ON THE SUPPORT OF THE EQUILIBRIUM MEASURE FOR ARCS OF THE
UNIT CIRCLE AND FOR REAL INTERVALS *

D. BENKO', S. B. DAMELIN%, AND P. D. DRAGNEV
Dedicated to Ed Saff on the occasion of his 60th birthday

Abstract. We study the support of the equilibrium measure for weigefinéd on arcs of the unit circle and on
intervals of the compactified real line. We provide seveaaditions to ensure that the support of the equilibrium
measure is one interval or one arc.

1. Introduction. In recent years, equilibrium measures with external fielseHound
an increasing number of applications in a variety of areagirg from diverse subjects such
as orthogonal polynomials, weighted Fekete points, nurakctbnformal mappings, weighted
polynomial approximation, rational and Pade approxinmiiategrable systems, random ma-
trix theory and random permutations. We refer the readérgaaferencesl| 2, 4, 7, 8, 12,

13, 14, 16, 17, 19, 20, 21] and those listed therein for a comprehensive account dethe
numerous, vast and interesting applications.

1.1. Potential-theoretic preliminaries and definitions. With a compact set ¢ C and
lower semi-continuous external fied: 3 — (—oo, oo], we setw := exp(—q) and callw a
weight associated witl, provided the set

Yo:={z€X: w(z) >0}

has positive logarithmic capacity. With an external figltbr a weightw), we associate the
weighted energy of a Borel probability measuren Y as

1
Iw(ﬂ):/z/xlogmdﬂ(s)dﬂ(t)-

The equilibrium measure in the presence of an external fieid the unique probability
measureu,, on ¥ minimizing the weighted energy among all probability measuon:.
Thus

Ly (o) = min{ly () - p € P(X)}
whereP (%) denotes the class
P(X) ={u: pis aBorel probability measure at.

For more details on these topics we refer the reader to thenakmonograph of E. B. Saff
and V. Totik [L7].

The determination of the suppa$t, of the equilibrium measurg,, is a major step in
obtaining the measure. As described by Deift Chapter 6], information that the support
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consists of N > 1 disjoint closed intervals, allows one to set up a system ob&gns for
the endpoints, from which the endpoints may be calculatedowing the endpoints, the
equilibrium measure may be obtained from a Riemann-Hilpesblem or, equivalently, a
singular integral equation. It is for this reason that itngbrtant to have a priori conditions
on the external field to ensure that the supportis an interval or the union of &fimitmber of
intervals. We refer the reader to the referen&4]5, 6, 9, 10, 11, 15, 17, 18] for an account
of advances on the equilibrium measure and support proldeonie or several intervals.

In this present paper, we study supports of equilibrium messfor a general class of
weights on the compactified real line and unit circle and gméseveral conditions on the
associated external field to ensure that the support of $wceged equilibrium measure is
one interval or one arc.

In order to present our main results, we find it convenienintooduce some needed
notation and definitions.

DEFINITION 1.1. LetR := RU{oo} denote the compactified real line. Itis a topological
space which is isomorphic to the unit ciral& We will think ofco as+oo, that is, we agree
thata < oo for anya € R.

LetU,V € R,U < V. Thenl := | U,V | C R denotes an interval which is open,
closed, or half open, and has endpoibtsand V. We defindV, U] := (U, V)¢, (V,U) :=
U, VI, (V.U = (U, V%, [V,U) := [U, V)"

Let nowa, 5 € R be two angles|s — a| < 27. We definem to be the arc
le', et C O, where we go from™ to ¢*? in a counterclockwise direction. f — o = 2,

let m to be the full circle C. Ifx — 8 = 27, or o = 3, then Ietm be the single point
exp(ia). Finally, if 0 < 8 — a < 2r andI = |a, 3] then defind to be|[a, 3.
We say thatV (X), X € R is a weight orR, if

(1£37)
is a weight onC'.

Remark A.We note that this definition of weights on the real line is ngeaeral than the
one givenin 7] or[18], since we do not assume the existenckaf| X |IW (X)) as| X | — oo.
However, since; := — log(w) is bounded from below, X |W (X) must be bounded from
above. In addition, studying weights on the compactified liea via weights on the unit
circle C allows us to deduce several results on the supports of thigbegum measureuy,
on the line via a general result for, on the circle (see Theorersl, 2.3and2.4).

In the next subsection, we describe the relation betweewdighted energy problem on
R and onC.

1.2. Connection between the equilibrium problem orR and on C. We will make
use of the Cayley transform betwel&rand onC' as follows.

X -
X+

RoXr— z:= eC

defines a bijection betweéhand C. The inverse is

1 _
+xieR

Coz— X =
1—2x

The image o, T' € R by the Cayley transform will be denoted pyandt.
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To any measurg € P(R), we assign the Borel probability measure on C with
dpc(x) = dp(X)

This mapping is a bijection between Borel probability measwnR andC.
Let the weightd? andw be related byX.1). The weighted logarithmic potential of
andyc is defined by

500 = [ o

te () .= [ lo L
Ui @)= [ 1ot e e

respectively (L8]). These are well-defined integrals (even thoygimay not have compact
support), as well as

B ()= = [ [ 081X = YIWCOW (V) di(X)d(Y ).

From

I+x. 1+y,  2z—y

l—arz_l—yZ 1 —az|1 —y|

X =y =

we havelT — X|W(T)W(X) = 2|t — z|w(t)w(z). Thus
(1.2) Ul (X) = ULe (x) — log 2
Integrating this we get
(1.3) Iw () = Ly(pc) — log2.
Since
W=e% w=e?
we have the following correspondence betwgamd(Q):

14+z
1—x

1.4) q(z) = Q( z) +log|l — x|, |z]=

For convenience we will agree on the notations

q(0) == q(e®), w(8) = w(e?), 6cR.

Also, since
2 2 _
1—z| = — = , Jxl=1, XeR
| | (X +i 1+ X2 ]
we have
X —iy 1 ) _
(1.5) Q(X)_q(X—H)+§1og(1+X )—log2, XeR.
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We find it more convenient to use angles instead of complexaguson the unit circle.
So letz = ¢, andy = e for 6, v € R.
Clearly,

lz —yl | sin 5% 1+,
= i=- .
1 —2||1 —y| 2|sinf/2||sinv/2| 1—x 2

(1.6)

Iw

.0
sin

Therefore, usingl(.6), we readily calculate that
—v ‘ W(—cot8/2) W(—cotv/2)

(1) =

- —//1og( 2 | sin 6/2] [sinv /2|

0 v
X <— cot §> du (— cot 5)
= —//1og ( b—v ‘w(@)w(u))du - cotg du (— cot Z) —log4.
2 2 2

Here, we used the fact that() = W (— cot )/(2|sin 4|) (see (.1). In addition we note
that from (L.4) we get

o

sin

(1.7) q(0) =Q <— cot g) + log | sing| + log2.

The formulae {.1)—(1.3) allow us to conclude the following:

p € P(R) minimizes the energy integrdly (1) over all probability measures di
if and only if its corresponding.c € P(C) minimizes the energy integrdl,(uc) over
all probability measures o@'. Moreover, the supporfy is going to be an interval or a
complement of an interval iR if and only if the corresponding suppdt, is an arc orC.

We close this section by introducing some remaining coneaatwhich we assume
henceforth.

Let I be an arc of”. We shall say thaf : I — R is absolutely continuous insideif
it is absolutely continuous on each compact subatk ¢As a consequencé’ exists a.e. on
1.)

Now let] be an interval or a complement of an intervaRinLet the ard be the image of
I by the Cayley transforrii’ : R — C. We shall say thaf : I — R is absolutely continuous
inside if f o T~ is absolutely continuous inside (If I is a finite interval, this definition is
equivalent to the usual definition of absolute continuitsidie/.)

We say that a functiof is increasing on an intervdl C R if there exist/ C I such that
the Lebesgue measure bf J is zero andf (z) < f(y) whenever,y € J, 2 < y. (This
is a useful definition wherf is defined only a.e. ofi.) We define “decreasing” in a similar
manner.

Moreover, we say thaf is convex on an intervdl if f is absolutely continuous inside
andf’ is increasing of.

We finally note that under Cayley transform (or its inverse)s with positive capacity
are transferred to sets with positive capacity.

The remainder of this paper is structured as follows. IniSe@, we present our main
results and in Section 3 we present our proofs.

2. Main Results: The Circle and the Compactified Real Line.In this section we state
our main results. We begin with our main results for the eiarhd compactified real line.
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2.1. Circle.

THEOREM 2.1. Letw(z) = exp(—q(z)), |z| = 1 be a weight orC and let] = |, J]
be an interval with) < § — v < 27. Assume thag is absolutely continuous insideand

(2.1) liminf ¢(z) = q(y)

=y
rzel

whenevey is an endpoint of with y € I. Lete’ be any point which is not an interior point
of I. Let{as, B1], - .., [ak, Bk] bek > 0 arcs ofC. Here, foralll <i <k, 0< 3;—a; <27

—~ —

and (S, UI) C [ay, 5;]. Suppose further that can be written as a disjoint union of > 1
intervals/y, ..., I, and for any fixed < j < n, either

(2.2) £2(0) [2 sin (%)q/w) — cos (%)}Sgn(sm (9 ; c))

is increasing orn/; or for somel < i < k:

(2.3) Sin<9_2ai>sin (%) ql(9)+isin (H—Oéi;ﬁl)

is increasing or/;. Finally we assume that

limsup ¢’ (0) < liminf ¢'(9),

005 0—07

whenevet), is an endpoint of; (1 < j < n) but not an endpoint of. ThenS,, N1 isanarc
of C.

Here sgn denotes the signum function.

Remark B.The choice ot is not important, see Remark F and the proof of Len#$a
We also remark that if is the full circle, then one should check only conditiéchdj and
ignore @.3) which is a stronger assumption.

Below we give a condition which guarantees tRatis the full circle:

COROLLARY 2.2. Letw(z) = exp(—q(z)), |z| = 1 be a weight orC' and letl; :=
(y1,m1 + 2m) and Iy := (y2,72 + 27) wheree? # ¢z, Assume that.2) is increasing on
I wherec := 71, and @.2) is increasing on/; wherec := v3. ThenS,, = C.

Proof. By Theoren®.1.S,, NI, is an arc ofC. Lete be an interior point of thiSﬂc,\not
identical toe?2. Choosep;, p2 such that < p, < p1 < ¢+ 27 and both of the arc&:, p;)
and(pg,/c+\27r) contain only one o ande?, say,(c,/p\l) containse™ and(pg,/c:%)
containse?2,

Using the first observation of Remark B, we see tRal)(is increasing oric, p; ) because
(2.2 is increasing orfc, p1) when at 2.2) ¢ is replaced byy.. Similarly, (2.2) is increasing
on(p2,c + 2m) becaused.?) is increasing orips, ¢ 4 27) when at .2) c is replaced byy; .
Thus @.2) is increasing oric, ¢ + 27) and soS,, = C by Theoren®.1and by the choice of
c. 0

Example.The following example illustrates the theorem.
Let ¢(0) = cos(50) sin(30) defined onX = [2.9,3.18] U [3.95,4]. (We may definev
to be zero outsid& so thatw is defined onC'.) We claim that bothS,, N [2.9,3.18] and

—

Sw M [3.95, 4] are arcs of”. (One of them may be an empty set.)
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Takea; = 2.9, 8, =4 andas = 3.95, 32 = 3.18 + 2.
One can verify that4.2) is satisfied 0r{2.9, 3.17] but not on the whol¢2.9, 3.18]. (At

o

(2.2 c can be chosen to be any number such #¥ats not an interior point 0f2.9, 3.18].
Or, simply check théq')? + ¢” + 1/4 > 0 condition, see Remark F.) Also, using and3;
we see thatZ.3) is not satisfied on the whole.9, 3.18]. However @.3) is satisfied on the
subinterval3.17, 3.18] (seeFigure 2.1). So the combination of th€(2 and @.3) conditions

implies thatS,, N [2.9, 3.18] is an arc.

Condition (2.2) on [2.9,3.18] Condition (2.3) on [2.9,3.18]

FiG. 2.1. Conditions(2.2) and(2.3) on the intervall;

Using «; and 5, on [3.95, 4] is not helpful since4.3) is a decreasing function there.
Also, (2.2) is not satisfied on the whol8.95, 4]. However, 2.3) is satisfied using; and 32

on the wholg3.95, 4]. Theoren?.1now implies thatS,, N [@] is an arc (se€igure2.2).
(We remark thatv; and 3, are not helpful orj2.9, 3.18] since @.3) is a decreasing function
on|[3.17,3.18].)

Condition (2.2) on [3.95,4] Condition (23) on [3.95,4]
3.95 3.96 3.97 3.98 3.99

5.45 _\ e
5.4 -0.0751
5.35 ]
0.084
5.3 1
5.25 -0.0857
5.2 ]
0.09
5.15 ]

vvvvvvvvvvvvvvvvvvvvvvvvvv

FiG. 2.2. Conditions(2.2) and(2.3) on the intervall>

Remark C.lItis a natural question to ask what and3; numbers we should choose in
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order that 2.3) is as weak as possible. In most cases the following stateisene:
Let[o, B and[e/, 5] (0 < 8 —a <27, 0 < ' — o’ < 27) be two arcs of”' such that

—

Sw C [, 4] C [o, #). LetT be an arc contained im. If (2.2 or (2.3 is satisfied with
o, 3 then @.2) or (2.3) is also satisfied with, /.
For example, this statement is trugff(0) exists and the sets

H:= {GEI:q’(b‘) > %cot (9_20/)}, H = {HEI:q'(b‘) > %cot (9_26/)}

consist of finitely many intervals. (The proof of this is sianito the proof of B, second
remark].)
Theorem?2.1 can be effectively used when(z) is identically zero on some arcs (that

is, ¥ is a subset of finitely many arcs). if(z) is zero onm 0 < v; —u; < 2m),

i =1,...,k, then we may choosey;, 3;] to be[v;, ;] in Theorem2.1 This is consistent
with the discussion above. For convenience we will stateofdém®2.3 in accordance with
this remark.

2.2. Compactified Real Line.
THEOREM 2.3. For givenk € Nt let

¥ :=UM [A;, B] CR, where
—00< A1 < B <Ay < By <+ <A < By < +o0.

LetIW = exp(—Q) be aweight ory, I C X be an interval and assume th@tis absolutely
continuous insidé and

(2.4) liminf Q(X)=0Q(Y)
X —-Y
Xel

whenevel” is an endpoint of withY" € 1. Assume further that can be written as a disjoint
union of intervalsly, . . ., I,, such that for any fixed < j < n either

9™ is convex onl;,
orforsomel <i<k—1
(X — B;)(Ait1 — X)Q'(X)+ X s decreasing on/j,
or
(2.5) (X — A)(Br — X)Q'(X)+ X isincreasing onl;.
Finally we assume that

limsup Q'(X) < liminf Q'(X),
X=Xy X=X

wheneverX| is an endpoint of; (1 < j < n) but not an endpoint of. ThenSy, N I is an
interval.
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Remark D. We remark that Theorer.3is also valid when one interval, sayl;, Bx]
is an infinite interval or a complement of a finite interval. Af, > By (and, of course,
By, < A1), then the conclusion of the theorem hold<ifg) is replaced by the condition:

(2.6) (X — Bi)(A; — X)Q'(X) + X is decreasing or;.
If howeverB), = +oco then .5 should be replaced by the condition:
(X — A1)Q'(X) isincreasing onl;.

Finally, if A; = —oo (and so[A;, By] is the infinite interval instead df,, By]) then .5
should be replaced by the condition

(Br — X)Q'(X) isincreasing onl;.

At (2.6) and at Theorer2.4 at (e) one can also consider amvhich is a complement of
a bounded interval. We leave the details for the reader.

Theoren®.4reveals to us the following remarkable connection betweevipusly known
conditions onQ. It also gives us a new condition (which is (e) below). As asamjuence of
Theorem2.1and2.3and Remark D, we now have the following general result forcise
whenX is one real interval. See als8][ Recall that forA < B we defindB, 4] := (A, B)°.

THEOREM2.4.LetW be a weight orR and let/ C R be an interval. Assume thétis
absolutely continuous insideand satisfiesd.4). Let A < B be finite constants and suppose
that either of the following conditions below hold:

(@ (X —A)(B-X)Q'(X)+ X isincreasing onf C [A, B], Sw C [A, B].

(b) (X — A)Q'(X)isincreasingonl C [A, +0), Sw C [4, +00).

(¢) (B—X)Q'(X)isincreasingon C (—oo, B], Sw C (—o0, BJ.

(d) (X — A)2Q'(X) — X isincreasingon/ C R\ {4},

(e) (X — A)(B - X)Q'(X)+ X is decreasing o C [B, 4], Sw C [B, A].

(H @ is convexon.

(9) exp(Q) is convex or.

ThenSy N I is an interval.

Remark E.Theoretically one should ignore (d) and (f) since (g) is akeeassumption
than both of these. Nevertheless we included them herepbesmmetimes they are easier
to check. o

Notice that (a) in Theorer.4 corresponds to the case of Theor@rih when [, 5] is

—

an arc ofC disjoint of the pointz = 1, (b) corresponds to the case when 5] is a proper
subarc ofC' such thatxp(i3) = 1, (c) corresponds to the case wHen/] is a proper subarc

of C' such thaexp(ia) = 1, (d) corresponds to the case when 3] is the full circleC' and
a subcase of this is whet = oo (soa = 0 and = 2x) which corresponds to (f). The

—

condition (e) corresponds to the case when3] is a proper subarc af’ which contains the
pointz = 1 inside the arc. Finally, (g) is the only condition which @sponds to4.2) and
not (2.3).

Note also that if we letA = B then (e) leads to condition (d), sin¢&’ — A)(A —
X)Q'(X) + X is decreasing if and only ifX — 4)?Q’(X) — X is increasing.

One may also combine the above conditions to create a weakdition in the spirit of
Theorem2.1and2.3

3. Proofs. In this section, we present the proofs of our results. We fiedmvenient to
break down our proofs into several auxiliary lemmas. Out fsma is
LEMMA 3.1. Letw(z) = exp(—q(z)), |2| = 1 be a weight orC and let] = |v,d] be

an interval with0 < 6§ —~ < 2. Let0 < 8 —a < 27 and assumé,, U C [a, B]. Suppose
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q(0) := q(e") is absolutely continuous insideand satisfiesZ.1). Moreover, assume that

0— -0 1
(3.2) sin( 2a) sin (67) q’(@)—i—zsin (9—(1;6)
is increasing on/. ThenS,, N Tisanarcof C.
Proof. Let
0
(3.2) A::—cotg, B::—coté, X = —cot —.
2 2 2

First let us assume that 5 € (0, 27). Thus we may assume thak o <~y <0 < ¢ <
B < 2mand0 < sin(a/2), 0 < sin(F/2). SOA < X < B.
From (1.7), we have

(3.3) Q' (— cot g) = 2sin? (g) (q'(@) - %cot g) )

Thus,
(X -A)(B-X)Q(X)+ X

=- cotg—cotg cotg—coté Q' —cotg —cotg
2 2 2 2 2 2

00—«

o f—a i 0—8 0 0
= _Smmpsme (Qq’(g) _Coti) — cot —.

in & gin 2 2
sin § sin 5

Now we use the following identity which holds for any 3, 6:

0—«a 0—p3

o s g n(0— 28y 1
ot () (2 ) - n<—25> 1 (Cot9+coté) .
2 sin § sin & 2sin(§)sin(5) 2 2 2

It follows that
(3.4) (X -A)B-X)Q'(X)+ X

i 0—a i 008 . a+p
sin =< sin =55 sin(f — <%= 1
— _2# ! 9 M - (Cotg +C0t é) .

sngsnZ 0 2sn(3)sm(Z) 2\ 2 2

Becausd < sin(a/2), 0 < sin(/2), the right hand side of3(4) is increasing orT if
and only if 3.1) holds. Thus, if 8.1) holds then X — A)(B — X)Q'(X)+ X is increasing on
| —cot 3, —cot %1. Now consider the corresponding equilibrium problerﬂ?lglas described
in Section 1 and letSyy denote the corresponding equilibrium measureRonUsing [3,
Theorem 7] we get thafy, N [~ cot 5, — cot %1 is an interval. It follows that,, N I is an
arc ofC'. This proves Lemma.1for the case when, 5 € (0, 27).

Now letar < 27 < 3,8 — o < 27, Note that) < sin(a/2),0 > sin(8/2). We cannot
apply [3, Theorem 7] becausB < A and X is outside[B, A]. However we can use the
observation that conditiorB(1) is “rotation invariant.”

Let0 < o be a number such that

O<a—-oc=:a* p=08—0<2n,
and define

Y i=y—0, 6" :=06—o0,
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q2(0) :=q(0+ o).

Forwy = exp(—¢2) and the parametets’, 5%, v*, §*, we may apply the case we studied

aboveto gettha$,,,N|~*, 6*] is an arc of C. But this new equilibrium problem is isomorphic
to the original one in the sense that everything (includivegdupport) is rotated by the angle
o. It follows thatS,, N I is an arc of C. R

Finally, we need to establish the lemma for the case whéenthe full circle. So let
[ — « := 27. Using the rotation invariance we may assume that 0, 5 = 27. Condition
(3.2) is now equivalent to

0 1 .. .
sin? (—)q’(@) —7sinf isincreasing.

2
Using (3.3 we get
(3.5) 2sm2(g)q’(9) - %sin@ — Q'(~ cot g).

ThusQ’(— cot %) is increasing({ < 6 < 2m), thatis,Q’(X) is increasing, and sQ(X) is
convex. Itis well known, se€l[7], that in this case the suppdty is an interval. (The proof
works for our more general weight.) 3%, is again an arc. We have completed the proof
Lemma3.1 O

As a corollary to Lemm&.1, we have

LEMMA 3.2. Let W be a weight orR, let J be a finite interval and suppose thatis
absolutely continuous insidé and satisfies conditior2(4). Let A < B be finite constants
with J C [B, A], Sw C [B, A] and assume thdtX — A)(B — X)Q'(X) + X is decreasing
onJ. ThenSy N Jis aninterval.

Proof. Recall thaf B, A] = (A, B)¢, see Definitior. 1

We may finda < § such thatB = —cot(a/2), A = —cot(5/2) andf — a < 2.
Notice thatsin («/2) sin (5/2) < 0 necessarily.

LetJ = |— cot(/2), — cot(d/2)], wherea <y < ¢ < fand sa — v < 2.

The left hand side of3.4) is a decreasing function of on J, and so the right hand
side of 8.4) is a decreasing function ¢fon I := [y, §]. Multiply that right hand side by
the negative constanin (a/2) sin (3/2). In this way we get an increasing function®bn

—

[v,0]. So condition 8.1) is satisfied and from Lemm# 1, we deduce tha$,, N [y, d] is an
arc of C. This implies immediately th&t; N J is an interval. Lemma&.2is proved. 0O
Our final lemmais:
LEMMA 3.3. Letw(z) = exp(—q(z)), |z| = 1 be a weight orC and let] = |v,d] be
an interval with0 < § — v < 27. Suppose is absolutely continuous insideand satisfies
(2.7). Lete’ be any point which is not an interior point &f If

(3.6) £4(9) [2 sin (9 ; C)q’(@) — cos (0 ; C)]sgn(sin (9 ; C))

is increasing o/, thenS,, N Tis an arc ofC.

Remark F.Whether 8.6) is increasing o or not, it does not depend on the choice-of
(as long ag’ is not an interior point of ). The proof of this is given in the proof of Lemma
3.3 We remark however that if is twice differentiable then conditior3 (6) is easily seen to
be equivalent to

q'(0)* +4"(0) +
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which condition indeed does not dependwon

We give the following example to Lemn®a3. Let > be one or several closed arcs on the
unit circle but not the full circle. Assume the weigltis zero on the complement &f. Let
e'? be a point in the complement &f, and define

0—p
2

whered is an arbitrary constant. The value ofs our choice so let := p. Then 3.6) is
increasing on the whole af (in fact it is identically zero) and therefor®, is a set of arcs.
Moreover, each arc df contains at most one arc 6f,.

Proof of Lemma.3. First we show that whetheB(6) is increasing ol or not, it does
not depend on the choice of We do not assume the existence;6f

Let F'(x) andu(x) be two real functions ofD, 1) such thaf is bounded and increasing,
andu is non-negative and Lipschitz continuous. Then there gist (0, 1) of full measure
such that

q(0) == q(e?) :=log | sin | +d,

b /
/a (Fo)u(@)) do < (Fu)(b) = (Fu)(a) if a,b€ B, a <b.

This observation easily follows from Fatou’s Lemma appliedhe sequence of functions
[(Fu)(@ + en) — (Fu)(@)]/en, €n — 07

Suppose:© ande’2 are not interior points of. Denote now3.6) by F.(0). LetJ C I
such that/ has full measure andl.(z) < F.(y) forallz < y, z,y € J. We define the
domain ofF,. andq’ to be.J. We have

F.(0) + eq(e)(cos egc)sgn(sin 9?) e
5 €J,

(3.7) e1@¢/(9) =

. 0—c
2’smT

which shows that?¢’ is differentiable a.e. od. Simple calculation gives

(3.8) 0< F/(0) = 2|sin TC] [(eq(e)q/(G))/ + ieq@] ae.0el.

Replacec by ¢ at the formula 8.6) and denote it by, (6). Also, replace in that formula
elq’ by the quotient at3.7). Thus we see that with som&#6), v(6) functionsF.,(0) =
F.(0)u(0) + v(0) holds, where insidéy, §):
the functionu is non-negative and Lipschitz continuous,is increasing and bounded, and
is absolutely continuous (sineé is absolutely continuous insid8.

So by the observation above, we have

b
/ (Fou+ ) < (Fau)(8) + v(b) — (Feu)(a) — v(a) = Fey (b) — Fiy (a)

for a.e.a,b € I, wherea < b. But this integral is non-negative, sinfe< F/ a.e.f € I
follows from (3.8). Hence0 < F,,(b) — F,,(a), i.e., F,, is increasing. And this is what we
wanted to show. R

We may assume that< v < § < ¢+ 27. Let us rotate now to a position such that
the rotation takes to the pointz = 1. Condition @.6) will change accordingly to a new
condition where now = 0. (We denote the new rotated weight by= exp(—gq), t00.) We
now have to show thaf,, N T is an arc ofC for the news,, and newl. Once we have done
that we simply rotaté back to the original position and the proof is complete.
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This argument shows that we can assume without loss of dépdreat ¢ = 0 and
0 <~ < d < 2w Define

(3.9) (1+:c.

= xl) =1 —zlw(x), |z|=1.

Using the arguments in Section 1.3,9 may also be given as

20(35)
Vitxz’
We defineQ(X) by W(X) =: exp(—Q(X)). Sincew is a weight onC', we know thaiV" is

a weight onR.
We now show that?(X)Q’(X) is increasing on

W(X):= X eR.

I° = L—cotz,—cot é]
2 2

Letz = €. Note that from {.7) we have

ax) _ e4(9)
2[sin §|
Using this and.3), for 6 € [0, 27| we get
(3.10) QX (X) = %eq<9>(2 sin gq’(e) ~ cos g).

Note that the right hand side d&.(L0 is an increasing function éfon I by assumption. Now
we apply B, Theorem 5], to conclude th&ty N I° is an interval. (Although this theorem
is formulated for weights withim x| .. XW (X) = 0, the argument in the proof may be
applied word for word for the more general weights considérere. Naturally one should
work with U{y¥ (X) in the proof.) SinceSy N 1% is an interval we conclude th&t, N I is
an arc ofC'. The proof of Lemma&.3is complete. 0O

We are now ready to present the

Proof of Theoren®.1 If I is the full circleC then it follows from the assumption that
elor = Pt = ¢ic = ¢ for all t. Now, if (2.3 is increasing ord; then @.2) is also increasing
onl;, as one can see. (Choog® be zero and usa(9), (3.10 and the fact that the convexity
of @ implies the convexity oéxp(Q).) So we can get the weakest assumption if we assume
that 2.2) is increasing on the wholg, and we already know from Lemn®a3that Theorem
2.1holds under such an assumption. Thus, let us assume thabt the full circle.

As in the proof of Lemma&.1 and 3.3 we observe that the statement of Theorar

—

is “rotation invariant.” So, we may assume thafé] does not contain the = 1 point and
et £ 1, e #£ 1 for anyt. We can also assume that= 0.

Let X = —cot(0/2), A; = —cot(w;/2) B; = — cot(8;/2), andQ(X) be defined by
(1.9. Let; be given by

I = [&,n5], 0<m; =& <2m,

and define

; ; 0
19 .= L—coté,—cotﬁ], 1° .= L—cotz,—cot—].
J 2 2 2 2
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Note thatl? is a finite subinterval oR and it is the disjoint union of the interva[$ (=
1,...,n). We assume thalg(-J is numerated from left to right. Note also that;, B;] D Ij(-J
(recall Definition1.1).

By assumption, for any (1 < j < n), we can find (1 <i < k), such that either

(3.11) e?X)is convexonI?, or
(3.12) A; < B; and (X — A;)(B; — X)Q'(X) 4+ X isincreasing on/; or
(3.13) A; > B; and (X — 4;)(B; — X)Q'(X) + X is decreasing on/;.

((3.1)) is coming from the argument in Lemn3a3, (3.12) is from Lemma3.1, and 3.13 is
from Lemma3.2)

Let F; := 1. We can find positive constants,, ..., F,, (uniquely) such that the fol-

lowing function f is a positive continuous function insid€. Forz € IJQ (j=1,...,n),
let
Erexp(2Q(X)) if (3.11) is satisfied on/?
flx) =4 Ep(X - A;)(B-X;) if (3.12 is satisfied on}

)
Ep(X — A)(X — B;) if (3.13 is satisfied onl;.

Let W := exp(—Q). We can use the argument i, [Theorem 12] to deduce the result.
For this purpose lett = — cot(a/2) andB = — cot(3/2) be any two numbers such that<
B,[A,B] C I° (A,B)NSw = 0. Letpy := jy _ , fo i= g — pp. Usin
[A, B] (A, B)NSw U fho| o o 2 . I 31 g
Ukw (x) = Uk (z) + UF2(x) and the monotone convergence theorem it easily follows that
Ul (x) is absolutely continuous dry, 5], and so by {.2) Ul}?" (X)) is absolutely continuous
on[A, B]. Also, as in B] one can verify that

d

J0) 2 U ()

is strictly increasing onA, B]. By [3, Lemma 4] we get thaby, N [A, B] is an interval. It
follows thatSy, N IV is also an interval and,, N I is an arc ofC. O
We conclude this section with

The Proof of Theorerd.3 and Theoren®.4. These follow easily using Theoretnl,
Lemma3.2and the discussion in Section 1. 0
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