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Abstract. In this paper, we study the numerical integration of

continuous functions on d-dimensional spheres S

d

� R

d+1

by equal-

ly weighted quadrature rules based at N � 2 points on S

d

which

minimize a generalized energy functional. Examples of such points

are con�gurations, which minimize energies for the Riesz kernel

kx � yk

�s

, 0 < s � d and logarithmic kernel � log kx� yk, s = 0.

We deduce that point con�gurations which are extremal for the

Riesz energy are asymptotically equidistributed on S

d

for 0 � s �

d as N ! 1 and we present explicit rates of convergence for the

special case s = d, which had been open.
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1. Introduction and Statement of Results

This paper deals with the subject of numerical integration of continu-

ous functions on d-dimensional unit spheres S

d

� R

d+1

. More precisely,

given d � 2, we let

S

d

:=

�

x 2 R

d+1

j hx; xi = 1

	

denote the unit sphere in R

d+1

. Here and throughout, we will denote

by h�; �i the usual inner product on R

d+1

. Throughout � will denote

Lebesgue measure on S

d

and we shall put

!

d

:=

Z

S

d

d�:
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Thus � :=

�

!

d

has total mass 1. Given a collection

Z

N

:= fx

1

; : : : ; x

N

g; N � 1

of N points on the sphere S

d

and a continuous function f : S

d

! R,

the error in numerical integration is given by

R(f; Z

N

) :=

1

N

N

X

k=1

f(x

k

)�

Z

S

d

f(x) d�(x):(1.1)

Numerical integration of continuous functions on spheres using equal-

ly and non equally weighted rules is a very active and popular area of

research with many applications. Di�erent areas as diverse as spheri-

cal t-designs, discrepancy and combinatorics, Monte-Carlo and Quasi-

Monte-Carlo methods, approximation theory, �nite �elds and complex-

ity theory are involved. We refer the reader to [3], [7], [10], [20], [21],

[41] for a more detailed account of this vast subject. The closely related

subject of distributing points on a sphere has also been the subject of

many papers. See for instance [3], [5], [14], [15], [16], [30], [32], [33],

[39], [40], [41], [45], [46], [47], [48], [49]. On the one hand it has some

interest on its own to describe a \well distributed" point set of cardi-

nality N and even to de�ne suitable notions of what \well distributed"

should mean. On the other hand numerical integration procedures on

the sphere require node sets which are spread evenly all over the sphere

and allow positive weights for the according quadrature rule. In this

paper we will only focus on equal weight (Chebyshev) quadrature.

A natural measure for the quality of the distribution of a point set

Z

N

= fx

1

; : : : ; x

N

g on the sphere S

d

is the spherical cap discrepancy

D

N

(Z

N

) = sup

C�S

d

�

�

�

�

�

1

N

N

X

k=1

�

C

(x

k

)� �(C)

�

�

�

�

�

;(1.2)

where the supremum ranges over all spherical caps C � S

d

(intersec-

tions of half spaces with S

d

) and where �

C

denotes the indicator func-

tion of C. The discrepancy simply measures the maximal deviation

between the discrete point distribution fx

1

; : : : ; x

N

g and the normal-

ized surface measure. For more general notions of discrepancy and

their properties we refer to [13]. Unfortunately, discrepancy is rather

di�cult to compute explicitly. In order to circumvent this, estimates

for the discrepancy in terms of Weyl sums

1

N

N

X

n=1

K

m;j

(x

n

)(1.3)
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have been given in [24] and [19]. Here K

m;j

denotes an orthogonal

basis of the spherical harmonics of order m. For an account on several

di�erent notions of discrepancy and other measures for the quality of

spherical point distributions we refer to [20] and [3].

Numerous constructions of 'well-distributed' point sets have been

given in the literature. These range from constructions of so called low-

discrepancy point sets in the unit cube, which can be transformed via

standard parametrizations, to constructions given by integer solutions

of the equation

x

2

1

+ � � �+ x

2

d+1

= N

for N � 1 projected onto the sphere. Uniform distribution of these in-

teger point sets were proved in [35] and [38] for d � 4 and estimates for

the discrepancy were given in [14], [15], [16] for spheres of odd dimen-

sion. These latter estimates are based on Deligne's famous bound for

the coe�cients of cusp forms of integer weight [9]. In [32] and [33], the

parametrization of SO(3) by quaternions and again Deligne's estimate

is used to construct a free subgroup of SO(3) with 3 generators. The

rotations in this subgroup applied to a point on the sphere are used to

form a point set of small discrepancy on S

2

. Spherical t-designs have

been shown to be uniformly distributed as t ! 1 in [21]. Estimates

for the discrepancy in terms of the integration error for polynomials

have been given in [4]. Furthermore, a construction of point sets based

on �nite �eld solutions of x

2

1

+ � � �+ x

2

d+1

= 1 has been investigated in

[5].

In this paper, we study numerical integration of continuous functions

on S

d

using equal weighted quadrature rules based at N � 1 points

on S

d

which minimize a generalized energy functional, see De�nition 2

below. Important examples of such point sets are points which mini-

mize energies for the Riesz kernel kx�yk

�s

; 0 < s � d and logarithmic

kernel � log kx � yk; s = 0. In the case s > 0, the energy functionals

above take the form of

N

X

i;j=1

i6=j

kx

i

� x

j

k

�s

(1.4)

where k:k denotes the Euclidean metric on R

d+1

. The motivation for

introducing such functionals comes from potential theory and will be

explained carefully in Remark 1 below. In a series of papers Kuijlaars,

Wagner, Rakhmanov, Sa�, and Zhou, see [30], [39], [40], [41],[45], [46],

[47], [48], [49], have recently proved upper and lower bounds for (1.4)

for extremal con�gurations with respect to the Riesz kernel with s � 0.

(See also the papers [26], [11] and [12]). Using these bounds, it is a
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consequence of Theorem 3 and Theorem 4 below, that the discrete

distribution of extremal con�gurations tends weakly to the normalized

surface measure � as N ! 1 if 0 � s � d. For s > d, nothing is

known about the distribution of extremal con�gurations, see Remark 6

below.

In what follows, for a parameter � > �1, we denote by C

�

n

(x)

the n-th Gegenbauer polynomial of index �. The sequence of Gegen-

bauer polynomials is orthogonal with respect to the weight function

(1 � x

2

)

��

1

2

(see for instance [2], [34]). For d � 2 we denote the ul-

traspherical (or Legendre, cf. [36]) polynomials corresponding to the

d-dimensional sphere by P

(d)

n

(x), which are normalized by P

(d)

n

(1) = 1.

We will frequently omit the upper index, when the dimension is �xed.

The following relation holds between Gegenbauer and ultraspherical

polynomials

C

d�1

2

n

(x) =

�

n+ d� 2

n

�

P

(d)

n

(x):

We are now able to introduce a class of functions which will be

admissible in the following sense:

De�nition 1. Let �

0

> 0 and g : [�1 � �

0

; 1) ! R be a continuous

function satisfying the following conditions:

(a) g is strictly increasing with

lim

t!1�

g(t) =1:

(b) Let g(t� �) be given by its ultraspherical expansion

1

X

n=0

a

n

(�)P

(d)

n

(t):

Then 8n � 1 and 0 < � � �

0

assume that a

n

(�) > 0. This

expansion is valid for t 2 [�1; 1].

(c) The integral

1

Z

�1

g(t)(1� t

2

)

d

2

�1

dt

exists.

For any admissible g, we have:
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De�nition 2. Let g be admissible, d � 2 and a collection Z

N

on S

d

be

given. Then we de�ne the corresponding energy functional associated

to the point set Z

N

and the function g by

E(g; Z

N

) =

1

N

2

N

X

i;j=1

i6=j

g(hx

i

; x

j

i):(1.5)

Furthermore, we de�ne

E(g;N) = min

Z

N

E(g; Z

N

):(1.6)

A point set, for which the minimal energy E(g;N) is attained, is called

a g-minimal energy point set. It is clear that any rotation of a point

set of minimal energy again gives a point set of minimal energy; thus

such point sets are not unique.

Why Energy Functionals? We now motivate the use of energy func-

tionals in numerical integration by way of a series of remarks below.

The �rst is contained in:

Remark 1. The study of energy functionals is motivated by the fact

that for admissible g, the energy integral

Z

S

d

Z

S

d

g(hx; yi) d�(x) d�(y)(1.7)

is minimized by the normalized surface measure � on S

d

amongst all

Borel probability measures �. This is the content of Lemma 1 below.

Thus heuristics expects that a point distribution Z

N

of minimal energy

gives a discrete approximation to the surface measure in the sense that

the integral with respect to the surface measure is approximated by a

discrete sum over the points of Z

N

. For the circle, S

1

, it is easy to see

that minimal energy point sets correspond to the vertices of a regular

N -gon and are thus the best points to use for numerical integration for

equally weighted quadrature rules.

Remark 2. (a) It is easy to check that the classical energy function-

als as studied in [30], [39], [40], [45], [46], [47], [48] correspond to

the following choices for the admissible function g.

g

0

L

(t) :=

1

2

log

1

1� t

�

1

2

log 2; s = 0(1.8)

for the logarithmic energy and

g

s

R

(t) :=

1

2

s

2

(1� t)

s

2

; s > 0(1.9)
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for the energy corresponding to the Riesz potential

1

r

s

.

(b) Since our �nal purpose will be to make the energy E(g; Z

N

) as

small as possible, and we want to have small energy to correspond

to reasonable dispersion of the point set Z

N

, it is natural to assume

g to be strictly increasing.

(c) The condition (b) of De�nition 1 is nothing else than positive de�-

niteness of the functions g(t��)�a

0

(�) in the sense of Schoenberg

[43]. By a general argument explained in [23], under our assump-

tions continuity of g at 1�� implies continuity of g in [�1��; 1��].

We will also assume throughout that �

0

is �xed and small enough so

that (b) in De�nition 1 holds for all su�ciently small and positive �.

We are now in a position to state our main results.

Theorem 1. Let g be admissible, d � 2, Z

N

a collection of N points

on S

d

, f a polynomial of degree at most n � 1 on S

d

and 0 < � � �

0

.

Then

jR(f; Z

N

)j �(1.10)

� max

1�k�n

�

Z(d; k)

!

d

a

k

(�)

�

1

2

kfk

2

�

E(g; Z

N

) +

1

N

g(1� �)� a

0

(�)

�

1

2

with Z(d; k) =

2k+d�1

k+d�1

�

k+d�1

d�1

�

.

Theorem 2. Let g be admissible, d � 2, Z

N

a collection of N points

on S

d

, n � 1 and 0 < � � �

0

. Let f be a continuous function of S

d

satisfying:

jf(x)� f(y)j � C

f

arccos(hx; yi); x; y 2 S

d

:(1.11)

Then

jR(f; Z

N

)j � 12C

f

d

n

+(1.12)

+ max

1�k�n

�

Z(d; k)

!

d

a

k

(�)

�

1

2

kfk

1

�

E(g; Z

N

) +

1

N

g(1� �)� a

0

(�)

�

1

2

:

We note that Theorems 1 and 2 are general results which hold for

any choice of points Z

N

on S

d

.

Remark 3. Part (c) in the de�nition of admissibility is not necessary

for the validity of Theorems 1 and 2. Nevertheless, the proof of The-

orem 4 will show that the right hand side of the inequality does only

tend to zero for special choices of the function g. See also Remark 7.
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Remark 4. A sequence of point sets Z

N

on S

d

, is said to be asymp-

totically equidistributed if for every spherical cap C � S

d

,

lim

N!1

#f1 � j � N : x

j

2 Cg

N

= �(C):(1.13)

i.e., each intersection of the sphere and half space gets an equal portion

of points. By duality, it follows that (1.13) is equivalent to

lim

N!1

R(f; Z

N

) = 0(1.14)

for every continuous function f on S

d

.

The following theorem is well known; for instance, it follows from

the estimates given in [45, 46].

Theorem 3. Let d � 2 and 0 � s < d. Then g

s

R

-minimal energy point

sets are asymptotically equidistributed.

We remark that Theorem 3 may also be proved using Theorems 1

and 2 and the Cramer-Wold theorem which says that a probability

measure on Euclidean space is uniquely determined by its values it

takes on half spaces, see [8]. For 0 < s < d, this is mainly because the

energy integral given by (1.7) is �nite with value

�((d+ 1)=2)�(d� s)

�(d� s=2)�((d� s+ 1)=2)

:

For s � d, (1.7) diverges for every measure � which means that the

nearest neighbor interactions in (1.4) are dominating. For s = d, we

are able to present:

Theorem 4. Let d � 2 and Z

N

a collection of g

d

R

-minimal energy

points on S

d

and N � (logN + d=2)

2d

. Then for every continuous

function f on S

d

satisfying (1.11) we have

jR(f; Z

N

)j �

C

�

f

p

logN

(1.15)

where C

�

f

:=

p

C

d

kfk

1

+ 12dC

f

, where C

d

could be chosen as

C

d

=

ed�

�

d+1

2

�

2

4�

d+2

2

�

�

d

2

�

(2 log� � 3 log 2 + 2) +

d�

�

d+1

2

�

(2�)

d+1

2

with

 (x) =

�

0

(x)

�(x)

and  = � (1):
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Moreover,

D

N

(Z

N

) � O

�

1

p

logN

�

:(1.16)

Remark 5. It is quite probable that the estimates for the integration

error and the discrepancy given in Theorem 4 are not sharp. Indeed,

for s = d � 1, a conjecture of Korevaar in [27], which was essentially

proved by G�otz in [17] says that the error bound for the discrepancy

is O(N

�1=d

). Moreover, in light of [30], we expect that the order of

magnitude of the discrepancy should be the same as for all g

s

R

-minimal

points with s < d.

In particular, g

d

R

-minimal points are asymptotically equidistributed

with rate

1

p

logN

. We note that the asymptotic equidistribution of g

d

R

-

minimal points (without rate of convergence) was recently shown in an

indirect way by G�otz and Sa� in [18].

We close this section with:

Remark 6. Though intuitively clear it is still unknown, whether g

s

R

-

mimimal points are asymptotically equidistributed for s > d. To un-

derstand this, de�ne

�(Z

N

) := inf

i6=j

kx

i

� x

j

k; �

N

:= sup

Z

N

�S

d

�(Z

N

):

The determination of �

N

is called Tammes problem or the Spherical

packing problem, see [7], [22]. It asks to maximize the smallest distance

amongst N points on S

d

. Fixing N and allowing s!1, the minimal

energy problem s > d reduces to the best packing problem.

The remainder of this paper is devoted to the proofs of Theorems 1,

2, and 4. These are contained in Sections 2 and 3 below.

2. Numerical integration

In this section, we present the proofs of Theorems 1 and 2. In what

follows, for x 2 R and n � 1,

(x)

n

:=

n�1

Y

k=0

(x + k) =

�(x+ n)

�(x)

; (x)

0

= 1

will denote Pochhammer's shifted factorial.

We begin with Lemma 1 which is of independent interest.

Lemma 1. The energy integral given by (1.7) is minimized uniquely

by the normalized surface measure �.
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The essential ideas behind Lemma 1 are well known, see [31]. We

provide a short independent proof.

Proof. From [43], it follows that (b) in De�nition 1 implies that (1.7)

is always nonnegative. Moreover, it follows from the orthogonality

relations of the ultraspherical polynomials P

(d)

n

that for the surface

measure � the value of the energy is a

0

. Here we also use the basic

rule, see [30]:

Z

S

d

g(hx; x

0

i)d�(x) = 

d

Z

1

�1

g(t)(1� t

2

)

d=2�1

dt(2.1)

where x

0

2 S

d

is some �xed point and



d

:=

�

�

d+1

2

�

p

��

�

d

2

�

:

Thus it remains to prove that the measure � is unique. Assume that

� is a Borel probability measure that yields minimal energy. Then we

have

Z

S

d

Z

S

d

P

(d)

n

(hx; yi)d�(x)d�(y) = 0(2.2)

for all n � 1 by the positivity of the Fourier coe�cients and the fact

that

Z

S

d

Z

S

d

P

(d)

n

(hx; yi)d�(x)d�(y) � 0

by the positive de�niteness of P

(d)

n

. We recall the Funk-Hecke addition

formula for spherical harmonics, see [2, Section 9.8]:

Z

S

d

P

(d)

n

(hx; �i)P

(d)

n

(hy; �i)d�(�) =

1

Z(d; n)

P

(d)

n

(hx; yi)(2.3)

where

Z(d; n) :=

2n+ d� 1

n + d� 1

�

n+ d� 1

d� 1

�

(2.4)

was de�ned in the statement of Theorem 1. Applying (2.2) and (2.3)

gives

Z

S

d

�

Z

S

d

P

(d)

n

(hx; �i)d�(�)

�

2

d�(x) = 0

which implies that the polynomial

Z

S

d

P

(d)

n

(hx; �i)d�(�)
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vanishes identically. As x is free, we may choose a �nite index set J

and a collection of points x

j

2 S

d

, j 2 J such that P

(d)

n

(hx

j

; �i) form

a basis of the spherical harmonics of order n, see [36]. A standard ap-

proximation argument using the Stone-Weierstra� theorem then shows

that

Z

S

d

f(x)d�(x) =

Z

S

d

f(x)d�(x)

for all f 2 C(S

d

). This completes the proof of Lemma 1.

Next we need:

Lemma 2. Let g be admissible and 0 < � � �

0

then

1

N

2

N

X

i;j=1

g(hx

i

; x

j

i � �) � E(g; Z

N

) +

1

N

g(1� �):(2.5)

Proof. This follows by using the fact that g is increasing and collecting

the terms with i = j into the second term on the right hand side of

(2.5).

We are now ready for:

Proof of Theorem 1. We will make use of spherical harmonics and we

refer the reader to [36] for the details. Especially, we will make use of

the fact that there are exactly Z(d; n) linearly independent spherical

harmonics of order n. Furthermore, we use the Funk-Hecke formula

given by (2.3). Since f is a polynomial of degree at most n, we may

represent it as a linear combination of spherical harmonics of order at

most n:

f(x) =

n

X

k=0

Y

k

(x);(2.6)

where

Y

k

(x) =

Z(d; k)

!

d

Z

S

d

f(�)P

(d)

k

(hx; �i)d�(�):

Observe that

kfk

2

2

=

n

X

k=0

kY

k

k

2

2

:(2.7)
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Then the error of integration can be written as

�R(f; Z

N

) =

n

X

k=1

Z(d; k)

!

d

Z

S

d

Y

k

(�)Q

k

(�)d�(�);(2.8)

where Q

n

(�) is given by

Q

n

(�) = Q

n

(�; Z

N

) =

1

N

N

X

j=1

P

(d)

n

(h�; x

j

i):(2.9)

We now insert b

�1

k

b

k

into (2.8) and apply the Cauchy-Schwarz inequal-

ity to obtain

jR(f; Z

N

)j

2

�

1

!

2

d

Z

S

d

n

X

k=1

Z(d; k)

2

b

2

k

jY

k

(�)j

2

d�(�)

Z

S

d

n

X

k=1

b

2

k

jQ

k

(�)j

2

d�(�):

(2.10)

It is a consequence of (2.3) that

Z

S

d

jQ

k

(�)j

2

d�(�) =

1

N

2

!

d

Z(d; k)

N

X

i;j=1

P

(d)

k

(hx

i

; x

j

i):

Furthermore, we choose b

k

= (a

k

(�)Z(d; k))

1

2

(k � 1), use (2.7) and

a simple estimate for the �rst factor of the right hand side in (2.10)

and extend the �nite sum in the second factor of the right hand side

in (2.10) to obtain

jR(f; Z

N

)j

2

�

1

!

d

max

1�k�n

Z(d; k)

a

k

(�)

kfk

2

2

"

1

N

2

N

X

i;j=1

g(hx

i

; x

j

i � �)� a

0

(�)

#

:

(2.11)

By Lemma 2.2, we obtain the required estimate.

Next we present:

Proof of Theorem 2. The key to the proof is an approximation kernel

due to Newman and Shapiro, see [37] and [21, Theorem 1]. For the

given m � 1, let

K

m

(t) := c

m

 

P

(d)

m+1

(t)

t� �

m+1

!

2

; t 2 (�1; 1)(2.12)

where �

m+1

is the largest zero of P

(d)

m+1

and c

m

is chosen such that

Z

S

d

K

m

(hx; yi)d�(x) = 1; y 2 S

d

:(2.13)
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Note that K

m

is a polynomial of degree 2m. Set

f

m

(x) :=

Z

S

d

f(y)K

m

(hx; yi)d�(y); x 2 S

d

:(2.14)

Then applying Theorem 1 with f

m

and using the triangle inequality

gives:

jR(f; Z

N

)j � kf � f

m

k

1

+(2.15)

+ max

1�k�2m

�

Z(d; k)

!

d

a

k

(�)

�

1

2

kf

m

k

2

�

E(g; Z

N

) +

1

N

g(1� �)� a

0

(�)

�

1

2

:

Now we observe in view of (2.12) and (2.13) that kf

m

k

2

� kf

m

k

1

�

kfk

1

. Moreover, using the de�nitions (2.12), (2.13) and well known

lower bounds for �

m+1

, see [44, pg 331], gives that

kf � f

m

k

1

�

6dC

f

m

:

These two later observations together with (2.15) give the theorem for

even n = 2m. For odd n > 1 we choose m =

n�1

2

.

3. Asymptotic equidistribution of g

s

R

-mimimal

configurations for 0 < s � d

In this section we present the proof of Theorem 4. To this end, we

will need to investigate the classical energy functionals as studied in

[30]. We recall that these correspond to the following choice for the

admissible function g:

g

2�

R

(t) =

1

2

�

(1� t)

�

; � > 0

for the energy corresponding to the potential

1

r

2�

. First we will need to

compute the Gegenbauer coe�cients for the functions g(t� �) in these

cases. Throughout this section we will set � =

d�1

2

. We use

(1 + � � t)

��

= (1 + �)

��

1

X

n=0

�

n+ �� 1

n

�

t

n

(1 + �)

n

(3.1)

and [34, pg 227]

t

n

= 2

�n

n!

b

n

2

c

X

m=0

n + �� 2m

m!(�)

n+1�m

C

�

n�2m

(t):(3.2)
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Inserting (3.2) into (3.1) and changing the order of summation yields

2

��

(1 + � � t)

��

(3.3)

= (1 + �)

��

1

X

k=0

(�)

k

(�)

k

2

k+�

(1 + �)

k

�

�

2

F

1

�

�+ k

2

;

� + k + 1

2

;�+ k + 1;

1

(1 + �)

2

�

C

�

k

(t)

=

1

X

k=0

a

�

k

(�)P

(d)

k

(t):

Here

a

�

k

(�) =

(�)

k

(d� 1)

k

(

d�1

2

)

k

k!2

k+�

(1 + �)

k+�

�(3.4)

�

2

F

1

�

� + k

2

;

� + k + 1

2

;

d+ 1

2

+ k;

1

(1 + �)

2

�

;

where

2

F

1

denotes the basic hypergeometric function. Alternatively,

this expansion could be derived by computing the according Fourier

integrals. The coe�cients of P

(d)

k

in this expansion are positive and

decreasing functions of �.

We also need the following inequality for the hypergeometric func-

tion, which was derived in [1]. For � = �+

1

2

=

d

2

2

F

1

�

�+ k

2

;

� + k + 1

2

;�+ k + 1; x

�

�(3.5)

�

2

�+k�1

�(�+ k +

1

2

)

p

��(�+ k)

�

log

1

1� x

� 2 (k + �) + 4 log 2� 2

�

�

�

2

�+k�1

�(�+ k +

1

2

)

p

��(�+ k)

log

1

(� + k)

2

(1� x)

;

where  (x) =

�

0

(x)

�(x)

denotes the digamma function and  = � (1) is the

Euler-Mascheroni constant. Furthermore, we have used the estimate

 (x) � logx.

We are now able to present the

Proof of Theorem 4. We estimate the second term on the right hand

side of (1.12) �rst. Let Z

N

be a minimal energy point set for the

g-energy with g

d

R

(t) =

1

(2�2t)

d

2

. From [30] it is known that

E(g; Z

N

) �

1

d



d

logN + C

d

(3.6)
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where we recall that 

d

is given by



d

:=

�

�

d+1

2

�

p

��

�

d

2

�

:

(Notice that our de�nition of energy is twice the energy de�ned in

[30]). The best value for the constant C

d

is still unknown. From the

computations in [30] it follows that C

d

� 

d

log �.

>From (3.4) and (3.5) we know that (using 1=(1� (1 + �)

�2

) �

1

2�

)

a

k

(�) � 

d

Z(d; k)

(1 + �)

k+

d

2

log

1

2(k +

d

2

)

2

�

and

a

0

(�) �



d

2

�

log

1

2�

� 2 

�

d

2

�

+ 4 log 2� 2

�

:

We now assume that N � (m + d=2)

2d

. Inserting � = N

�

2

d

into the

right hand side of (1.12) and using (3.7) yields

(3.7) E(g; Z

N

) +

1

N

g(1� �)� a

0

(�) �

1

d



d

logN+C

d

+2

�

d

2

�



d

2

�

logN

�

2

d

� log 2�2 

�

d

2

�

+ 4 log 2�2

�

�



d

(log� �

3

2

log 2 + ) + 2

�

d

2

=: C

0

d

:

Putting everything together yields

jR(f; Z

N

)j �

12dC

f

m

+

s

C

0

d

!

d

�

1 +N

�

2

d

�

m

2

+

d

4

kfk

1

q

2

d

logN � 2 log(m+

d

2

)

:

We now choose m := [

p

logN ]+1 and observe that

2

d

logN�2 log(m+

d=2) �

1

d

logN to obtain

jR(f; Z

N

)j �

12dC

f

+ kfk

1

q

edC

0

d

!

d

p

logN

;

which is (1.15). Finally (1.16) follows using (1.10), (3.6) and [4, Theo-

rem 1].

Remark 7. When trying to apply the same reasoning to g

s

R

-energies

with s > d it turns out that the upper bounds for the minimal s-energy

(cf. [30]) do not coincide with the bounds for the Fourier coe�cients as
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� ! 0

+

as is the case for s = d. This shows that the inequalities (1.10)

and (1.12) give only trivial bounds for the integration error for s > d.
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