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Abstract
The purpose of this paper is to provide new and simplified statements of
local Paley–Wiener theorems on the (n − 1)-dimensional unit sphere realized
as a subset of n = 2, 3 Euclidean space. More precisely, given a function
f : C

n → C, n = 2, 3, whose restriction to an n − 1 sphere is analytic,
we establish necessary and sufficient conditions determining whether f is the
Fourier transform of a compactly supported, bounded function F : R

n → C.
The essence of this investigation is that, because of the local nature of the
problem, the mapping f → F is not in general invertible and so the problem
cannot be studied via a Fourier integral. Our proofs are new.

1. Introduction

A problem of interest in radiation and scattering problems is that of determining the support
of a compactly supported, square integrable scattering potential, F : R

n → C, n = 2, 3, from
far field data given by a function f : C

n → C.
Suppose, a priori, that we know that for every vector z ∈ Sn−1, the (n − 1)-dimensional

unit sphere, realized as a proper subset of R
n, the far field data f are given locally by an

integral such as

f (z) =
∫

τ

F (x) e−ik(z·x) dn(x) (1.1)

for some bounded set τ ∈ R
n and bounded, compactly supported F : R

n → C with support
in τ . In practice, z is the unit vector in the direction where f is measured and k is an absolute
real constant. The inverse support problem, as treated for example in [4, 5, 10, 21] and the
references cited therein, studies the problem of determining bounds for the support of the set
τ , assuming the model (1.1). For many applications, assumption (1.1) on the given f is strong
and often not obvious from the given data.
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The purpose of this paper is to provide new and simplified statements of local Paley–
Wiener theorems on Sn−1. More precisely, given a function f : C

n → C, n = 2, 3, whose
restriction to Sn−1 is analytic, we establish necessary and sufficient conditions determining
whether f is the Fourier transform of a compactly supported, bounded function F : R

n → C.
The essence of this investigation is that, because of the local nature of the problem, the mapping
f → F is not in general invertible and so the problem cannot be studied via a Fourier integral.
Our proofs are new and use a beautiful interplay between plane wave expansions and Euclidean
geometrical arguments.

We will show that, provided the restriction of f to Sn−1 is analytic and f satisfies a growth
condition of exponential type at infinity, then (1.1) holds for some compact set τ ∈ R

n and
bounded F : R

n → C with compact support in τ . We also describe the smallest support sets
for which our results are best possible. Results of this type are typically known in the literature
as Paley–Wiener theorems [PW], see [8, 10, 17, 18, 21] and the references cited therein. In
this paper, we seek generalizations of [PW] in that we do not assume that f is entire nor that
its restriction to R

n is square integrable. The later assumptions are basic in [PW]. Indeed, we
show that (1) a growth condition of f of exponential type at infinity and (2) an assumption
that the restriction of f to Sn−1 is analytic are enough to deduce (1.1). In [PW], the function
F obtained is square integrable on R

n, compactly supported but not necessarily bounded.

1.1. Notation and structure of the paper

In order to motivate what follows, we need to introduce some further background and
machinery. Throughout, for any non-zero real sequences an and bn, we shall write an = O(bn)

if the ratio an/bn is uniformly bounded in n and an ∼ bn if an/bn → 1, n → ∞. Similar
notation will be used for functions and sequences of functions. Throughout, we shall say that
a function f : C

n → C is of exponential type a > 0 at infinity, if

|f (z)| = O(ea|z|), |z| → ∞.

Finally, given f : C
n → C, by fA, we will always mean the restriction of f to a proper subset

A of C
n. Given x ∈ R

n, by the vector x, we will mean the point x with a given direction from
the origin. Similar notation will be used for complex vectors. Associated with the Euclidean
metric on R

n and C
n, we have the usual inner product and, in what follows, v1 · v2 will denote

the usual inner product of two vectors v1 and v2 in R
n or C

n and |.| will denote the usual
Euclidean norm induced by this inner product. We will also use the convention of denoting
the two real polar axes in a Cartesian coordinate system by x1 and x2. Throughout, L2(R

n)

will denote the class of all square integrable functions F : R
n → C.

The remainder of this paper is organized as follows. In section 3, we discuss classical
Paley theorems. In section 4, we state our local Paley–Wiener theorems and problems with
local inversion, and section 5 is devoted to the proofs of our results.

2. The Paley–Wiener theorems in R
n

The relationship of the growth of an entire function with the properties of its Fourier transform
is embodied in the well-known Paley–Wiener theorems. For functions of complex variable,
we have

Theorem 1 [PW1]. A function f : C → C is an entire function of exponential type with its
restriction fR ∈ L2(R) iff

f (z) = 1√
2π

∫ b

a

F (x) e−ixz dx, z ∈ C.
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for some F ∈ L2(R) with support in [a, b]. Moreover, [a, b] is the smallest set containing the
support of F and

a = − lim sup
y→∞

log|f (−iy)|
y

, b = lim sup
y→∞

log|f (iy)|
y

.

Analogues of [PW1], which we denote for simplicity by [PW2], exist for n � 1 complex
variables. See for example [7, p 181, theorem 7.3.1] for a clear exposition of these results.

In what follows, we will need the notion of a support function of the smallest convex set
outside of which a compactly supported function F : R

n → C vanishes. This function is
defined by

ρ(u) := sup
x∈τF

(u · x)

where τF is the support of F and u ∈ R
n is a given unit vector. The function ρ(u) is used to

define a convex region τc,F ⊃ τF which is formed from tangent planes to τF having normal
vectors u and located at a distance ρ(u, τF ) from the origin.

It is clear that the function ρ depends on F via its support τF but since F is always fixed,
for ease of notation, we will drop this dependence henceforth.

3. Main results: local Paley–Weiner theorems, comparisons and problems with local
inversion

In this section, we state our main results which constitute generalizations of [PW] for n = 2, 3.
Following is our first result:

Theorem 2 [LPW1]. Let n = 2, 3 and let f : C
n → C be a function whose restriction to Sn−1

is analytic. Let k, a be positive numbers. Suppose that for any fixed real vector u ∈ Sn−1,

|f (z)| = O(eka(u·Im(z))), u · Im(z) → ∞, z ∈ C
n.

Then,

f (z) =
∫

Ba

F (x) e−ik(z·x) dnx, z ∈ Sn−1

where F is a bounded function supported in the closed ball Ba ∈ R
n with centre 0 and

radius a.

Remark 1.

(a) Note that in the statement of [LPW1], compared to that of [PW1], we use smoothness
properties of f only on Sn−1 to establish our result and square integrability and analyticity
of the restriction of f iff the given sphere is not required nor used in our results. The
function F obtained is both bounded and compactly supported in R

n. As z ∈ C
n and

u ∈ R
n, the inner product Im z · u is well defined.

(b) [LPW1] is similar to [9, theorems 9, 12, section 4] which were established earlier. In these
later results, the authors consider a wide class of distribution functions and study bounds
on their coefficients under similar smoothness assumptions to ours. The method of proof
in [9] uses a combination of clever and sophisticated machinery of Bessel and spherical
harmonics and is of independent interest. In particular, we mention that Bessel and
spherical harmonics allow for extensions from n = 2 to n = 3. As our proofs will show,
we are able to establish [LPW1] using different techniques which involve an interplay
between plane wave expansions and geometrical arguments. These later techniques also
provide a natural but different method to move from n = 2 to n = 3.
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(c) It is easy to establish a partial converse of [LPW1] which is the following: suppose

f (z) =
∫

Ba

F (x) e−ik(z· x) dnx, z ∈ C
n

where F is a bounded function supported in the closed ball Ba ∈ R
n with centre 0 and

radius a. Then,

|f (z)| = O(eka(u·Im(z))), u · Im(z) → ∞.

(d) [LPW1] stated above does not, in general, yield the smallest support volume for the
function F. However, the smallest convex support volume for this function can be obtained
in analogy with [PW2]. This is contained in theorem 3.

Theorem 3 [LPW2]. Let n = 2, 3, k be a positive constant and f : C
n → C be a function

whose restriction fSn−1 is analytic. Suppose that for any fixed real vector u ∈ Sn−1,

|f (z)| = O(ekρ(u)(u·Im(z))), u · Im(z) → ∞, z ∈ C
n.

Then,

f (z) =
∫

τc

F (x) e−ik(z·x) dnx, z ∈ Sn−1

where F is a bounded function supported in the convex region τc having support function
ρ(u, τc) for any vector u ∈ Sn−1.

Remark 2. [LPW2] is similar to [9, corollary 4.7]. The proof in this former paper uses, much
in the spirit of [9, theorems 9, 12], Bessel and spherical harmonics whereas our proof uses a
different method of proof which relies on geometry and wave expansions. We believe both
methods of proof to be of independent interest. It is also easy to see that, much as in [LPW1],
we have the following: suppose that

f (z) =
∫

τc

F (x) e−ik(z·x) dnx, z ∈ C
n

where F is a bounded function supported in the convex region τc having support function
ρ(u, τc) for any vector u ∈ Sn−1. Then,

|f (z)| = O(ekρ(u)(u·Im(z))), u · Im(z) → ∞.

3.1. Problems with local inversion

The new theorems [LPW1] and [LPW2] stated here are inherently different from the
conventional Paley–Wiener theorems [PW1] and [PW2]. For example, consider the case
where the function f (z) is the boundary value of an entire function G(ω) which satisfies the
conditions of the conventional Paley–Wiener theorem, i.e.,

f (z) = G(ω)|z=kω.

While each theorem guarantees that the associated function is the transform of a compactly
supported function in Rn, the supports for these two functions will, in general, be different.
Indeed, f (z) is totally independent of components of G(ω) which vanish on the sphere z = kω

so that while these components contribute to the overall support associated with G(ω) they
do not contribute to the support associated with f (z). Such components, which are known
as non-radiating sources, are well known to play an important role in inverse source and
scattering problems.
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The difference between the conventional and generalized Paley–Wiener theorems is also
apparent from the fact that the two functions f and F are reciprocally related via a Fourier
transform pair in the conventional Paley–Wiener theorem. On the other hand, in the new
theorems f can be computed from F via the boundary value of a Fourier transform but a
unique inverse mapping does not exist. Indeed, any non-radiating source supported within the
support of F can be added to F without changing f .

4. Proofs: local inversion via plane wave expansions and geometry

In this section, we present the proofs of our results. Our proofs are new and use a beautiful
interplay between plane wave expansions and geometrical arguments. In what follows, we
will often need to continue onto complex angles and so when doing this we assume that Sn

is extended to the complex sphere defined through the inner product 〈·, ·〉 = 1 rather than the
branch 〈·, ·〉1/2 = 1. As is well known, the first definition allows for analytic continuations
onto complex angles.

4.1. Construction of plane wave approximant

In this subsection, we construct a plane wave approximant which will prove important in what
follows. Before we do this, we find it convenient to briefly recall some elementary facts which
we will often use.

Recall z ∈ S1 iff z := cos(α)x̂1 + sin(α)x̂2, α ∈ R, where x̂1 and x̂2 are orthogonal and of
unit length. Here, |z|2 = z · z = cos(α)2 + sin(α)2 = 1 because of orthogonality. Similarly,
z ∈ S2 iff z = sin(α) cos(β)x̂1 + sin(α) sin(β)x̂2 + cos(α)x̂3, α, β ∈ R, where x̂1, x̂2 and x̂3

are again orthogonal and of unit length. Now let f : C
n → C be a function. Then, as is well

known, see [6], the restriction fSn−1 is analytic on Sn−1, iff it is analytic in the polar angles α

and β, respectively3. In what follows, see [3, pp 14–5], we will also need to employ the idea
of plane wave expansions of smooth solutions to the homogeneous Helmhotz equation

(∇2 + k2)(.)(x) = 0, x ∈ R
n (4.1)

where ∇2 is the Laplacian operator in Rn and k is a real positive parameter called the
‘wavenumber’, see [3]. Let now u ∈ Sn−1 be a unit vector and a > 0. In what follows,
we will consider a class of solutions to (4.1) in a half-space:

Uu,a := {x ∈ R
n : x2 = u · x > a}

4.2. LPW1: the case n = 2

In this subsection, we prove theorem 3 for n = 2. We begin with our first

Lemma 1 (plane wave expansion in R
2). Let u ∈ R

2 be a real unit vector and k, a > 0
positive numbers. Also let f : C

2 → C be a function whose restriction fS1 is analytic and
suppose that f satisfies the condition

|f (z)| = O(eka(u·Im z)), u · Im z → ∞, z ∈ C
2. (4.2)

Now define a plane wave expansion as follows: let

z := x̂1 sin α + x̂2 cos α, α ∈ R

3 We note that when Sn is extended to be complex, we follow the standard definitions of C
2 and C

3 as used, for
example, in [10, p 1533].
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for some orthogonal x̂1 and x̂2 of unit length in a Cartesian coordinate system where the polar
x2 axis is directed along the u direction. Set

φu(x) :=
∫ π

2 −i∞

− π
2 +i∞

f (z) eik(z·x) dα, x ∈ R
2. (4.3)

Then (4.3) converges uniformly throughout the half-space Uu,a , satisfies the homogeneous
Helmholtz equation (4.1) there and the following asymptotic condition:

φu(|x|z) ∼ − ei π
4√

8πk
f (z)

eik|x|
√|x| (4.4)

as k|x| → ∞ in Uu,a .

Proof. Because of (4.2), we readily have

|f (z) eik(z·x)| = O(e−k(x·u−a) Im z·u), u · Im z → ∞
= O(e−k(x·u−a)Im cos α), u · Im z → ∞.

We now note that Im cos α → ∞ when α → ±π/2 ∓ i∞ so that

lim
α→±π/2∓i∞

|f (z) eikz·x| = 0. (4.5)

As this convergence is exponential, it is easy to conclude that as long as u · x > a, the
integral (4.3) converges uniformly throughout the half-space Uu,a . Moreover, the function
φu(x) satisfies the homogeneous Helmholtz equation (4.1) throughout Uu,a since the plane
waves exp(ik(z · x)) satisfy (4.1). Next, we note that the integrand can be written in the form
i|x|(c cos(α) + s sin(α)) where the real vector x := (|x|c, |x|s) and c2 + s2 = 1. Then, the
critical points in the complex α plane occur where

−c sin(α) + s cos(α) = 0

or in other words α = φ + nπ where φ is an angle with cos(φ) = c, sin(φ) = s and n is an
arbitrary integer. So, there are an infinite number of critical points equally spaced along the
real axis in the complex α plane. To get an asymptotic expansion under the analytic condition
on f , we deform the path of integration to pass over the unique critical point in the real interval
−π/2 < α < π/2 with some expected different behaviour possibly if φ = π/2 mod π and
we apply the method of steepest descent, see figure 1. This gives the complete asymptotic
expansion in exponentials times descending powers of |x| as required. This completes the
proof of the lemma. �

Remark 3. The integrand in (4.3) is an analytic function of the integration variable α as well
as the real space coordinates x1, x2. It follows from this, and the fact that the integral converges
uniformly throughout the half-space Uu,a , that the function φu(x) is an analytic function of
x, regular throughout this half-space4. Moreover, due to the analyticity of the integrand, the
α contour of integration in (4.3) can be deformed between the end points −π/2 + i∞ and
π/2 − i∞ as shown. More precisely, if this contour is taken to lie along the complex contour
from −π/2 + i∞ to −π/2 and then along the real α axis from −π/2 to π/2 and then finally
down the complex contour from π/2 to π/2 − i∞ as illustrated in figure 1, the integration is
over real-valued unit vectors z that span the unit semi-circle z · u > 0 and complex unit vectors
such that Re z · u = 0 and 0 � Im z · u < ∞. The plane waves exp(ik(z · x)) comprising the

4 In fact, given ε > 0, it can be shown that the integral converges uniformly for all complex z in the polycylinder
u · Re z > a + ε, |Im z| < ε. See [2] and [22] for a complete discussion of the properties of analytic functions of
several variables over real environments.
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− π
2

π
2

− ∞π
2

i

Re α

Im α

Complex Planeα

+

∞π
2

i−

Figure 1. The contour of integration used in (4.3). The contour can be deformed to lie along the
lines Re α = ±π/2 and along the real axis between −π/2 and π/2 as illustrated in the figure.

expansion in (4.3) correspondingly separate into the two classes of homogeneous plane waves
(corresponding to real unit propagation vectors) and evanescent plane waves (corresponding
to complex unit propagation vectors) which decay exponentially with increasing x2.

Next we have

Lemma 2. Let u, v ∈ S1 be directed along the positive x2 and x ′
2 axes of Cartesian axes

x1, x2 and x ′
1, x

′
2, respectively, and satisfying that u · v = cos θ with 0 � θ < π/2. Then, the

functions φu and φv defined by the plane wave expansions (4.3) are equal in Uu,a ∩ Uv,a .

Proof. To prove the lemma we let u = x̂2 be directed along the positive x2 axis and v = x̂′
2 be

directed along the positive x ′
2 axis of two Cartesian coordinate systems x1, x2 and x ′

1, x
′
2 rotated

by the angle θ < π/2 about the origin relative to each other as illustrated in figure 2. We then
construct the two functions φu and φv according to (4.3). The two functions are analytic in the
respective half-spaces of convergence Uu,a and Uv,a of their defining plane wave expansions
and both plane wave expansions converge throughout the intersection of these two half-spaces
as illustrated in figure 2. We may take the α and α′ contours of integration in the plane wave
expansions of φu and φv to lie along the real axis between −π/2 to π/2 and along the lines
Re α Re α′ equal to ±π/2 as illustrated in figure 1. Then, we write both expansions in terms
of the α and α′ integration variables as follows:

φu(x) =
∫ π

2 −i∞

− π
2 +i∞

f (z) eik(z·x) dα, x ∈ Uu,a,

φv(x) =
∫ π

2 +θ−i∞

− π
2 +θ+i∞

f (z) eik(z·x) dα′, x ∈ Uv,a,

where the α contour in the first integral is along the real axis from −π/2 to π/2 and the α′

contour in the second integral is along the real axis from −π/2 + θ to π/2 + θ in the second
integral. Now for x ∈ Uu,a ∩Uv,a , the two plane wave expansions then differ by δφ(x) which,
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Figure 2. The two functions φx̂2 (x) and φx̂′
2
(x) are analytic functions in the respective half-spaces

U = {x : x2 > a} and U ′ = {x : x′
2 > a} including the common region U

⋂
U ′. The cross-hatched

region in the figure depicts a circular subset of the common region.

we observe, can be expressed in the form

δφ(x) := φu(x) − φv(x) =
∫ − π

2 +θ+i∞

− π
2 +i∞

f (z) eik(z·x) dα −
∫ π

2 +θ−i∞

π
2 −i∞

f (z) eik(z·x) dα (4.6)

The integrands of the above two integrals are analytic functions of α that tend to zero at the
end points of the α contours as α → ±π/2 ∓ i∞ and as α → ±π/2 + θ ∓ i∞ because
of (4.5) and the fact that u · v = cos(θ).

Moreover, because the asymptotic condition (4.2) applies for any fixed unit vector in R
2,

applying it to suitable vectors v′ instead of v in the above applies that the integrands above
also tend to zero at intermediate points α → ±π/2 + χ ∓ i∞ with 0 � χ � θ . Thus each
integral is separately zero and it then follows that δφ(x) = 0. As x is arbitrary, δφ(x) = 0 at
all points x ∈ Uu,a ∩ Uv,a which establishes the lemma. �

We are ready for the

Proof of theorem 3 for n = 2. We first show the statement in remark 1(c). Indeed, we have

|f (z)| � max
x∈Ba

|F(x)|
∫

Ba

ekIm z·x d2(x).

Now as Im z · x → x2 = Im z · u where x2 = u · x, we see that indeed

|f (z)| � max
x∈Ba

|F(x)|
∫

Ba

ekx2 Im z·u d2(x)

� 2a max
x∈Ba

|F(x)|
∫ a

−a

ekx2 Im z·u dx2



Local Paley–Wiener theorems for functions analytic on unit spheres 471

� 2a max
x∈Ba

|F(x)|eka Im z·u − e−ka Im z·u

k Im z · u

= O(ekau·Im z), u · Im(z) → ∞.

We now proceed with the proof of theorem 3. Let z ∈ S1. Given any u ∈ S1 and fixed
a > 0, we know, by virtue of lemma 1, that we may construct a function φu, analytic in Uu,a ,
and that satisfies (4.1) and (4.4). Moreover, using lemma 2, we see that we may then construct
a family of such functions, each of which is equal in a common region of convergence in
Bc

a . But the vector u is arbitrary. So analytic continuation then allows us to define a unique
function φ analytic in Bc

a satisfying (4.1) there and (4.4) as k|x| → ∞ in every direction
within this region. The function φ so constructed can be represented by the well-known
integral representation [13]

φ(x) =
∫

∂Ba

[
φ(x′)

∂

∂n′ G(x − x′) − G(x − x′)
∂

∂n′ φ(x′)
]

dS ′, x ∈ Bc
a (4.7)

where ∂Ba is the boundary of Ba , ∂
∂n′ denotes differentiation with respect to the outward unit

normal vector to ∂Ba , and

G(.) = − i

4
H +

0 (k|.|)
is the two-dimensional outgoing wave Green function to the Helmholtz equation (4.1) with
H +

0 being the zero-order Hankel function of the first kind. Note that the value of φ and its
normal derivative appearing in (4.7) on ∂Ba are to be understood as appropriate limits of these
quantities taken from Bc

a onto ∂Ba .
By use of Green’s theorem, (4.7) may be transformed into the form

φ(x) =
∫

Ba

[
F(x′)∇2

x′G(x − x′) − G(x − x′)∇2
x′F(x′)

]
d2x ′, x ∈ Bc

a

where F is any continuous and twice differentiable function defined in Ba and satisfying the
boundary conditions

F(x) = φ(x), x ∈ ∂Ba

∂

∂n
F(x) = ∂

∂n
φ(x), x ∈ ∂Ba.

By making use of the fact that G is a Green function, we may further reduce the above equation
to the form

φ(x) =
∫

Ba

F (x′)G(x − x′) d2x ′, x ∈ Bc
a (4.8)

and where F(x′) = −(∇2 + k2)F (x′), x′ ∈ ∂Ba . As a final step, we note that

G(|x|z − x′) ∼ − ei π
4√

8πk
e−ik(z·x′) eik|x|

√|x| , x′ ∈ Ba

as k|x| → ∞, x ∈ Bc
a in the direction of the unit vector z. Making use of the above result

in (4.8), we obtain

φ(|x|z) ∼ − ei π
4√

8πk
F̃ (kz)

eik|x|
√|x| , k|x| → ∞, x ∈ Bc

a (4.9)

where

F̃ (kz) =
∫

Ba

F (x′) e−ik(z·x′) d2(x ′) (4.10)

is the spatial Fourier transform of the function F. It remains to compare (4.4) and (4.9). This
completes the proof. �
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Figure 3. The lines l and l′ having unit normals along the directions of the x2 and x′
2 axes,

respectively, intersect at the point labelled P which is at distance d from the origin. A third line
l0 having unit normal u0 lying between the x2 and x′

2 axes at distance ρ(u0) from the origin must
intersect the two lines l and l′ to the left of the point P in order for all three lines to intersect the
convex region formed by the intersection of the interiors of the three lines (shown dotted in the
figure). The line l′0 is at the maximum distance ρ(u0) for this to occur.

4.3. LPW2: the case n = 2

We now prove theorem 4 in the case when n = 2.

Proof of theorem [LPW2, n = 2]. For the proof, we encourage the reader to look at figure 3.
Firstly it is clear that exactly the same proof as in theorem 3 shows that we have the desired
integral representation over the ball Ba with a = ρ(u) for any u ∈ S1. Thus, the essence
of theorem 3 is to show that for such u, we may replace Bρ(u) with the convex set τc having
support function ρ(u), i.e. we need to show that each line

U ∗
u,ρ(u) := {x ∈ R

2 : x · u = ρ(u)}
must intersect τc which establishes that ρ(u) must be the support function of τc. We will now
set out to show this by showing that the convex volume defined by the support function ρ(u)

is equal to the convex volume formed from the intersection of all interiors Uu,ρ(u)
c

with the
lines U ∗

u,ρ(u) bounding the half-spaces Uu,ρ(u)
c
.

That this is so is not trivial as can be seen from figure 3 which shows three straight lines
labelled l, l′, and l0 whose intersection of interiors forms the convex region shown dotted in
the figure. Clearly, the perpendicular distance ρ(u0) of the line l0 from the origin is not the
support function along the direction u0. In order for ρ(u0) to be the support function it is
necessary that the line l0 should intersect or lie to the left of the intersection point P of the two
lines l and l′. The limiting case where the line just intersects the point P is shown in the figure
and labelled line l′0. We conclude that ρ(u0) will be the support function of τc if and only if
ρ(u0) � d0 where d0 is the projection of the distance d to the intersection point P onto the u0

direction.
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Thus, it suffices to prove that ρ(u0) � d0. To do this, we construct, much as in lemma 1,
the functions

δφ±(.) =
∫

C±
f (z) eik(z·(.)) dα (4.11)

where the contour C+ extends from −π/2 + i∞ to −π/2 + θ + i∞ and the contour C− extends
from π/2 − i∞ to π/2 + θ − i∞ and where θ is the angle between the positive x2 and x ′

2
axes as shown in figure 3. Now, using an argument identical to that employed in the proof of
lemma 2, it can be shown that the functions δφ± each must vanish in Bc

a where

a = Max{ρ(u) : u ∈ S1}.
Moreover, it follows from (a) that the integrands of the above integrals vanish at the end points
of the contours C± and thus converge uniformly when x lies in the intersection of the two
half-spaces

Ux2,ρ(x2) ∩ U ∗
x′

2,ρ(x′
2)
.

Since the integrands in (4.11) are analytic functions of the integration variable α as well as x,
it then follows that the functions must also vanish throughout the region of analyticity which
includes the real environment formed by the intersection

Ux2,ρ(x2) ∩ Ux′
2,ρ(x′

2).

If we now distort the contour C+ to run at constant Imα from −π/2 + i∞ to −π/2 + θ + i∞
and the contour C− to run at constant Imα from π/2 − i∞ to π/2 + θ − i∞ and make use of
the mean value theorem [1], we conclude that there must exist at least one point along each
contour at which the integrands must vanish, i.e.,

lim
α→∓π/2+θ0±i∞

|f (z) eik(z·x)| → 0 (4.12)

for some θ0 < θ where, in particular, θ0 is the angle formed between the u0 and the x2 directions
in figure 3. Now (4.12) must hold at all points in the intersection Ux2,ρ(x2) ∩ Ux′

2,ρ(x′
2). Thus

if we take, amongst all such points, the intersection point P as indicated in figure 3 and make
use of (a), we learn that (4.12) yields

lim
α→∓π/2+θ0±i∞

|f (z) eikz·x| = lim
Im u0·z→∞

exp(−k(d0 − ρ(u0))Im u0 · z) = 0

where d0 is the projection of the distance d onto the direction u0. We must then conclude from
this that ρ(u0) � d0 which has to be proved. �

4.4. Remaining proofs

In this last subsection, we explain how theorems 2 and 3 hold in the case n = 3. As it turns
out, both proofs follow in a similar way to the case n = 2 and so we only provide the analogue
of lemma 1 in this case which is the essential ingredient. As there are no new ideas to the
proof of this later lemma, we choose to state it without proof.

We have

Lemma 3 (plane wave expansion in R
3). Let u ∈ R

3 be a real unit vector and k, a > 0 be
real positive numbers. Also let f : C

3 → C be a function whose restriction to S2 is analytic.
Suppose we have

|f (z)| = O(eka(u·Im z)), u · Im z → ∞, z ∈ C
2.

Let

z = x̂1 sin α cos β + x̂2 sin α sin β + x̂3 cos α, α, β ∈ R

for some orthogonal x̂1, x̂2 and x̂2 of unit length in a Cartesian coordinate system where the
polar x3 axis is directed along the u direction. Define
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φu(x) =
∫ π

−π

dβ

∫ π/2−i∞

0
sin αf (z) eikz·x dα. (4.13)

Then the plane wave expansion (4.13) converges uniformly throughout the half-space Uu,a

and satisfies the homogeneous Helmholtz equation (4.1) there. Also we have the asymptotic
condition

φu(|x|z) ∼ − 1

4π
f (z)

eik|x|

|x|
as k|x| → ∞ in Uu,a .
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