(1 + jxj)

�1=p

�

log(2 +Q(x)

��

�1










L

p

(R)

+










L

n

(P � f; V

n+2

)(x)w(x)(1 + jxj)

�1=p

�

log(2 +Q(x))

�

�1










L

p

(R)

:

Then (3.32) and (3.33) give,

lim sup

n!1










�

f � L

n+2

(f; V

n+2

)

�

(x)w(x)(1 + jxj)

�1=p

�

log(2 +Q(x))

�

�1










L

p

(R)

. ":
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Letting "! 0

+

gives the result. 2

We now present

The Su�ciency Proof of Theorems 1.3 and 1.4 for 0 < p � 1

We begin with Theorem 1.3. Let us choose some constant q > 1

satisfying pq > 1. Since � > 1=p, we may choose some �

1

satisfying

� � 1=p+ 1=pq > �

1

� 1=pq:

Now by H�older's inequality, with 1=q + 1=q

0

= 1, we have










(f � L

n+2

(f; V

n+2

))w(x)(1 + jxj)

��

(log(2 +Q(x)))

�1










p

L

p

(R)

=

Z

�

�

�

(f � L

n+2

(f; V

n+2

))w(x)(1 + jxj)

��

(log(2 +Q(x)))

�1

�

�

�

p

dx

�

�

Z

�

�

�

(f � L

n+2

(f; V

n+2

))w(x)(1 + jxj)

��

1

(log(2 +Q(x)))

�1

�

�

�

pq

dx

�

1=q

�

�

Z

1=(1 + jxj)

(���

1

)pq

0

dx

�

1=q

0

:

Since �

1

� 1=pq and (� � �

1

)pq

0

> 1,

Z

1

(1 + jxj)

�(���

1

)pq

0

dx <1

and by the result of Theorem 1.3 for p > 1, we have

lim

n!1

�

Z

�

�

�

(f � L

n+2

(f; V

n+2

))w(x)(1 + jxj)

��

1

(log(2 +Q(x)))

�1

�

�

�

pq

dx

�

1=q

= 0:

Therefore, we have the result for this case. For Theorem 1.4, let �

satisfy 1=� < p � 1. Then 1=p <

1

1��p+p

and so we may choose q with

1=p < q <

1

1��p+p

. This implies that ��1=p+1=pq > 1 and so we may

choose �

1

with 1 � �

1

< �� 1=p+1=pq. Summarizing the above imply

that pq > 1 and (� � �

1

)pq

0

> 1. Thus we may proceed as in Theorem

1.3 and deduce that










(f � L

n+2

(f; V

n+2

))w(x)(1 + jxj)

�1=p

(log(2 +Q(x)))

��










p

L

p

(R)

�










(f � L

n+2

(f; V

n+2

))w(x)(1 + jxj)

�1=pq

(log(2 +Q(x)))

��

1










p

L

pq

(R)

�

�

Z

1

(1 + jxj)(log(2 +Q(x)))

(���

1

)pq

0

dx

�

and so Theorem 1.4 holds for this case as well. 2:
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4. Necessity

In this section, we establish our necessary conditions. The argument

we shall use, relies on an application of the generalized uniform bound-

edness principle. The original idea should be credited to Paul Nevai

in [24] and later modi�cations have appeared in [20], [23], [11], [12],

[7] and [9]. For our purposes, we require additional new ideas and the

analysis is presented below. We shall deal with Theorem 1.3, Theorem

1.4 is similar.

We begin with a lemma which we will need in the sequel.

LEMMA 4.1. Let w 2 E

1

and 0 < p <1. Then uniformly for n � 1,

a

1=p�1=2

n

. kp

n

wk

L

p

[

a

n

4

;

a

n

2

]

: (4.1)

Proof. Using ([12], Lemma 5.1), for every interval �

n

� [�a

n

; a

n

]

containing at least two zeros of p

n

(w

2

; ) we have

kp

n

wk

L

p

(�

n

)

& a

�1=2

n
















�

�

�

�

�

1�

jtj

a

n

�

�

�

�

+ (nT (a

n

))

�2=3

�

�1=4
















L

p

(�

n

)

uniformly for n � 1. Applying this with �

n

:=

�

a

n

4

;

a

n

2

�

and using [14]

below gives the lemma. 2

We are ready for the

Proof of Theorem 1.3.

Fix w 2 E

1

; 0 < p < 1;

^

k > 0 and � 2 R. Assume moreover that

we have convergence in (1.5) for every continuous f satisfying (1.6).

Let � : R ! (0;1) be a positive even continuous function decreasing

in (0;1) with limit 0 at 1. For clarity, we choose its rate of decay

later.

Let X be the Banach space of all continuous functions f : R ! R

with,

kfk

X

:= sup

x2R

jfwj(x)

�

log(2 + jxj)

�

�1�

^

k

�(x)

�1

<1:

Moreover, let Y be the space of measurable functions f : R ! R for

1 � p <1 with

kfk

Y

:=










f(x)w(x)(1 + jxj)

��

�

log(2 +Q(x))

�

�1










L

p

(R)

<1:
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We note that Y is a metric space for 1 < p <1 with metric

kf � gk :=










(f � g)(x)w(x)(1 + jxj)

��

�

log(2 +Q(x))

�

�1










L

p

(R)

:

For 0 < p < 1, let Y be the space of measurable functions f : R ! R

with

kfk

Y

:=










f(x)w(x)(1 + jxj)

��

�

log(2 +Q(x))

�

�1










p

L

p

(R)

<1:

We then note that Y is a metric space with a metric

kf � gk :=










(f � g)(x)w(x)(1 + jxj)

��

�

log(2 +Q(x))

�

�1










p

L

p

(R)

:

Since for 0 < p < 1, the method is the same as for 1 � p <1, we only

prove for 1 � p <1. Now each f 2 X satis�es (1.6) so we have

lim

n!1







(f � L

n+2

(f; V

n+2

)

�







Y

= 0:

That is, for each f 2 X, there exists " > 0 such that for n � 1







(f � L

n

[f; V

n+2

])







Y

� ":

Then by the generalized uniform boundedness principle, the metric of

the operator I � L

n

[; ] is uniformly bounded in n. That is, for each

f 2 X if we let

~

f :=

f

kfk

X

, there exists a constant m independent of f

and n, so that for every n � 1










~

f � L

n+2

(

~

f; V

n+2

)










Y

� m:

Hence,

kf � L

n+2

(f; V

n+2

)k

Y

� mkfk

X

(4.2)

for every f 2 X and for every n � 1. Now we recall that

L

n+2

(f; V

n+2

)(x) =

n

X

j=1

`

j;n+2

(V

n+2

)(x)f(x

j;n

)

+`

n+1;n+2

(V

n+2

)(x)f(y

0

) + `

n+2;n+2

(V

n+2

)(x)f(�y

0

)

where

`

n+1;n+2

(V

n+2

)(x) =

p

n

(x)(y

0

+ x)

2y

0

p

n

(y

0

)

and

`

n+2;n+2

(V

n+2

)(x) =

p

n

(x)(y

0

� x)

2y

0

p

n

(�y

0

)

:
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Then a straightforward calculation shows that for functions f satisfying

f(0) = 0 and f(�y

0

) = 0

L

3

(f; U

3

)(x) = 0 for every x 2 R:

Thus applying (4.2) for such f with n = 1 gives,







f � L

3

(f; U

3

)







Y

�mkfk

X

which implies that kfk

Y

� mkfk

X

.

It follows that we have,

kL

n+2

(f; V

n+2

)k

Y

� 2mkfk

X

(4.3)

for every f 2 X with f(0) = f(�y

0

) = 0. Here m does not depend on

f so we �x it.

We will now show that (4.3) with a careful choice of f implies

our necessary conditions. To this end, we proceed to de�ne a special

sequence of functions and establish some of its important properties.

Choose fg

n

g : R ! R continuous with

(i)

g

n

(x) = 0; x 2

�

�1;

a

n

2

�

[

�

3a

n

4

;1

�

:

(ii) For x

j;n

2

�

a

n

2

;

3a

n

4

�

,

�(x

j;n

)

�1

(g

n

w)(x

j;n

)sgn

�

p

0

n

(x

j;n

)

�

�(x

j;n

)

�1

= 1

and kg

n

k

X

= 1.

In particular, it is easy to see that g

n

(0) = 0 and g

n

(�y

0

) = 0.

Moreover, by de�nition of g

n

, we have for n � C and for every

x 2

�

a

n

4

;

a

n

2

�

,

�

�

L

n+2

(g

n

; V

n+2

)

�

�

(x)

=

�

�

�

�

�

�

�

X

x

j;n

2

(

a

n

2

;

3a

n

4

)

 

y

2

0

� x

2

y

2

0

� x

2

j;n

! 

p

n

(x)

p

0

n

(x

j;n

)(x� x

j;n

)

!

g

n

(x

j;n

)

�

�

�

�

�

�

�

= jp

n

(x)j(y

2

0

� x

2

)

X

x

j;n

2

(

a

n

2

;

3a

n

4

)

�(x

j;n

)�(x

j;n

)

(x

j;n

� x)jp

0

n

(x

j;n

)w(x

j;n

)j(y

2

0

� x

2

j;n

)

& jp

n

(x)j

 

y

2

0

� x

2

y

2

0

!

�(a

n

)�

�

3a

n

4

�

�

X

x

j;n

2

(

a

n

2

;

3a

n

4

)

(x

j;n

� x)

�1

�

�

p

0

n

(x

j;n

)w(x

j;n

)

�

�

�1

: (4.4)
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Indeed, using [14], we see that for n � C, and for every x 2

�

a

n

4

;

a

n

2

�

�

�

L

n+2

(g

n

; V

n+2

)

�

�

(x)

&

a

3=2

n

n

jp

n

(x)j�(a

n

)�

�

3a

n

4

�

X

x

j;n

2

(

a

n

2

;

3a

n

4

)

1

x

j;n

� x

& a

1=2

n

jp

n

(x)j�(a

n

)�

�

3a

n

4

�

c

2n

X

k=C

1

1

k

:

Thus we learn that for the special sequence fg

n

g we have:

(i) g

n

(0) = g

n

(�y

0

) = 0:

(ii) For every x 2

�

a

n

2

;

a

n

2

�

and n � C,

�

�

L

n+2

(g

n

; V

n+2

)

�

�

(x) & a

1=2

n

jp

n

(x)j�(a

n

)(log n)�

�

3a

n

4

�

: (4.5)

Now we apply (4.3) to g

n

and use (4.5) and (4.1). This gives for n � C,

2m = 2mkg

n

k

X

�







L

n+2

(g

n

; V

n+2

)







Y

=










L

n+2

(g

n

; V

n+2

)(x)w(x)(1 + jxj)

��

�

log(2 +Q(x))

�

�1










L

p

(R)

& (log n)

�1

a

�max(�;0)

n







L

n+2

(g

n

; V

n+2

)w







L

p

[1;a

n

]

& a

�max(�;0)

n

�

�

3a

n

4

�

(log n)

�1

log n�(a

n

)a

1=2

n

kp

n

wk

L

p

[

a

n

4

;

a

n

2

]

& a

�max(�;0)

n

(log a

n

)

�1�

^

k

a

1=p

n

�

�

3a

n

4

�

: (4.6)

We now choose � at the start so that �

�

3a

n

4

�

�

�

log log(a

n

)

�

�1

.

Then (4.6) implies that for n � C,

a

1=p�max(�;0)

n

(log a

n

)

�1�

^

k

�

log log(a

n

)

�

�1

. 2m: (4.7)

Suppose that � � 0. Then (4.7) implies that for n � C,

a

1=p

n

�

log(a

n

)

�

�1�

^

k

�

log log(a

n

)

�

�1

. 2m:

But this is impossible for n � C. So necessarily � > 0. Then (4.7)

implies for n � C,

a

1=p��

n

�

log(a

n

)

�

�1�

^

k

�

log log(a

n

)

�

�1

. 2m:
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If � < 1=p we again obtain a contradiction. So necessarily � � 1=p. 2
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