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Dedicated to Ed Saff on the occasion of his 60th birthday

Abstract. We study the support of the equilibrium measure for weights defined on arcs of the unit circle and on
intervals of the compactified real line. We provide several conditions to ensure that the support of the equilibrium
measure is one interval or one arc.

1. Introduction. In recent years, equilibrium measures with external fields have found
an increasing number of applications in a variety of areas ranging from diverse subjects such
as orthogonal polynomials, weighted Fekete points, numerical conformal mappings, weighted
polynomial approximation, rational and Pade approximation, integrable systems, random ma-
trix theory and random permutations. We refer the reader to the references [1, 2, 4, 7, 8, 12,
13, 14, 16, 17, 19, 20, 21] and those listed therein for a comprehensive account of these
numerous, vast and interesting applications.

1.1. Potential-theoretic preliminaries and definitions.With a compact setΣ ⊂ C and
lower semi-continuous external fieldq : Σ → (−∞,∞], we setw := exp(−q) and callw a
weight associated withq, provided the set

Σ0 := {z ∈ Σ : w(z) > 0}

has positive logarithmic capacity. With an external fieldq (or a weightw), we associate the
weighted energy of a Borel probability measureµ onΣ as

Iw(µ) =

∫

Σ

∫

Σ

log
1

|s − t|w(s)w(t)
dµ(s)dµ(t).

The equilibrium measure in the presence of an external fieldq, is the unique probability
measureµw on Σ minimizing the weighted energy among all probability measures onΣ.
Thus

Iw(µw) = min{Iw(µ) : µ ∈ P(Σ)}

whereP(Σ) denotes the class

P(Σ) = {µ : µ is a Borel probability measure onΣ}.

For more details on these topics we refer the reader to the seminal monograph of E. B. Saff
and V. Totik [17].

The determination of the supportSw of the equilibrium measureµw is a major step in
obtaining the measure. As described by Deift [8, Chapter 6], information that the support
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consists ofN ≥ 1 disjoint closed intervals, allows one to set up a system of equations for
the endpoints, from which the endpoints may be calculated. Knowing the endpoints, the
equilibrium measure may be obtained from a Riemann-Hilbertproblem or, equivalently, a
singular integral equation. It is for this reason that it is important to have a priori conditions
on the external fieldq to ensure that the support is an interval or the union of a finite number of
intervals. We refer the reader to the references [3, 4, 5, 6, 9, 10, 11, 15, 17, 18] for an account
of advances on the equilibrium measure and support problem for one or several intervals.

In this present paper, we study supports of equilibrium measures for a general class of
weights on the compactified real line and unit circle and present several conditions on the
associated external field to ensure that the support of the associated equilibrium measure is
one interval or one arc.

In order to present our main results, we find it convenient to introduce some needed
notation and definitions.

DEFINITION 1.1. LetR̄ := R∪{∞} denote the compactified real line. It is a topological
space which is isomorphic to the unit circleC. We will think of∞ as+∞, that is, we agree
thata < ∞ for anya ∈ R.

Let U, V ∈ R̄, U ≤ V . ThenI := ⌊ U, V ⌉ ⊂ R̄ denotes an interval which is open,
closed, or half open, and has endpointsU andV . We define[V, U ] := (U, V )c, (V, U) :=
[U, V ]c, (V, U ] := (U, V ]c, [V, U) := [U, V )c.

Let nowα, β ∈ R be two angles,|β − α| < 2π. We define⌊̂α, β⌉ to be the arc
⌊eiα, eiβ⌉ ⊂ C, where we go fromeiα to eiβ in a counterclockwise direction. Ifβ − α = 2π,

let ⌊̂α, β⌉ to be the full circle C. Ifα − β = 2π, or α = β, then let⌊̂α, β⌉ be the single point

exp(iα). Finally, if 0 ≤ β − α ≤ 2π andI = ⌊α, β⌉ then definêI to be⌊̂α, β⌉.
We say thatW (X), X ∈ R̄ is a weight on̄R, if

(1.1) w(x) :=
W (1+x

1−x i)

|1 − x| , |x| = 1

is a weight onC.
Remark A.We note that this definition of weights on the real line is moregeneral than the

one given in [17] or [18], since we do not assume the existence oflim |X |W (X) as|X | → ∞.
However, sinceq := − log(w) is bounded from below,|X |W (X) must be bounded from
above. In addition, studying weights on the compactified real line via weights on the unit
circle C allows us to deduce several results on the supports of the equilibrium measureµW

on the line via a general result forµw on the circle (see Theorems2.1, 2.3and2.4).
In the next subsection, we describe the relation between theweighted energy problem on

R̄ and onC.

1.2. Connection between the equilibrium problem onR̄ and on C. We will make
use of the Cayley transform betweenR̄ and onC as follows.

R̄ ∋ X 7−→ x :=
X − i

X + i
∈ C

defines a bijection between̄R and C. The inverse is

C ∋ x 7−→ X =
1 + x

1 − x
i ∈ R̄

The image ofY, T ∈ R̄ by the Cayley transform will be denoted byy andt.
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To any measureµ ∈ P(R̄), we assign the Borel probability measureµC onC with

dµC(x) := dµ(X)

This mapping is a bijection between Borel probability measures onR̄ andC.
Let the weightsW andw be related by (1.1). The weighted logarithmic potential ofµ

andµC is defined by

Uµ
W (X) :=

∫
log

1

|T − X |W (T )W (X)
dµ(T ),

UµC

w (x) :=

∫
log

1

|t − x|w(t)w(x)
dµC(t),

respectively ([18]). These are well-defined integrals (even thoughµ may not have compact
support), as well as

IW (µ) := −
∫ ∫

log(|X − Y |W (X)W (Y ))dµ(X)dµ(Y ).

From

|X − Y | =
∣∣∣
1 + x

1 − x
i − 1 + y

1 − y
i
∣∣∣ =

2|x − y|
|1 − x||1 − y| .

we have|T − X |W (T )W (X) = 2|t − x|w(t)w(x). Thus

(1.2) Uµ
W (X) = UµC

w (x) − log 2

Integrating this we get

(1.3) IW (µ) = Iw(µC) − log 2.

Since

W = e−Q, w = e−q

we have the following correspondence betweenq andQ:

(1.4) q(x) = Q
(1 + x

1 − x
i
)

+ log |1 − x|, |x| = 1.

For convenience we will agree on the notations

q(θ) := q(eiθ), w(θ) := w(eiθ), θ ∈ R.

Also, since

|1 − x| =
2

|X + i| =
2√

1 + X2
, |x| = 1, X ∈ R̄

we have

(1.5) Q(X) = q
(X − i

X + i

)
+

1

2
log(1 + X2) − log 2, X ∈ R̄.
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We find it more convenient to use angles instead of complex numbers on the unit circle.
So letx = eiθ, andy = eiν for θ, ν ∈ R.

Clearly,

(1.6)
|x − y|

|1 − x||1 − y| =
| sin θ−ν

2 |
2| sin θ/2|| sin ν/2| and

1 + x

1 − x
i = − cot

θ

2
.

Therefore, using (1.6), we readily calculate that

IW (µ) =

= −
∫ ∫

log
(∣∣∣ sin

θ − ν

2

∣∣∣
W (− cot θ/2)

| sin θ/2|
W (− cot ν/2)

| sin ν/2|
)
dµ

×
(
− cot

θ

2

)
dµ

(
− cot

ν

2

)

= −
∫ ∫

log
(∣∣∣ sin

θ − ν

2

∣∣∣w(θ)w(ν)
)
dµ

(
− cot

θ

2

)
dµ

(
− cot

ν

2

)
− log 4.

Here, we used the fact thatw(θ) = W (− cot θ
2 )/(2| sin θ

2 |) (see (1.1)). In addition we note
that from (1.4) we get

(1.7) q(θ) = Q

(
− cot

θ

2

)
+ log | sin θ

2
| + log 2.

The formulae (1.1)–(1.3) allow us to conclude the following:

µ ∈ P(R̄) minimizes the energy integralIW (µ) over all probability measures on̄R
if and only if its correspondingµC ∈ P(C) minimizes the energy integralIw(µC) over
all probability measures onC. Moreover, the supportSW is going to be an interval or a
complement of an interval in̄R if and only if the corresponding supportSw is an arc onC.

We close this section by introducing some remaining conventions which we assume
henceforth.

Let Ĩ be an arc ofC. We shall say thatf : Ĩ → R is absolutely continuous insidẽI if
it is absolutely continuous on each compact subarc ofĨ. (As a consequence,f ′ exists a.e. on
Ĩ.)

Now letI be an interval or a complement of an interval inR̄. Let the arc̃I be the image of
I by the Cayley transformT : R̄ → C. We shall say thatf : I → R is absolutely continuous
insideI if f ◦T−1 is absolutely continuous insidẽI. (If I is a finite interval, this definition is
equivalent to the usual definition of absolute continuity insideI.)

We say that a functionf is increasing on an intervalI ⊂ R if there existJ ⊂ I such that
the Lebesgue measure ofI \ J is zero andf(x) ≤ f(y) wheneverx, y ∈ J , x ≤ y. (This
is a useful definition whenf is defined only a.e. onI.) We define “decreasing” in a similar
manner.

Moreover, we say thatf is convex on an intervalI if f is absolutely continuous insideI
andf ′ is increasing onI.

We finally note that under Cayley transform (or its inverse),sets with positive capacity
are transferred to sets with positive capacity.

The remainder of this paper is structured as follows. In Section 2, we present our main
results and in Section 3 we present our proofs.

2. Main Results: The Circle and the Compactified Real Line.In this section we state
our main results. We begin with our main results for the circle and compactified real line.
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2.1. Circle.

THEOREM 2.1. Let w(z) = exp(−q(z)), |z| = 1 be a weight onC and letI = ⌊γ, δ⌉
be an interval with0 < δ − γ ≤ 2π. Assume thatq is absolutely continuous insideI and

(2.1) lim inf
x → y
x ∈ I

q(x) = q(y)

whenevery is an endpoint ofI with y ∈ I. Leteic be any point which is not an interior point

of Î. Let ̂[α1, β1], . . . , ̂[αk, βk] bek ≥ 0 arcs ofC. Here, for all1 ≤ i ≤ k, 0 < βi−αi ≤ 2π

and(Sw ∪ Î) ⊂ ̂[αi, βi]. Suppose further thatI can be written as a disjoint union ofn ≥ 1
intervalsI1, . . . , In and for any fixed1 ≤ j ≤ n, either

(2.2) eq(θ)
[
2 sin

(θ − c

2

)
q′(θ) − cos

(θ − c

2

)]
sgn

(
sin

(θ − c

2

))

is increasing onIj or for some1 ≤ i ≤ k:

(2.3) sin

(
θ − αi

2

)
sin

(
βi − θ

2

)
q′ (θ) +

1

4
sin

(
θ − αi + βi

2

)

is increasing onIj . Finally we assume that

lim sup
θ→θ−

0

q′(θ) ≤ lim inf
θ→θ+

0

q′(θ),

wheneverθ0 is an endpoint ofIj (1 ≤ j ≤ n) but not an endpoint ofI. ThenSw ∩ Î is an arc
of C.

Here sgn denotes the signum function.
Remark B.The choice ofc is not important, see Remark F and the proof of Lemma3.3.

We also remark that if̂I is the full circle, then one should check only condition (2.2) and
ignore (2.3) which is a stronger assumption.

Below we give a condition which guarantees thatSw is the full circle:
COROLLARY 2.2. Let w(z) = exp(−q(z)), |z| = 1 be a weight onC and letI1 :=

(γ1, γ1 + 2π) andI2 := (γ2, γ2 + 2π) whereeiγ1 6= eiγ2 . Assume that (2.2) is increasing on
I1 wherec := γ1, and (2.2) is increasing onI2 wherec := γ2. ThenSw = C.

Proof. By Theorem2.1Sw ∩ Î1 is an arc ofC. Let eic be an interior point of this arc, not

identical toeiγ2 . Chooseρ1, ρ2 such thatc < ρ2 < ρ1 < c + 2π and both of the arcŝ(c, ρ1)

and ̂(ρ2, c + 2π) contain only one ofeiγ1 andeiγ2 , say,(̂c, ρ1) containseiγ1 and ̂(ρ2, c + 2π)
containseiγ2 .

Using the first observation of Remark B, we see that (2.2) is increasing on(c, ρ1) because
(2.2) is increasing on(c, ρ1) when at (2.2) c is replaced byγ2. Similarly, (2.2) is increasing
on (ρ2, c + 2π) because (2.2) is increasing on(ρ2, c + 2π) when at (2.2) c is replaced byγ1.
Thus (2.2) is increasing on(c, c + 2π) and soSw = C by Theorem2.1and by the choice of
c.

Example.The following example illustrates the theorem.
Let q(θ) = cos(5θ) sin(3θ) defined onΣ = [2.9, 3.18] ∪ [3.95, 4]. (We may definew

to be zero outsideΣ so thatw is defined onC.) We claim that bothSw ∩ ̂[2.9, 3.18] and

Sw ∩ ̂[3.95, 4] are arcs ofC. (One of them may be an empty set.)
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Takeα1 = 2.9, β1 = 4 andα2 = 3.95, β2 = 3.18 + 2π.
One can verify that (2.2) is satisfied on[2.9, 3.17] but not on the whole[2.9, 3.18]. (At

(2.2) c can be chosen to be any number such thateic is not an interior point of ̂[2.9, 3.18].
Or, simply check the(q′)2 + q′′ + 1/4 ≥ 0 condition, see Remark F.) Also, usingα1 andβ1

we see that (2.3) is not satisfied on the whole[2.9, 3.18]. However (2.3) is satisfied on the
subinterval[3.17, 3.18] (seeFigure2.1). So the combination of the (2.2) and (2.3) conditions

implies thatSw ∩ ̂[2.9, 3.18] is an arc.

x

3.15

6

3.1

4

2

3.05
0

-2

32.95

Condition (2.2) on [2.9,3.18]

x

3.153.13.05

0.05

3
0

-0.05

-0.1

2.95

Condition (2.3) on [2.9,3.18]

FIG. 2.1. Conditions(2.2) and(2.3) on the intervalI1

Using α1 andβ1 on [3.95, 4] is not helpful since (2.3) is a decreasing function there.
Also, (2.2) is not satisfied on the whole[3.95, 4]. However, (2.3) is satisfied usingα2 andβ2

on the whole[3.95, 4]. Theorem2.1now implies thatSw ∩ ̂[3.95, 4] is an arc (seeFigure2.2).
(We remark thatα2 andβ2 are not helpful on[2.9, 3.18] since (2.3) is a decreasing function
on [3.17, 3.18].)

3.983.973.963.95

5.45

5.4

5.35

5.3

5.25

5.2

5.15

x

3.99

Condition (2.2) on [3.95,4]

-0.075

3.98

-0.08

-0.085

3.97

-0.09

3.963.95

x

3.99

Condition (2.3) on [3.95,4]

FIG. 2.2. Conditions(2.2) and(2.3) on the intervalI2

Remark C. It is a natural question to ask whatαi andβi numbers we should choose in
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order that (2.3) is as weak as possible. In most cases the following statement is true:

Let [̂α, β] and ̂[α′, β′] (0 < β − α ≤ 2π, 0 < β′ − α′ ≤ 2π) be two arcs ofC such that

Sw ⊂ [̂α, β] ⊂ ̂[α′, β′]. Let Î be an arc contained in̂[α, β]. If (2.2) or (2.3) is satisfied with
α′, β′ then (2.2) or (2.3) is also satisfied withα, β.

For example, this statement is true ifq′′(θ) exists and the sets

H :=
{
θ ∈ I : q′(θ) >

1

2
cot

(θ − α′

2

)}
, H∗ :=

{
θ ∈ I : q′(θ) >

1

2
cot

(θ − β′

2

)}

consist of finitely many intervals. (The proof of this is similar to the proof of [3, second
remark].)

Theorem2.1 can be effectively used whenw(z) is identically zero on some arcs (that

is, Σ is a subset of finitely many arcs). Ifw(z) is zero on[̂ui, vi] (0 < vi − ui < 2π),

i = 1, . . . , k, then we may choosê[αi, βi] to be [̂vi, ui] in Theorem2.1. This is consistent
with the discussion above. For convenience we will state Theorem2.3 in accordance with
this remark.

2.2. Compactified Real Line.

THEOREM 2.3. For givenk ∈ N+ let

Σ := ∪k
i=1[Ai, Bi] ⊂ R̄, where

−∞ < A1 ≤ B1 < A2 ≤ B2 < · · · < Ak ≤ Bk < +∞.

LetW = exp(−Q) be a weight onΣ, I ⊂ Σ be an interval and assume thatQ is absolutely
continuous insideI and

(2.4) lim inf
X → Y
X ∈ I

Q(X) = Q(Y )

wheneverY is an endpoint ofI with Y ∈ I. Assume further thatI can be written as a disjoint
union of intervalsI1, . . . , In such that for any fixed1 ≤ j ≤ n either

eQ(X) is convex onIj ,

or for some1 ≤ i ≤ k − 1

(X − Bi)(Ai+1 − X)Q′(X) + X is decreasing onIj ,

or

(2.5) (X − A1)(Bk − X)Q′(X) + X is increasing onIj .

Finally we assume that

lim sup
X→X−

0

Q′(X) ≤ lim inf
X→X+

0

Q′(X),

wheneverX0 is an endpoint ofIj (1 ≤ j ≤ n) but not an endpoint ofI. ThenSW ∩ I is an
interval.
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Remark D. We remark that Theorem2.3 is also valid when one interval, say,[Ak, Bk]
is an infinite interval or a complement of a finite interval. IfAk > Bk (and, of course,
Bk < A1), then the conclusion of the theorem holds if (2.5) is replaced by the condition:

(2.6) (X − Bk)(A1 − X)Q′(X) + X is decreasing onIj .

If howeverBk = +∞ then (2.5) should be replaced by the condition:

(X − A1)Q
′(X) is increasing onIj .

Finally, if A1 = −∞ (and so[A1, B1] is the infinite interval instead of[Ak, Bk]) then (2.5)
should be replaced by the condition

(Bk − X)Q′(X) is increasing onIj .

At (2.6) and at Theorem2.4at (e) one can also consider anI which is a complement of
a bounded interval. We leave the details for the reader.

Theorem2.4reveals to us the following remarkable connection between previously known
conditions onQ. It also gives us a new condition (which is (e) below). As a consequence of
Theorem2.1 and2.3 and Remark D, we now have the following general result for thecase
whenΣ is one real interval. See also [3]. Recall that forA < B we define[B, A] := (A, B)c.

THEOREM 2.4. LetW be a weight onR and letI ⊂ R be an interval. Assume thatQ is
absolutely continuous insideI and satisfies (2.4). LetA ≤ B be finite constants and suppose
that either of the following conditions below hold:

(a) (X − A)(B − X)Q′(X) + X is increasing onI ⊂ [A, B], SW ⊂ [A, B].
(b) (X − A)Q′(X) is increasing onI ⊂ [A, +∞), SW ⊂ [A, +∞).
(c) (B − X)Q′(X) is increasing onI ⊂ (−∞, B], SW ⊂ (−∞, B].
(d) (X − A)2Q′(X) − X is increasing onI ⊂ R \ {A},
(e) (X − A)(B − X)Q′(X) + X is decreasing onI ⊂ [B, A], SW ⊂ [B, A].
(f) Q is convex onI.
(g) exp(Q) is convex onI.
ThenSW ∩ I is an interval.
Remark E.Theoretically one should ignore (d) and (f) since (g) is a weaker assumption

than both of these. Nevertheless we included them here, because sometimes they are easier
to check.

Notice that (a) in Theorem2.4 corresponds to the case of Theorem2.1 when [̂α, β] is

an arc ofC disjoint of the pointx = 1, (b) corresponds to the case when̂[α, β] is a proper

subarc ofC such thatexp(iβ) = 1, (c) corresponds to the case when̂[α, β] is a proper subarc

of C such thatexp(iα) = 1, (d) corresponds to the case when̂[α, β] is the full circleC and
a subcase of this is whenA = ∞ (soα = 0 andβ = 2π) which corresponds to (f). The

condition (e) corresponds to the case when̂[α, β] is a proper subarc ofC which contains the
pointx = 1 inside the arc. Finally, (g) is the only condition which corresponds to (2.2) and
not (2.3).

Note also that if we letA = B then (e) leads to condition (d), since(X − A)(A −
X)Q′(X) + X is decreasing if and only if(X − A)2Q′(X) − X is increasing.

One may also combine the above conditions to create a weaker condition in the spirit of
Theorem2.1and2.3.

3. Proofs. In this section, we present the proofs of our results. We find it convenient to
break down our proofs into several auxiliary lemmas. Our first lemma is

LEMMA 3.1. Let w(z) = exp(−q(z)), |z| = 1 be a weight onC and letI = ⌊γ, δ⌉ be

an interval with0 < δ− γ ≤ 2π. Let0 < β −α ≤ 2π and assumeSw ∪ Î ⊂ [̂α, β]. Suppose
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q(θ) := q(eiθ) is absolutely continuous insideI and satisfies (2.1). Moreover, assume that

(3.1) sin

(
θ − α

2

)
sin

(
β − θ

2

)
q′ (θ) +

1

4
sin

(
θ − α + β

2

)

is increasing onI. ThenSw ∩ Î is an arc of C.
Proof. Let

(3.2) A := − cot
α

2
, B := − cot

β

2
, X := − cot

θ

2
.

First let us assume thatα, β ∈ (0, 2π). Thus we may assume that0 < α ≤ γ < θ < δ ≤
β < 2π and0 < sin(α/2), 0 < sin(β/2). SoA ≤ X ≤ B.

From (1.7), we have

(3.3) Q′

(
− cot

θ

2

)
= 2 sin2

(
θ

2

) (
q′(θ) − 1

2
cot

θ

2

)
.

Thus,

(X − A)(B − X)Q′(X) + X

= −
(

cot
θ

2
− cot

α

2

) (
cot

θ

2
− cot

β

2

)
Q′

(
− cot

θ

2

)
− cot

θ

2

= − sin θ−α
2 sin θ−β

2

sin α
2 sin β

2

(
2q′(θ) − cot

θ

2

)
− cot

θ

2
.

Now we use the following identity which holds for anyα, β, θ:

cot
(θ

2

)( sin θ−α
2 sin θ−β

2

sin α
2 sin β

2

− 1
)

=
sin(θ − α+β

2 )

2 sin(α
2 ) sin(β

2 )
− 1

2

(
cot

α

2
+ cot

β

2

)
.

It follows that

(X − A)(B − X)Q′(X) + X(3.4)

= −2
sin θ−α

2 sin θ−β
2

sin α
2 sin β

2

q′(θ) +
sin(θ − α+β

2 )

2 sin(α
2 ) sin(β

2 )
− 1

2

(
cot

α

2
+ cot

β

2

)
.

Because0 < sin(α/2), 0 < sin(β/2), the right hand side of (3.4) is increasing onI if
and only if (3.1) holds. Thus, if (3.1) holds then(X−A)(B−X)Q′(X)+X is increasing on
⌊− cot γ

2 ,− cot δ
2⌉. Now consider the corresponding equilibrium problem onR̄, as described

in Section 1 and letSW denote the corresponding equilibrium measure onR̄. Using [3,
Theorem 7] we get thatSW ∩ ⌊− cot γ

2 ,− cot δ
2⌉ is an interval. It follows thatSw ∩ Î is an

arc ofC. This proves Lemma3.1for the case whenα, β ∈ (0, 2π).
Now let α ≤ 2π ≤ β, β − α < 2π. Note that0 ≤ sin(α/2), 0 ≥ sin(β/2). We cannot

apply [3, Theorem 7] becauseB ≤ A and X is outside[B, A]. However we can use the
observation that condition (3.1) is “rotation invariant.”

Let 0 < σ be a number such that

0 < α − σ =: α∗, β∗ := β − σ < 2π,

and define

γ∗ := γ − σ, δ∗ := δ − σ,
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q2(θ) := q(θ + σ).

Forw2 = exp(−q2) and the parametersα∗, β∗, γ∗, δ∗, we may apply the case we studied

above to get thatSw2
∩ ̂⌊γ∗, δ∗⌉ is an arc of C. But this new equilibrium problem is isomorphic

to the original one in the sense that everything (including the support) is rotated by the angle
σ. It follows thatSw ∩ Î is an arc of C.

Finally, we need to establish the lemma for the case whenÎ is the full circle. So let
β − α := 2π. Using the rotation invariance we may assume thatα = 0, β = 2π. Condition
(3.1) is now equivalent to

sin2
(θ

2

)
q′(θ) − 1

4
sin θ is increasing.

Using (3.3) we get

(3.5) 2 sin2(
θ

2
)q′(θ) − 1

2
sin θ = Q′(− cot

θ

2
).

ThusQ′(− cot θ
2 ) is increasing (0 < θ < 2π), that is,Q′(X) is increasing, and soQ(X) is

convex. It is well known, see [17], that in this case the supportSW is an interval. (The proof
works for our more general weight.) SoSw is again an arc. We have completed the proof
Lemma3.1.

As a corollary to Lemma3.1, we have
LEMMA 3.2. Let W be a weight on̄R, let J be a finite interval and suppose thatQ is

absolutely continuous insideJ and satisfies condition (2.4). Let A ≤ B be finite constants
with J ⊂ [B, A], SW ⊂ [B, A] and assume that(X −A)(B −X)Q′(X) + X is decreasing
onJ . ThenSW ∩ J is an interval.

Proof. Recall that[B, A] = (A, B)c, see Definition1.1.
We may findα < β such thatB = − cot(α/2), A = − cot(β/2) andβ − α ≤ 2π.

Notice thatsin (α/2) sin (β/2) < 0 necessarily.
Let J = ⌊− cot(γ/2),− cot(δ/2)⌉, whereα ≤ γ ≤ δ ≤ β and soδ − γ ≤ 2π.
The left hand side of (3.4) is a decreasing function ofX on J , and so the right hand

side of (3.4) is a decreasing function ofθ on I := [γ, δ]. Multiply that right hand side by
the negative constantsin (α/2) sin (β/2). In this way we get an increasing function ofθ on

[γ, δ]. So condition (3.1) is satisfied and from Lemma3.1, we deduce thatSw ∩ [̂γ, δ] is an
arc of C. This implies immediately thatSW ∩ J is an interval. Lemma3.2is proved.

Our final lemma is:
LEMMA 3.3. Letw(z) = exp(−q(z)), |z| = 1 be a weight onC and letI = ⌊γ, δ⌉ be

an interval with0 < δ − γ ≤ 2π. Supposeq is absolutely continuous insideI and satisfies
(2.1). Leteic be any point which is not an interior point of̂I. If

(3.6) eq(θ)
[
2 sin

(θ − c

2

)
q′(θ) − cos

(θ − c

2

)]
sgn

(
sin

(θ − c

2

))

is increasing onI, thenSw ∩ Î is an arc ofC.
Remark F.Whether (3.6) is increasing onI or not, it does not depend on the choice ofc

(as long aseic is not an interior point of̂I). The proof of this is given in the proof of Lemma
3.3. We remark however that ifq is twice differentiable then condition (3.6) is easily seen to
be equivalent to

q′(θ)2 + q′′(θ) +
1

4
≥ 0, θ ∈ (γ, δ)
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which condition indeed does not depend onc.
We give the following example to Lemma3.3. LetΣ be one or several closed arcs on the

unit circle but not the full circle. Assume the weightw is zero on the complement ofΣ. Let
eiρ be a point in the complement ofΣ, and define

q(θ) := q(eiθ) := log | sin θ − ρ

2
| + d,

whered is an arbitrary constant. The value ofc is our choice so letc := ρ. Then (3.6) is
increasing on the whole ofΣ (in fact it is identically zero) and thereforeSw is a set of arcs.
Moreover, each arc ofΣ contains at most one arc ofSw.

Proof of Lemma3.3. First we show that whether (3.6) is increasing onI or not, it does
not depend on the choice ofc. We do not assume the existence ofq′′.

Let F (x) andu(x) be two real functions on(0, 1) such thatF is bounded and increasing,
andu is non-negative and Lipschitz continuous. Then there existsE ⊂ (0, 1) of full measure
such that

∫ b

a

(
F (x)u(x)

)′

dx ≤ (Fu)(b) − (Fu)(a) if a, b ∈ E, a ≤ b.

This observation easily follows from Fatou’s Lemma appliedto the sequence of functions
[(Fu)(x + ǫn) − (Fu)(x)]/ǫn, ǫn → 0+.

Supposeeic andeic2 are not interior points of̂I. Denote now (3.6) by Fc(θ). Let J ⊂ I
such thatJ has full measure andFc(x) ≤ Fc(y) for all x ≤ y, x, y ∈ J . We define the
domain ofFc andq′ to beJ . We have

(3.7) eq(θ)q′(θ) =
Fc(θ) + eq(θ)

(
cos θ−c

2

)
sgn

(
sin θ−c

2

)

2
∣∣∣ sin θ−c

2

∣∣∣
, θ ∈ J,

which shows thateqq′ is differentiable a.e. onJ . Simple calculation gives

(3.8) 0 ≤ F ′
c(θ) = 2

∣∣∣ sin
θ − c

2

∣∣∣
[
(eq(θ)q′(θ))′ +

1

4
eq(θ)

]
a.e. θ ∈ J.

Replacec by c2 at the formula (3.6) and denote it byFc2
(θ). Also, replace in that formula

eqq′ by the quotient at (3.7). Thus we see that with someu(θ), v(θ) functionsFc2
(θ) =

Fc(θ)u(θ) + v(θ) holds, where inside(γ, δ):
the functionu is non-negative and Lipschitz continuous,Fc is increasing and bounded, andv
is absolutely continuous (sinceeq is absolutely continuous insideI).

So by the observation above, we have

∫ b

a

(Fcu + v)′ ≤ (Fcu)(b) + v(b) − (Fcu)(a) − v(a) = Fc2
(b) − Fc2

(a)

for a.e.a, b ∈ I, wherea ≤ b. But this integral is non-negative, since0 ≤ F ′
c2

a.e.θ ∈ I
follows from (3.8). Hence0 ≤ Fc2

(b) − Fc2
(a), i.e.,Fc2

is increasing. And this is what we
wanted to show.

We may assume thatc ≤ γ < δ ≤ c + 2π. Let us rotate noŵI to a position such that
the rotation takeseic to the pointx = 1. Condition (3.6) will change accordingly to a new
condition where nowc = 0. (We denote the new rotated weight byw = exp(−q), too.) We
now have to show thatSw ∩ Î is an arc ofC for the newSw and newÎ. Once we have done
that we simply rotatêI back to the original position and the proof is complete.
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This argument shows that we can assume without loss of generality that c = 0 and
0 ≤ γ < δ ≤ 2π. Define

(3.9) W
(1 + x

1 − x
i
)

:= |1 − x|w(x), |x| = 1.

Using the arguments in Section 1.1, (3.9) may also be given as

W (X) :=
2w

(
X−i
X+i

)

√
1 + X2

, X ∈ R̄.

We defineQ(X) by W (X) =: exp(−Q(X)). Sincew is a weight onC, we know thatW is
a weight onR̄.

We now show thateQ(X)Q′(X) is increasing on

I0 := ⌊− cot
γ

2
,− cot

δ

2
⌉.

Let x = eiθ. Note that from (1.7) we have

eQ(X) =
eq(θ)

2| sin θ
2 |

.

Using this and (3.3), for θ ∈ [0, 2π] we get

(3.10) eQ(X)Q′(X) =
1

2
eq(θ)(2 sin

θ

2
q′(θ) − cos

θ

2
).

Note that the right hand side of (3.10) is an increasing function ofθ onI by assumption. Now
we apply [3, Theorem 5], to conclude thatSW ∩ I0 is an interval. (Although this theorem
is formulated for weights withlim|X|→∞ XW (X) = 0, the argument in the proof may be
applied word for word for the more general weights considered here. Naturally one should
work with UµW

W (X) in the proof.) SinceSW ∩ I0 is an interval we conclude thatSw ∩ Î is
an arc ofC. The proof of Lemma3.3is complete.

We are now ready to present the
Proof of Theorem2.1. If Î is the full circleC then it follows from the assumption that

eiαt = eiβt = eic = eiγ for all t. Now, if (2.3) is increasing onIj then (2.2) is also increasing
onIj , as one can see. (Chooseγ to be zero and use (3.5), (3.10) and the fact that the convexity
of Q implies the convexity ofexp(Q).) So we can get the weakest assumption if we assume
that (2.2) is increasing on the wholeI, and we already know from Lemma3.3 that Theorem
2.1holds under such an assumption. Thus, let us assume thatÎ is not the full circle.

As in the proof of Lemma3.1 and3.3 we observe that the statement of Theorem2.1

is “rotation invariant.” So, we may assume that̂[γ, δ] does not contain thex = 1 point and
eiαt 6= 1, eiβt 6= 1 for anyt. We can also assume thatc = 0.

Let X = − cot(θ/2), Ai = − cot(αi/2) Bi = − cot(βi/2), andQ(X) be defined by
(1.5). Let Ij be given by

Ij = ⌊ξj , ηj⌉, 0 < ηj − ξj < 2π,

and define

I0
j := ⌊− cot

ξj

2
,− cot

ηj

2
⌉, I0 := ⌊− cot

γ

2
,− cot

δ

2
⌉.
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Note thatI0 is a finite subinterval ofR and it is the disjoint union of the intervalsI0
j (j =

1, . . . , n). We assume thatI0
j is numerated from left to right. Note also that[Ai, Bi] ⊃ I0

j

(recall Definition1.1).
By assumption, for anyj (1 ≤ j ≤ n), we can findi (1 ≤ i ≤ k), such that either

(3.11) eQ(X) is convex onI0
j , or

(3.12) Ai < Bi and (X − Ai)(Bi − X)Q′(X) + X is increasing onI0
j or

(3.13) Ai ≥ Bi and (X − Ai)(Bi − X)Q′(X) + X is decreasing onI0
j .

((3.11) is coming from the argument in Lemma3.3, (3.12) is from Lemma3.1, and (3.13) is
from Lemma3.2.)

Let E1 := 1. We can find positive constantsE2, . . . , En (uniquely) such that the fol-
lowing functionf is a positive continuous function insideI0. For x ∈ I0

j (j = 1, . . . , n),
let

f(x) :=






Ek exp(2Q(X)) if (3.11) is satisfied onI0
j

Ek(X − Ai)(B − Xi) if (3.12) is satisfied onI0
j

Ek(X − Ai)(X − Bi) if (3.13) is satisfied onI0
j .

Let W := exp(−Q). We can use the argument in [3, Theorem 12] to deduce the result.
For this purpose letA = − cot(α/2) andB = − cot(β/2) be any two numbers such thatA <

B, [A, B] ⊂ I0, (A, B)∩SW = ∅. Let µ1 := µw

∣∣∣
̂[(α+β)/2,(α+β)/2+π]

, µ2 := µ−µ1. Using

Uµw

w (x) = Uµ1
w (x) + Uµ2

w (x) and the monotone convergence theorem it easily follows that

Uµw

w (x) is absolutely continuous on̂[α, β], and so by (1.2) UµW

W (X) is absolutely continuous
on [A, B]. Also, as in [3] one can verify that

f(X)
d

dX
(UµW

W (X))

is strictly increasing on[A, B]. By [3, Lemma 4] we get thatSW ∩ [A, B] is an interval. It
follows thatSW ∩ I0 is also an interval andSw ∩ Î is an arc ofC.

We conclude this section with
The Proof of Theorem2.3 and Theorem2.4. These follow easily using Theorem2.1,

Lemma3.2and the discussion in Section 1.
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