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We investigate the support of the equilibrium measure as-

sociated with a class of nonconvex, nonsmooth external �elds

on a �nite interval. Such equilibrium measures play an im-

portant role in various branches of analysis. In this paper we

obtain a su�cient condition which ensures that the support

consists of at most two intervals. This is applied to exter-

nal �elds of the form �c sign(x)jxj

�

with c > 0, � � 1 and

x 2 [�1; 1]. If � is an odd integer, these external �elds are

smooth, and for this case the support was studied before by

Deift, Kriecherbauer and McLaughlin, and by Damelin and

Kuijlaars.

1. Introduction

In recent years, equilibrium measures with external �elds have found an

increasing number of applications in a variety of areas. We refer to [2,

3, 4, 5, 8, 10, 14, 15] for these relations, ranging from classical topics as

weighted trans�nite diameter and weighted Chebyshev polynomials, to more

recent developments in weighted approximation, orthogonal polynomials,

integrable systems, and random matrix theory.

In the present paper we consider equilibrium problems on the interval

[�1; 1]. With a continuous function Q : [�1; 1] ! R, we associate the

weighted energy of a measure � on [�1; 1] as follows

I

Q

(�) =

ZZ

log

1

js� tj

d�(s)d�(t) + 2

Z

Q(t)d�(t):(1.1)

The equilibriummeasure in the presence of the external �eld Q is the unique

probability measure �

Q

on [�1; 1] minimizing the weighted energy among

all probability measures. Thus

I

Q

(�

Q

) = minfI

Q

(�) : � 2 P([�1; 1])g(1.2)

where P([�1; 1]) denotes the class

P([�1; 1]) = f� : � is a Borel probability measure on [�1; 1]g:

1
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The determination of the support of the equilibrium measure is a major

step in obtaining the measure. As described by Deift [2, Chapter 6] the in-

formation that the support consists of N disjoint closed intervals, allows one

to set up a system of equations for the endpoints, from which the endpoints

may be calculated. Knowing the endpoints, the equilibrium measure may

be obtained from a Riemann-Hilbert problem or, equivalently, a singular

integral equation.

There are two general useful facts about the equilibrium measure. The

�rst one, due to Mhaskar and Sa� [12], says that for a convex external

�eld, the support is always one single interval. The other one, due to Deift,

Kriecherbauer and McLaughlin [3], says that for a real analytic external

�eld, the support always consists of a �nite number of intervals. The actual

determination of this number is a nontrivial problem. To illustrate the

di�culties, Deift, Kriecherbauer and McLaughlin considered explicitly the

families of monomial external �elds Q(x) = �cx

n

with c 6= 0, n 2 N and

x 2 [�1; 1].

In the even case (n = 2m) the external �eld is convex if c < 0, and

therefore the support is a single interval. For c > 0, the external �eld is

concave, and the analysis becomes more involved. Independently from [3],

this case was considered in [9], and it was shown that for every c > 0,

there are at most three intervals in the support of the equilibrium measure.

The same result was also found to be valid for the nonsmooth (i.e. not real

analytic) external �elds Q(x) = �cjxj

�

with � � 1 not necessarily an even

integer.

In the odd case (n = 2m + 1) the external �eld is an odd function, and,

by symmetry, we may restrict attention to c > 0. In this case the results

of [3] were extended to the full range of parameters in [1]. For all c and all

odd integers n, it was shown that the support of the equilibrium measure

consists of at most two intervals.

It is the aim of the present paper to study the nonsmooth analogues of

�cx

2m+1

given by

Q

�;c

(x) := �c sign(x)jxj

�

=

�

cjxj

�

for x 2 [�1; 0];

�cx

�

for x 2 [0; 1];

(1.3)

with a real number � � 1 and c > 0. The functions (1.3) are both non-

convex and nonsmooth, and therefore it is of interest to develop methods to

determine the nature of the support of the equilibrium measures associated

with these external �elds.

Our �rst theorem presents a su�cient condition which ensures that the

support of the equilibrium measure is the union of at most two intervals.

To formulate it, we use C

1+"

([�1; 1]) to denote the class of di�erentiable

functions on [�1; 1], whose derivative satis�es a H�older condition for some
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positive exponent. Thus Q 2 C

1+"

([�1; 1]) if and only if

jQ

0

(x)�Q

0

(y)j � Cjx� yj

"

; x; y 2 [�1; 1]

for some " > 0 and some positive constant C independent of x and y.

Theorem 1.1. Let Q 2 C

1+"

([�1; 1]). Suppose that there exists a number

a

1

2 [�1; 1] such that

(a) Q is convex on [�1; a

1

], and

(b) for every a 2 [�1; a

1

], there is t

0

2 [a

1

; 1], such that the function

t 7!

1

�

{

Z

1

a

Q

0

(s)

s� t

p

(1� s)(s� a)ds(1.4)

is non-increasing on (a

1

; t

0

) and non-decreasing on (t

0

; 1). The integral

in (1.4) is a principal value integral.

Then supp (�

Q

) is the union of at most two intervals.

Remark 1.2. For the special case a

1

= �1, Theorem 1.1 was given already

in [9, Theorem 2].

In our second main result we show that the conditions of Theorem 1.1 are

satis�ed for the external �elds (1.3).

Theorem 1.3. For � � 1 and c > 0, let Q

�;c

be given by (1.3). Then for

every a 2 [�1; 0], there exists t

0

2 [0; 1) such that

1

�

{

Z

1

a

Q

0

�;c

(s)

s� t

p

(1� s)(s� a)ds(1.5)

decreases on (0; t

0

) and increases on (t

0

; 1). As a result, the support of �

Q

�;c

consists of at most two intervals.

Remark 1.4. For � an odd integer, Theorem 1.3 was established in [1]. The

proof for this special case di�ers from the one given here in several respects.

For example, the function (1.5) is a polynomial in t whenever � is an odd

integer. The proof of the decreasing/increasing property of (1.5) was based

in [1] on the calculation of the polynomial coe�cients and the Descartes'

rule of signs for polynomials.

Another di�erence between [1] and the present paper is that in [1] the

problem was viewed in terms of the parameter c. Quite complicated per-

turbation arguments were used to obtain from the decreasing/increasing

property of (1.5) the conclusion that the support consists of at most two

intervals. Here we use Theorem 1.1 and this simpli�es the arguments con-

siderably, also in the case where � is an odd integer.

Remark 1.5. To view the problem in terms of the parameter c is quite

natural, since there is a monotonicity with respect to c. To be precise,

if Q is �xed then the support supp (�

cQ

) is decreasing as c increases, see
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[1] or [14]. Using this, we can show the following behavior of the support

depending on the parameter in case � > 1. There exist three critical values

0 < c

1

< c

2

< c

3

depending on � such that:

(a) For 0 < c � c

1

, the support supp (�

Q

�;c

) is equal to the full interval

[�1; 1].

(b) For c

1

< c � c

2

, there exists a 2 (�1; 0) such that

supp (�

Q

�;c

) = [a; 1]:

(c) For c

2

< c < c

3

, there exist a

1

, b

1

and a

2

such that �1 < a

1

< b

1

<

a

2

< 1, a

1

< 0, and

supp (�

Q

�;c

) = [a

1

; b

1

] [ [a

2

; 1]:

(d) For c � c

3

, there exists a 2 (0; 1) such that

supp (�

Q

�;c

) = [a; 1]:

See [1, Theorem 1.1] where this was shown for odd integers � � 3.

Note that for � = 1, the external �eld (1.3) is convex and the support of

�

Q

1;c

is an interval containing 1 for every c > 0.
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2. The Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1.

2.1. Preliminaries. Let Q 2 C

1+"

([�1; 1]) be �xed. The equilibriummea-

sure �

Q

is characterized by the Euler-Lagrange variational conditions asso-

ciated with the extremal problem (1.2), which are

U

�

(x) +Q(x) = F for x 2 supp (�);(2.1)

U

�

(x) +Q(x) � F for x 2 [�1; 1];(2.2)

where F is a constant and

U

�

(x) =

Z

log

1

jx� tj

d�(t)(2.3)

denotes the logaritmic potential of �, see [2, 14]. The equilibrium measure

�

Q

is the only measure from P([�1; 1]) satisfying (2.1) and (2.2) for some

constant F .

If supp (�

Q

) = � and if �

Q

has a density v, then the equation (2.1) yields

Z

�

log jx� tj v(t)dt = Q(x)� F; x 2 �:(2.4)
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Then there is a unique constant F , such that the integral equation (2.4) has

a solution v(t) satisfying

Z

�

v(t)dt = 1:(2.5)

If � consists of a �nite number of nondegenerate closed intervals, then (2.4)

may be di�erentiated for x in the interior of � (sinceQ

0

is H�older continuous)

to give the singular integral equation

{

Z

�

v(t)

x� t

dt = Q

0

(x); x 2 int�:(2.6)

It is well-known, see [7, x42.3], that the general solution of (2.6) depends on

N parameters, where N is the number of intervals in �. These parameters

are uniquely determined by the normalization (2.5) and the conditions that

the constant F in (2.4) should be the same on each interval of �. We also

recall that the solutions of (2.6) are H�older continuous on the interior of �,

and may become unbounded at endpoints of �, cf. [7, x5, x42.3].

If we do not know that � is the support of �

Q

, we can still consider the

function v(t) determined by equations (2.4) and (2.5). Then in general the

function v(t) will not be non-negative on �. Thus v(t) is the density of a

signed measure � that depends on �:

d�(t) = d�

�

(t) = v(t)dt:

The signed measure �

�

satis�es

supp (�

�

) � �;

Z

d�

�

= 1;(2.7)

and it minimizes the weighted energy I

Q

(�) among all signed measures sat-

isfying (2.7).

For the special case � = [a; 1], with a 2 [�1; 1), we have that

d�

�

dt

= v(t) =

1

�

p

(1� t)(t� a)

[1 +G(t)] ; a < t < 1;(2.8)

with

G(t) =

1

�

{

Z

1

a

Q

0

(s)

s� t

p

(1� s)(s� a)ds;(2.9)

see [7, x42.3] or [16, x4.3]. Note that (2.9) is equal to the function from

(1.4).

Next, we recall the notion of balayage of a measure. The balayage of a

nonnegative measure � with compact support and continuous potential onto

a set � of positive capacity, is the unique measure �̂ such that supp (�̂) � �,

k�k = k�̂k and for some constant c,

U

�̂

(x) = U

�

(x) + c; for quasi every x 2 �:(2.10)
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Here quasi every means with the possible exception of a set of capacity

zero. We refer the reader to [11, 13, 14] for these and other notions from

logarithmic potential theory. Instead of �̂ we also write Bal(�; �). For a

signed measure � with Jordan decomposition � = �

+

� �

�

, the balayage of

� onto � is

Bal(�; �) = Bal(�

+

; �)�Bal(�

�

; �)

provided the balayages of �

+

and �

�

exist.

From their de�ning properties it is then easy to see that the measures �

�

are related by balayage. That is, if �

1

� �

2

, then

�

�

1

= Bal(�

�

2

; �

1

):(2.11)

The following result will be used in the proof of Theorem 1.1 below. We

say that two sets A and B are quasi-equal, if A nB and B nA have capacity

zero.

Lemma 2.1. Let � and �

n

, n 2 N, be closed subsets of [�1; 1] having

positive capacity such that

� =

\

n

[

k�n

�

k

(2.12)

and � is quasi-equal to

[

n

\

k�n

�

k

:(2.13)

Then the following hold.

(a) For every �nite measure � with compact support and continuous po-

tential, we have

lim

n!1

Bal(�; �

n

) = Bal(�; �)

with convergence in the sense of weak

�

convergence of measures on

[�1; 1].

(b) If � and �

n

, n 2 N, are �nite unions of closed intervals, then

lim

n!1

�

�

n

= �

�

in the sense of weak

�

convergence of signed measures.

Proof. (a) Let us write �

n

= Bal(�; �

n

). Then by (2.10), we have for some

constant c

n

,

U

�

n

(x) = U

�

(x) + c

n

for quasi every x 2 �

n

:

By weak

�

compactness, we may assume that (�

n

) converges, say with weak

�

limit �

�

. Then k�

�

k = k�k and because of (2.12) we have supp (�

�

) � �.

The lower envelope theorem [14] says that

U

�

�

(x) = lim inf

n!1

U

�

n

(x) for quasi every x 2 C :
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Since � is quasi-equal to (2.13) it then follows that

U

�

�

(x) = U

�

(x) + lim inf

n!1

c

n

for quasi every x 2 �:

Then lim inf c

n

is �nite and it follows that �

�

is the balayage of � onto �.

(b) Let �

0

= �

[�1;1]

. The positive and negative parts of �

0

in the Jordan

decomposition �

0

= �

+

0

� �

�

0

are compactly supported. They also have

continuous potentials. Indeed, the function G from (2.9) (with a = �1)

is continuous, and therefore it is bounded on [�1; 1]. Then it follows from

the representation (2.8){(2.9) for �

0

, that both �

+

0

and �

�

0

are bounded

above by a constant times the measure 1=(�

p

1� t

2

)dt. This measure has

a continuous potential | in fact its potential is constant on [�1; 1] | and

therefore the potentials of �

+

0

and �

�

0

are continuous as well, see [6, Lemma

5.2]. Thus it follows from part (a) that

Bal(�

+

0

; �

n

)

�

! Bal(�

+

0

; �)

and

Bal(�

�

0

; �

n

)

�

! Bal(�

�

0

; �):

Then

Bal(�

0

; �

n

)

�

! Bal(�

0

; �):

Since �

�

is equal to the balayage of �

0

onto �, and similarly �

�

n

is the

balayage of �

0

onto �

n

, part (b) follows. �

2.2. A lemma on convexity. The convexity assumption (a) of Theorem

1.1 will be used via the following lemma.

Lemma 2.2. Let Q 2 C

1+"

([�1; 1]). Let � � [�1; 1] be a �nite union of

nondegenerate closed intervals. Let � = �

�

be the signed measure associated

with �, as described in Section 2.1, and let v be the density of �. Suppose

that [a; b] � � and that

(a) Q is convex on [a; b],

(b) v(a) � 0, and v(b) � 0,

(c) v(t) � 0 on � n [a; b].

Then v(t) > 0 for all t 2 (a; b).

Remark 2.3. The density v is continuous on the interior of �, and may

become unbounded (�1) at endpoints of �. The assumption (b) is also

satis�ed if v(a) = +1 in case a is an endpoint, and similarly for b.

Proof. First, we reduce the problem to the case � = [a; b]. Write � = �

1

+�

2

,

where �

1

is the restriction of � to [a; b] and �

2

the restriction to � n [a; b].

From (2.4) we get

U

�

1

(x) +Q

1

(x) = F for x 2 [a; b];
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where

Q

1

(x) = U

�

2

(x) +Q(x); x 2 [a; b]:

The measure �

2

is nonnegative by assumption (c). Then it is easy to see

from (2.3) that the logarithmic potential U

�

2

is convex on [a; b]. Thus Q

1

is

convex on [a; b] because of assumption (a). The potential U

�

2

is real analytic

on the open interval (a; b), and therefore Q

0

1

satis�es a H�older condition on

(a; b). At the endpoins a and b, Q

0

1

could have a singularity of logarithmic

type, but this will not a�ect the arguments that follow. In particular, the

representation (2.14) below, remains valid, cf. [16, x4.3].

Therefore, we have reduced the proof of the lemma to the case when � =

[a; b]. Without loss of generality, we may also assume that [a; b] = [�1; 1].

Then, as in (2.8), the density v is given by

v(t) =

1

�

p

1� t

2

[1 +G(t)](2.14)

and

G(t) =

1

�

{

Z

1

�1

Q

0

(s)

s� t

p

1� s

2

ds:

In the principal value integral we remove the singular part as follows

G(t) =

1

�

Z

1

�1

Q

0

(s)�Q

0

(t)

s� t

p

1� s

2

ds+

Q

0

(t)

�

{

Z

1

�1

1

s� t

p

1� s

2

ds:

The remaining principal value integral we write as

{

Z

1

�1

1� s

2

s� t

ds

p

1� s

2

=

Z

1

�1

(1� s

2

)� (1� t

2

)

s� t

ds

p

1� s

2

= �

Z

1

�1

s+ t

p

1� s

2

ds;

where we used the fact that

{

Z

1

�1

1

s� t

ds

p

1� s

2

= 0:

Thus

G(t) =

1

�

Z

1

�1

Q

0

(s)�Q

0

(t)

s� t

p

1� s

2

ds�

Q

0

(t)

�

Z

1

�1

s+ t

p

1� s

2

ds:(2.15)

Next, we have that

�

1 + t

2

�

G(1) +

�

1� t

2

�

G(�1) = �

�

1 + t

2

�

1

�

Z

1

�1

Q

0

(s)(1 + s)

ds

p

1� s

2

+

�

1� t

2

�

1

�

Z

1

�1

Q

0

(s)(1� s)

ds

p

1� s

2

:

Combining the two integrals, and using

�

�

1 + t

2

�

(1 + s) +

�

1� t

2

�

(1� s) = �(s+ t);
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we obtain

�

1 + t

2

�

G(1) +

�

1� t

2

�

G(�1) = �

1

�

Z

1

�1

Q

0

(s)

s+ t

p

1� s

2

ds:(2.16)

From (2.15) and (2.16) we learn that

G(t)�

�

1 + t

2

�

G(1)�

�

1� t

2

�

G(�1)

=

1

�

Z

1

�1

Q

0

(s)�Q

0

(t)

s� t

p

1� s

2

ds�

1

�

Z

1

�1

(Q

0

(t)�Q

0

(s))

s+ t

p

1� s

2

ds

=

1

�

Z

1

�1

Q

0

(t)�Q

0

(s)

t� s

p

1� s

2

ds�

1

�

Z

1

�1

Q

0

(t)�Q

0

(s)

t� s

t

2

� s

2

p

1� s

2

ds

=

1

�

Z

1

�1

Q

0

(t)�Q

0

(s)

t� s

�

p

1� s

2

�

t

2

� s

2

p

1� s

2

�

ds

=

1

�

Z

1

�1

Q

0

(t)�Q

0

(s)

t� s

1� t

2

p

1� s

2

ds:(2.17)

The convexity of Q implies that

Q

0

(t)�Q

0

(s)

t� s

� 0

for every s and t in (�1; 1). Then for t 2 (�1; 1), the integral (2.17) is

non-negative and this proves the inequality

G(t) �

�

1 + t

2

�

G(1) +

�

1� t

2

�

G(�1); �1 < t < 1:(2.18)

Actually, we have strict inequality in (2.18), unless Q

0

is a constant. Indeed,

if equality holds in (2.18) at a certain t 2 (�1; 1), then it follows from (2.17)

that

Q

0

(t)�Q

0

(s)

t� s

= 0

for almost all s 2 (�1; 1). Since Q

0

is continuous, this can only happen if

Q

0

(s) = Q

0

(t) for all s, and this means that Q

0

is constant.

Thus, if Q

0

is not a constant, we see that

G(t) >

�

1 + t

2

�

G(1) +

�

1� t

2

�

G(�1); �1 < t < 1;(2.19)

and then it follows from assumption (b) and (2.14) that 1 + G(1) � 0 and

1+G(�1) � 0. The right-hand side of (2.19) is a convex combination of G(1)

and G(�1). Thus it follows from (2.19) that 1+G(t) > 0 for all t 2 (�1; 1).

In view of (2.14), we then have v(t) > 0 in case Q

0

is not a constant.
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If Q

0

is a constant, say Q

0

(t) = k, then we obtain from (2.15) that G(t) =

�kt. Hence

v(t) =

1� kt

�

p

1� t

2

; �1 < t < 1:

Then from v(�1) � 0 and v(1) � 0, we get jkj � 1, and then clearly v(t) > 0

on (�1; 1). This completes the proof of Lemma 2.2. �

2.3. Proof of Theorem 1.1.

Proof. We write � = �

Q

. Let us �rst assume that supp (�) � [a

1

; 1]. From

the assumption (b) of Theorem 1.1 with a = a

1

, we have that there exists

t

0

2 (a

1

; 1), such that

1

�

Z

1

a

1

Q

0

(s)

s� t

p

(1� s)(s� a

1

)ds

is non-increasing on (a

1

; t

0

) and non-decreasing on (t

0

; 1). As no points of

supp (�) lie to the left of a

1

, we may apply [9, Theorem 2] on the restricted

interval [a

1

; 1] and deduce that supp (�) is either an interval containing a

1

,

or an interval containing 1, or the union of an interval containing a

1

with

an interval containing 1. This proves the theorem in case the support of �

is contained in [a

1

; 1].

For the rest of the proof, we shall assume that supp (�) is not contained

in [a

1

; 1]. Let

a := minfx : x 2 supp (�)g(2.20)

so that a < a

1

.

For every pair (p; q) with a < p � q � 1, we let v

p;q

be the density of the

signed measure �

�

with � = [a; p] [ [q; 1] if q < 1 and � = [a; p] if q = 1.

See Section 2.1 for the de�nition of �

�

.

We introduce the set Z consisting of all pairs (p; q) satisfying the following

four conditions:

(a) a < p � q � 1 and q � a

1

.

(b) supp (�) � [a; p] [ [q; 1].

(c) If q < 1 then �

p

(1� t)(t� a)v

p;q

(t) is non-decreasing for t 2 (q; 1).

(d) If p > a

1

then �

p

(1� t)(t� a)v

p;q

(t) is non-increasing for t 2 (a

1

; p).

We observe �rst that Z 6= ;. Indeed, from the assumption (b) of Theorem

1.1 it follows that there exists t

0

2 [a

1

; 1] such that

1

�

{

Z

1

a

Q

0

(s)

s� t

p

(1� s)(s� a)ds; a < t < 1

is non-increasing on (a

1

; t

0

) and non-decreasing on (t

0

; 1). Since for a < t <

1, we have

�

p

(1� t)(t� a)v

t

0

;t

0

(t) = 1 +

1

�

{

Z

1

a

Q

0

(s)

s� t

p

(1� s)(s� a)ds;
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by (2.8) and (2.9), we see that properties (c) and (d) are satis�ed for the

pair (t

0

; t

0

). Properties (a) and (b) are trivially satis�ed, so that (t

0

; t

0

)

belongs to Z. Hence Z is non-empty indeed.

Next, we want to show that Z is closed. To this end, we take (p; q) 2

�

Z

and we choose sequences (p

n

) and (q

n

) such that

(p

n

; q

n

) 2 Z; p

n

! p; q

n

! q:

We verify that the properties (a){(d) hold for the pair (p; q). Since (p

n

; q

n

)

belongs to Z, we have by (b) that [a; p

n

] [ [q

n

; 1] contains the support of �

for every n. It then follows that [a; p] [ [q; 1] contains supp (�). Thus (b)

holds. Since a 2 supp (�) and supp (�) does not have isolated points, we

�nd that p > a. The other inequalities of (a) are immediate. To establish

(c) and (d), we �rst note that by Lemma 2.1 we have in the sense of weak

�

convergence of signed measures

v

p

n

;q

n

(t)dt

�

! v

p;q

(t)dt:(2.21)

Now suppose that (c) does not hold. Then there exist t

1

and t

2

with q <

t

1

< t

2

< 1 such that

�

p

(1� t

1

)(t

1

� a)v

p;q

(t

1

) > �

p

(1� t

2

)(t

2

� a)v

p;q

(t

2

):

Since v is continuous, there exists " > 0 such that

�

Z

t

1

+"

t

1

�"

p

(1� t)(t� a)v

p;q

(t)dt > �

Z

t

2

+"

t

2

�"

p

(1� t)(t� a)v

p;q

(t)dt:

We may assume that " is chosen su�ciently small so that [t

1

� "; t

1

+ "] and

[t

2

� "; t

2

+ "] are disjoint intervals that are both contained in (q; 1). From

the weak

�

convergence (2.21) it then easily follows that we must have for n

large enough,

�

Z

t

1

+"

t

1

�"

p

(1� t)(t� a)v

p

n

;q

n

(t)dt > �

Z

t

2

+"

t

2

�"

p

(1� t)(t� a)v

p

n

;q

n

(t)dt:

For n large enough, we also have q

n

< t

1

� ". Then we arrive at a con-

tradiction, since (c) holds for the pair (p

n

; q

n

). Thus property (c) holds for

the pair (p; q). In a similar way, it follows that (d) holds. Therefore Z is a

closed set.

Since Z is a closed non-empty subset of [a; 1]� [a

1

; 1], we can �nd a pair

in Z for which the di�erence q � p is maximal. Such a maximizer may not

be unique (when we have �nished the proof, we will see that it is), but we

take any such pair and denote it by (p

�

; q

�

). Let � = [a; p

�

] [ [q

�

; 1] in case

q

�

< 1, and � = [a; p

�

] in case q

�

= 1. For short, we write v

�

instead of

v

p

�

;q

�

. Our aim is to show that supp (�) = �. Having established that, it

will follow from the uniqueness of � that (p

�

; q

�

) is the only maximizer for

the di�erence q � p. We prove that supp (�) = � by showing that v

�

is

positive on the interior of �.
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We consider several cases. First we assume q

�

< 1 and we consider the

interval (q

�

; 1). Suppose that v

�

is nonpositive somewhere on (q

�

; 1). Then

by property (c) it follows that there exists " 2 (0; 1 � q

�

) such that v

�

is

nonpositive on [q

�

; q

�

+ "]. We claim that (p

�

; q

�

+ ") satis�es the conditions

(a){(d). It is clear that (a) is satis�ed. For (b), we recall from [9, Lemma

3] that

supp (�) � fx : v

�

(x) > 0g � [a; p

�

] [ [q

�

+ "; 1]:

To see (c) and (d), we note that v

p

�

;q

�

+"

is obtained from v

�

by taking the

balayage of v

�

onto [a; p

�

] [ [q

�

+ "; 1]. Since v

�

is nonpositive on the gap

(p

�

; q

�

+ "), we see using [9, Lemma 4 (2)], that this process preserves the

properties (c) and (d). Thus (p

�

; q

�

+ ") 2 Z. However, this contradicts

the maximality of q

�

� p

�

. Thus our assumption that v

�

is nonpositive

somewhere in (q

�

; 1) is incorrect, and it follows that v

�

is positive on the

interval (q

�

; 1).

Now consider the case p

�

> a

1

. In a similar way as above it follows that

v

�

is positive on (a

1

; p

�

). Because of property (d) and the continuity of v

�

,

we �nd v

�

(a

1

) > 0. Since

supp (�) � fx : v

�

(x) > 0g;

see [9, Lemma 3], and a 2 supp (�), we also have v

�

(a) � 0. Since Q is

convex on [a; a

1

] and v

�

� 0 outside [a; a

1

], it follows from Lemma 2.2 that

v

�

> 0 on (a; a

1

). So we have shown that v

�

> 0 on the interval (a; p

�

) in

case p

�

> a

1

.

What remains is the case p

�

� a

1

. If v

�

(p

�

) < 0, then v

�

is negative on

[p

�

� "; p

�

] for some " > 0 with " < p

�

� a. Then we may take the balayage

of this negative part onto [a; p

�

� "][ [q

�

; 1] and it follows as above that the

pair (p

�

� "; q

�

) belongs to Z. This is a contradiction. Thus v

�

(p

�

) � 0.

Since Q is convex on [a; p

�

] with v

�

(a) � 0, v

�

(p

�

), and v

�

� 0 outside of

[a; p

�

], it follows again from Lemma 2.2 that v

�

is positive on (a; p

�

).

Thus in both cases, we �nd that v

�

> 0 on (a; p

�

). We also proved that

v

�

> 0 on (q

�

; 1) in case q

�

< 1. Thus v

�

is positive on the interior of �. It

follows that supp (�) = �. This completes the proof of Theorem 1.1, since

� is the union of at most two intervals. �

3. The Proof of Theorem 1.3

Proof. We write Q = Q

�;c

. Clearly Q is convex on [�1; 0]. Let us set for

a 2 [�1; 0] and for t 2 [0; 1],
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G

�

(t) :=

1

c��

{

Z

1

a

Q

0

(s)

s� t

p

(1� s)(s� a)ds(3.1)

= �

1

�

Z

0

a

jsj

��1

p

(1� s)(s� a)

s� t

ds

�

1

�

{

Z

1

0

s

��1

p

(1� s)(s� a)

s� t

ds

=: I

1

+ I

2

:

Here the second integral I

2

is a principal value integral.

We have to prove that there exists t

�

2 [0; 1) so that G

�

decreases in

(0; t

�

) and increases in (t

�

; 1) (if t

�

= 0 then the �rst condition is an empty

one). We establish the following properties:

(i) G

�

(0) � 0;

(ii) G

�

(1) > 0;

(iii) For every � > 1, there is t

�

2 [0; 1), such that G

0

�

(t) < 0 on (0; t

�

),

G

0

�

(t) > 0 on (t

�

; 1), and G

00

�

(t) � 0 on (t

�

; 1).

Clearly, then (iii) implies the decreasing/increasing property of G

�

.

To show (i), we write

G

�

(0) = �

1

�

�

Z

1

0

s

��2

p

(1� s)(s� a)ds�

Z

0

a

jsj

��2

p

(1� s)(s� a)ds

�

and in the second integral we make the change of variables s 7! as, to �nd

G

�

(0) = �

1

�

Z

1

0

s

��2

p

1� s

�

p

s� a� jaj

��

1

2

p

1� as

�

ds:

Since

p

s� a is greater than or equal to jaj

��

1

2

p

1� as for s in the interval

[0; 1], we �nd that G

�

(0) � 0, as claimed in (i). Note that G

�

(0) = 0 if and

only if a = �1.

Next, it is easy to see from (3.1) that

G

�

(1) =

1

�

Z

1

a

jsj

��1

p

s� a

p

1� s

ds > 0;(3.2)

which establishes (ii) for all � � 1.

We now prove (iii) by induction on k = [�], where [�] denotes the integer

part of �.

For � = 1, we �nd by explicit calculation

G

1

(t) = �

1

�

{

Z

1

a

p

(1� s)(s� a)s� t

d

s = t�

1 + a

2

:
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Then (iii) is satis�ed with t

1

= t

�

= 0. Suppose now 1 < � < 2. Consider

the analytic function

f(z) := z

��1

[(z � 1)(z � a)]

1=2

de�ned for z 2 C n (�1; 1], where that branch of the square root is chosen

which is positive for real z > 1. Then the principal value integral I

2

may be

written as

I

2

= �

1

2�i

Z




f(z)

z � t

dz

with the contour 
 going from 0 to 1 on the upper side of the cut (�1; 1]

and back from 1 to 0 on the lower side.

Figure 1. The contours 
 and �

R

.

We transform 
 into the contour �

R

going from 0 to �R on the upper

side of the cut, continuing along the big circle C

R

of radius R going to �R

on the lower side of the cut, and then going from �R to 0 on the lower side

of the cut. We choose R > 1. See Figure 1 for 
 and �

R

.

The contribution from the upper and lower sides of the cut comes from

the imaginary part of f , which is

=f(x+ i0) =

8

<

:

sin(��)jxj

��1

p

(1� x)(a� x) for x < a;

� cos(��)jxj

��1

p

(1� x)(x� a) for a < x < 0;
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and =f(x� i0) = �=f(x+ i0). Therefore

I

2

= �

1

2�i

Z

C

R

f(z)

z � t

dz

+

sin��

�

Z

a

�R

jxj

��1

p

(1� x)(a� x)

x� t

dx

�

cos��

�

Z

0

a

jxj

��1

p

(1� x)(x� a)

x� t

dx:

Thus we have shown that

G

�

(t) = �

1

2�i

Z

C

R

f(z)

z � t

dz

+

sin��

�

Z

a

�R

jxj

��1

p

(1� x)(a� x)

x� t

dx(3.3)

�

�

1 + cos��

�

�

Z

0

a

jxj

��1

p

(1� x)(x� a)

x� t

dx:

From (3.3), we obtain for the second derivative

G

00

�

(t) = �

1

�i

Z

C

R

f(z)

(z � t)

3

dz

+

2 sin��

�

Z

a

�R

jxj

��1

p

(1� x)(a� x)

(x� t)

3

dx(3.4)

�

2 (1 + cos��)

�

Z

0

a

jxj

��1

p

(1� x)(x� a)

(x� t)

3

dx:

We let R!1 in (3.4). Then the integral over the circle C

R

tends to 0, since

the integrand behaves like z

��3

as jzj ! 1. Then we get the representation

G

00

�

(t) =

2 sin��

�

Z

a

�1

jxj

��1

p

(1� x)(a� x)

(x� t)

3

dx

�

2 (1 + cos��)

�

Z

0

a

jxj

��1

p

(1� x)(x� a)

(x� t)

3

dx:(3.5)

Note that the improper integral is convergent because � < 2. Since 1 < � <

2, we have sin�� < 0. Also (x � t)

3

< 0 whenever x < 0 < t. Thus we

conclude that

G

00

�

(t) > 0; for t 2 (0; 1);(3.6)

in case 1 < � < 2. Thus G

�

is strictly convex on (0; 1). Since G

�

(0) < G

�

(1)

by properties (i) and (ii) the property (iii) follows for � 2 (1; 2). Thus we

have established (iii) whenever k = [�] = 1.



16 S. B. DAMELIN, P. D. DRAGNEV, AND A. B. J. KUIJLAARS

Now let k � 2 and suppose that (iii) is true for all � with [�] = k � 1.

Let � 2 [k; k + 1). From (3.1) we obtain for 0 < t < 1,

G

�

(t) = �

1

�

{

Z

1

a

jxj

��1

� tjxj

��2

+ tjxj

��2

x� t

p

(1� x)(x� a) dx

= �

1

�

Z

1

a

jxj

��1

� tjxj

��2

x� t

p

(1� x)(x� a) dx+ tG

��1

(t)

=: F (t) + tG

��1

(t):(3.7)

We can write that

F (t) := �

1

�

Z

1

a

jxj � t

x� t

jxj

��2

p

(1� x)(x� a) dx

=

1

�

Z

0

a

x+ t

x� t

jxj

��2

p

(1� x)(x� a) dx

�

1

�

Z

1

0

jxj

��2

p

(1� x)(x� a) dx;

from which we obtain

F

0

(t) =

1

�

Z

0

a

2x

(x� t)

2

jxj

��2

p

(1� x)(x� a) dx < 0; 0 < t < 1(3.8)

and

F

00

(t) =

1

�

Z

0

a

4x

(x� t)

3

jxj

��2

p

(1� x)(x� a) dx > 0; 0 < t < 1:(3.9)

Di�erentiating (3.7) we get

G

0

�

(t) = F

0

(t) +G

��1

(t) + tG

0

��1

(t)(3.10)

and

G

00

�

(t) = F

00

(t) + 2G

0

��1

(t) + tG

00

��1

(t):(3.11)

By the inductive hypothesis, there exists t

��1

, such that G

0

��1

(t) is nega-

tive on (0; t

��1

) and positive on (t

��1

; 1), as well as G

00

��1

(t) � 0 on (t

��1

; 1).

Suppose �rst that t

��1

> 0. Since G

�

(0) � 0 and G

0

��1

(t) < 0 on

(0; t

��1

), we have that G

��1

(t) is strictly decreasing on (0; t

��1

), and there-

fore is negative there. This, together with (3.8) and (3.10), implies that

G

0

�

(t) < 0 on (0; t

��1

]. On the other hand from (3.9), (3.11) and the induc-

tive hypothesis, we obtain that G

00

�

(t) > 0 on [t

��1

; 1). This implies that G

�

is strictly convex on (t

��1

; 1). Since G

�

and G

0

�

are negative on (0; t

��1

],

and G

�

(1) > 0, we see that there exists t

�

2 (t

��1

; 1), such that G

0

�

(t) is

negative on (0; t

�

) and positive on (t

�

; 1). It is clear also that G

00

�

(t) > 0 on

(t

�

; 1). Thus property (iii) holds in case t

��1

> 0.
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If t

��1

= 0, then we still use (3.9) and (3.11) to derive G

00

�

(t) > 0 on (0; 1),

which implies that G

�

is strictly convex on [0; 1]. Since G

�

(0) < G

�

(1), the

property (iii) follows as well.

The property (iii) is now established whenever [�] = k. By induction

we derive that it is true for every k � 1, that is it holds for every � � 1.

Thus there exists t

0

2 [0; 1) such that (1.5) decreases on (0; t

0

) and increases

on (t

0

; 1). Since Q is convex on [�1; 0], the conditions of Theorem 1.1 are

satis�ed with a

1

= 0. It follows from Theorem 1.1 that the support of the

equilibrium measure consists of at most two intervals. �
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