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Determining the Intrinsic Dimension
of a Hyperspectral Image Using

Random Matrix Theory
Kerry Cawse-Nicholson, Steven B. Damelin, Amandine Robin, and Michael Sears, Member, IEEE

Abstract— Determining the intrinsic dimension of a hyper-
spectral image is an important step in the spectral unmixing
process and under- or overestimation of this number may lead
to incorrect unmixing in unsupervised methods. In this paper,
we discuss a new method for determining the intrinsic dimension
using recent advances in random matrix theory. This method is
entirely unsupervised, free from any user-determined parameters
and allows spectrally correlated noise in the data. Robustness
tests are run on synthetic data, to determine how the results were
affected by noise levels, noise variability, noise approximation,
and spectral characteristics of the endmembers. Success rates are
determined for many different synthetic images, and the method
is tested on two pairs of real images, namely a Cuprite scene
taken from Airborne Visible InfraRed Imaging Spectrometer
(AVIRIS) and SpecTIR sensors, and a Lunar Lakes scene taken
from AVIRIS and Hyperion, with good results.

Index Terms— Hyperspectral, intrinsic dimension, linear
mixture model, random matrix theory, unmixing.

I. INTRODUCTION

DETERMINING the number of sources in a signal is
important for the processing of many different types

of data, including chemical unmixing [1], extracting speech
signals in a noisy line [2], unmixing minerals [3] and unmixing
environmental landscapes [4], among many others. Determi-
nation of this number is necessary for classification methods,
unmixing methods and target detection [5]. It is common
practice for the user to select the number of endmembers
to suit the application, but this does not necessarily agree
with the intrinsic dimension of the image, and an incorrect
estimation of this number may have detrimental effects on the
end results [6].
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In this paper, we will focus on the application to hyper-
spectral imagery, although this does not preclude applicability
to other areas. A hyperspectral image may be visualised as a
3-dimensional data cube of size (m × n × p). This is a set
of p images of size N = m × n pixels, where all images
correspond to the same spatial scene, but are acquired at p
different wavelengths.

In a hyperspectral image, the number of bands, p, is large
(typically p ≈ 200). This high spectral resolution enables
separation of substances with very similar spectral signatures.
However, even with high spatial resolution, each pixel is often
a mixture of pure components.

It is of interest to unmix each pixel, to determine the
abundances of certain pure substances in the image. In unsu-
pervised remote sensing, the spectra of the K pure substances
themselves are also unknown, and the presence of noise forces
the dataset to full dimension p. In practice the data set will
involve significant redundancy. If we suppose that the data are
noise free, then they would be contained in a proper vector
subspace R

K of R
p . Various terms have been introduced in

the literature for similar concepts.
Bioucas-Dias and Nascimento [7] define the Intrinsic

Dimension of the image (ID) as the dimension of the signal
subspace. Chang and Du [8] define ID as the “minimum
number of parameters required to account for the observed
properties of the data.” They also define a separate estimate,
called Virtual Dimension (VD), which is the number of end-
members necessary to give accurate unmixing, which may be
larger than the number of so-called “idealized substances.”
Here substances may be understood as pure targets or end-
members, and could represent different objects depending on
the application, e.g. chemical powders, cover types such as
tree species, etc. By definition, VD may be dependent on
the unmixing method that is used, unlike ID. Wu et al. have
compared estimates of VD and ID in their survey paper [6] and
found them to be comparable for the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) scene of Cuprite.

Bajorski [9], however, found that the concept of VD may
be misleading in certain circumstances, since the value may
change when the image is shifted and rotated. Bajorski [9]
instead defines the Effective Dimensionality (ED) as “the
dimensionality of the affine subspace giving an acceptable
approximation to all pixels.” Schlamm et al. [10] define an
Inherent Dimension K ′, where “the entire spectral image can
lie in the same K ′-dimensional hyperplane.” These authors
also claim that the Inherent Dimension is not equivalent to
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VD, or the number of spectral signatures present in the image.
In contrast, the Spanning Dimension is defined as the “min-
imum number of basis vectors required to span the space”
of pixel observations [10]. Schlamm et al. define many
other types of dimensions which may apply to hyperspec-
tral imagery, to display the confusion around the term.
These authors also define their own intrinsic dimension
as “the smallest number of parameters needed to con-
tain all of the variability in the data through a mapping
function.” This differs from Bioucas-Dias and Nascimento’s
definition.

The many different definitions of Intrinsic Dimension may
be confusing, and although some of the above definitions
are closely connected, some definitions may lead to different
results, and so it is core for this paper to state a formal
definition for ID that is independent of the method used to
calculate it.

First, we define some generic notation that will be used in
this paper. Underlined variables, such as x represent vectors,
random variables are denoted by a tilde, x̃ , and subscript
indices xi refer to measurement x for the i th sample.

For each pixel i , 1 ≤ i ≤ N , let xi ∈ R
p be the observed

spectral measurement. Assuming the measurement may be
decomposed into signal and noise, write xi = si + ξ

i
, where

si represents the information in pixel i and ξ
i

represents the
noise. We introduce the following definition.

Definition 1 (Intrinsic Dimension): The Intrinsic Dimen-
sion (ID) of a dataset [x1, . . . , x N ] is the dimension, K , of
the vector subspace spanned by {si , 1 ≤ i ≤ N}.

Definition 1 is considered to be equivalent to the Bioucas-
Dias and Nascimento definition [7], since {s1, . . . , s N } spans
the signal subspace, and therefore K is the dimension of
the signal subspace. This is also equivalent to the spanning
dimension defined in [10].

A. Literature Review

Some of the most popular methods to calculate the ID
of a hyperspectral image include Maximum Orthogonal-
Complements Algorithm (MOCA) [11], Harsanyi–Farrand–
Chang (HFC) [8] and HySime [12]. HySime is a modi-
fication of Signal Subspace Estimation (SSE) [7]. MOCA
is specifically designed to preserve rare substances and has
been improved in terms of computational complexity by
Acito et al. in [13]. This method has also been combined
with HFC by Acito et al. [14] and Chang et al. [15]. MOCA
assumes independent identically distributed (i.i.d.), Gaussian
noise, but may be adapted for non-i.i.d. and correlated
noise [11].

In 2007, Wu et al. [6] provided a summary of methods to
determine the intrinsic dimension of a hyperspectral image.
This paper compares the HFC Detection Method [16], which
assumes white noise with zero mean, with a number of other
methods which require various noise assumptions. All the
methods discussed only use the eigenvalues of the observation
covariance matrix. In all cases, nothing needs to be known
about the basis vectors, which is an advantage over supervised
methods. These methods are all taken from different areas,

including chemistry and signal array processing, and are
applied to hyperspectral imagery.

From the real and synthetic experiments described in [6],
the authors determined that the best method for hyperspectral
imagery was HFC, and the methods with the strictest noise
assumptions (i.e. that the noise is Gaussian and i.i.d.) per-
formed the worst. On the other hand, HFC was shown to be
sensitive to user-defined values.

B. Linear Mixture Model

A common model used in remote sensing to separate
mixed signals is the linear mixture model, introduced by
Horwitz et al. [17]. This model assumes that the measurement
in each pixel is made up of a convex linear combination of
pure components. Kritchman and Nadler [1] define the set of
pixel observations by the (p × N) matrix X = [x1, . . . , x N ]
and assume that for each pixel indexed by i , the observed
measurement vector xi ∈ R

p is a realisation of a random
vector x̃ , so that

x̃ = V ũ + ξ̃ , (1)

where ũ is a (K × 1) random vector subject to the constraints
ũ ≥ 0 and 1T ũ = 1, and represents the proportions of pure
components; V is a (p×K ) deterministic matrix, with columns
corresponding to the spectral measurements characterizing the
pure components present in the whole scene; ξ̃ is a random
vector in R

p representing the noise; and K is the total number
of pure components.

It is commonly assumed that ξ̃ follows a Gaussian dis-
tribution N (0,�), where � is the noise correlation matrix.
This model allows the noise to be spectrally but not spatially
correlated. This assumption has been successfully used in
chemical unmixing [1] and in many methods described in the
survey paper by Wu et al. [6]. The matrix � must be estimated
from the data using a noise approximation method such as
Meer’s method [18].

C. Background on Random Matrix Theory

Determining the ID of a dataset is most often done by ana-
lyzing the eigenvalues of the observation covariance matrix,
S(N), defined as

S(N) := 1

N

N∑

i=1

xi x
T
i , (2)

where N is the number of samples. Without loss of generality,
centered data is assumed, so that the mean pixel value over the
entire image is 0. The matrix S(N) is used to distinguish the
eigenvalues due to signal and the eigenvalues due to noise.
This procedure is used to unmix hyperspectral images [6],
signals [2], chemical mixtures [1] and others [3], [4].

In [1], x̃ and ξ̃ are independent, and � = σ 2 Ip . This
is reasonable in the chemical application being considered,
since repeated samples are taken from the same mixture.
The model covariance S is defined by S = E [x̃ x̃ T ]. S may
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be diagonalised by W so that

W T SW = W T V E

[
ũũT

]
V T W + σ 2 Ip (3)

=

⎛

⎜⎜⎝

l1 0
...

lK

0 0

⎞

⎟⎟⎠+ σ 2 Ip (4)

where li represents the i th signal eigenvalue, and the observed
eigenvalues tend toward li + σ 2 for 1 ≤ i ≤ K and to
σ 2 for the remaining (noise) eigenvalues. The authors in [1]
state that S(N) → S as N → ∞ with probability one.
Since in a hyperspectral image N is large, the eigenvalues
of the sample covariance might be expected to show this clear
distinction between eigenvalues due to signal and eigenvalues
due to noise, allowing easy calculation of K . However, in
practice, the values of the observed noise eigenvalues can be
highly variable, making it difficult to distinguish between a
small signal eigenvalue and a large noise eigenvalue. Several
methods have been developed to address this problem.

In the method described in [1], the following assumptions
are made: the columns of V are linearly independent; the abun-
dance correlation matrix E [ũũT ] has full rank; and the noise
is uncorrelated with the signal. In order to better understand
the assumption that E [ũũT ] has full rank, consider an example
where two vectors in V always occur in the same proportions,
resulting in reduced rank of E [ũũT ]. In this case, however, we
would expect that the value of K for the scene would be lower
than the number of pure substances. Thus this assumption that
E [ũũT ] has rank K is reasonable.

In [1], Kritchman and Nadler have worked with new results
in Random Matrix Theory (RMT) to determine which eigen-
values are due to noise and which are due to signal. Because
Gaussian noise is assumed, the noise eigenvalues perform like
eigenvalues of a random matrix. The distribution of the largest
such eigenvalue (the first non-signal eigenvalue) has been well
studied [19], [20], and this allows accurate determination of K .
The advantage to this method is that there are no parameters
that need to be set by the user. It achieved good results in
chemical testing.

Wishart matrices play an important part in RMT. John-
stone [19] describes a random cross-product matrix Ã = X̃ X̃ T ,
where X̃ contains N independent column vectors, each follow-
ing a p-variate Gaussian distribution N (μ,�). Then Ã has a
p-variate Wishart distribution with N degrees of freedom,
Wp(�, N). Johnstone [19] derives results for the case where
the mean of each column is zero and the standard deviation of
the p-variate Gaussian distribution is the identity matrix, i.e.
each column of X follows the normal distribution N (0, Ip),
and then Ã ∼ Wp(Ip, N).

Random matrices were first used in physics, to determine
quantum energy levels [19]. In this setting, both p and N
were large, breaking away from traditional statistics, where p
was fixed. And so the authors in [1] assume that N → ∞,
p→∞, with p

N → c, where c > 0 is constant. A large body
of research in RMT has been dedicated to the distribution
of the largest eigenvalue of a matrix following a Wishart
distribution [1], [19].

Kritchman and Nadler [1] used some of Johnstone’s results
[19] in their chemical application to determine the largest
noise eigenvalue, by determining the largest sample covariance
eigenvalue consistent with the distribution of the largest eigen-
value from a Wishart matrix. This method assumes i.i.d. noise.
According to Johnstone [19], the largest eigenvalue of such a
real-valued Wishart matrix, λ̃1, fulfills the following condition
with convergence in distribution in the limit as N, p → ∞,
p/N → c > 0:

Pr{λ̃1 ≤ σ 2(Rμ(N, p) + s(α)Rσ (N, p))} ∼ T W, (5)

where T W denotes the Tracy-Widom distribution, and the rate
of convergence is O(p−2/3) [1]. In (5), σ 2 is the variance of
the Gaussian noise, α is a significance level and s(α) may be
found by inverting the Tracy-Widom distribution (in [1], α =
0.5%, and after experimentally investigating the sensitivity
to α, we determine that this is optimal and fix this value
for all images investigated). The Tracy-Widom distribution is
the solution of a second order Painlevé ordinary differential
equation [1].

For real valued data define

Rμ(N, p) = 1

N

(√
N − 1

2
+

√
p − 1

2

)2

(6)

Rσ (N, p) = 1

N

(√
N − 1

2
+

√
p − 1

2

)

×
⎛

⎝ 1√
N − 1

2

+ 1√
p − 1

2

⎞

⎠
1/3

. (7)

Note that these functions do not depend on the intrinsic
dimension, K . It is also important that Rσ (N, p) → 0 as p,
N → ∞, p/N = c fixed, so that the s(α)Rσ (N, p) term in
(5) tends to zero as the image becomes larger. This means
that, especially for large images, the formula is not sensitive
to the choice of α.

Traditionally, statistical techniques consider the scenario p
fixed, with p << N , and in this case, the observed noise
eigenvalues should be very close to σ 2 in the case of i.i.d.
noise [21]. However, although the number of pixels in a hyper-
spectral image are several orders of magnitude larger than the
number of spectral bands, the dividing line between signal
and noise eigenvalues is in practice still unclear. El Karoui
[21] found that high dimensional problems (a hyperspectral
image may contain hundreds of spectral bands) might be better
solved by assuming that p and N are both large, with their
ratio fixed. Similarly, Kritchman and Nadler [1] state that (5)
still holds in the case of finite but large N and p, and in
fact their algorithm deals specifically with small N , with good
results.

There is, however, a limit to the size of the eigenvalue that
may be successfully detected. The phase transition phenom-
enon described in [20] results in the limit λcrit , below which
the noise eigenvalue will not be successfully identified. This
limit is defined as

λcrit = σ 2
√

p

N
. (8)
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The use of RMT in the chemical application proved to
be very powerful in the circumstances investigated [1], but
the experiments were limited to small numbers of samples,
multiple measurements of the same mixture, and i.i.d. noise.
This work has been continued by the same authors in [22],
where Kritchman and Nadler showed that the method is
applicable to a large number of samples in a signal processing
environment.

However, the noise was still assumed to be i.i.d. across
bands and across samples. Nadler and Johnstone [23] further
pursued the idea by considering i.i.d. noise, but possibly
correlated samples. They assume the existence of noise only
observations and show that the data may be whitened and a
variation of Roy’s test may be applied.

Since some of the assumptions are not applicable to hyper-
spectral imagery, in this paper, we extend the RMT ideas
from [1] so that they are appropriate for a wider range of
applications. We consider large numbers of samples, where
each sample may differ greatly from the sample mean,
and Section II shows that RMT can be used to develop
a new procedure that is applicable to hyperspectral images
even in the presence of non-i.i.d. and spectrally correlated
noise.

Section III shows the new method in algorithmic format,
Section IV shows that this method performs well on synthetic
data, and Section V shows that RMT is now applicable to real
hyperspectral images. The advantage of the method presented
is that it is not dependent on a user-determined parameter, as
are other hyperspectral methods discussed above.

II. MODEL FORMULATION

Some of the most accurate methods described above have
drawbacks in terms of noise assumptions or sensitivity to
user-defined parameters. We introduce a method which only
assumes Gaussian noise that is independent from the signal
(the noise may be correlated across bands, however), and
does not rely on user-defined parameters. Specifically, V ũ is
independent from ξ̃ in (1), and we replace the i.i.d. noise
variance σ 2 Ip used in [1] with a variance � that allows for
correlated, non-i.i.d. noise. The core of the method is based on
Random Matrix Theory (RMT), and in this section the model
will be developed.

First we consider the threshold λcrit in (8), below which
noise eigenvalues will not be detected. In hyperspectral
images, N is typically much larger than p, and we assume that
the eigenvalues we test are above this limit. (Experimentally,
in our images this has proven to be true.)

To investigate whether the method described in [1] is
applicable to hyperspectral images, we consider a hyper-
spectral image of pure noise, i.e. the measurement x̃ i in
each pixel follows a Gaussian distribution N (0,�). We
define X̃ = [x̃1, . . . , x̃ N ], then as stated above, Ã =
X̃ X̃ T follows a Wishart distribution Wp(�, N). Denoting
S̃(N) = N−1 ∑N

i=1 x̃ i x̃
T
i , which may also be written as

S̃(N) = N−1 X̃ X̃ T , then N S̃(N) follows a Wishart distribution
Wp(�, N). Hence, S(N) defined in (2) may be seen as a
realisation of S̃(N) in the case of a pure noise image.

The i.i.d. noise assumption in [1] is not applicable to hyper-
spectral images, and whitening methods were determined to
be unsuccessful in a hyperspectral application [24]. Therefore
a new method will be developed to allow for correlated and
non-i.i.d. noise.

In [1], the separation between noise and signal eigenvalues
is possible because the eigenvalues of S, where S(N) → S
for N →∞, are given by

⎛

⎜⎜⎝

λ1 0
...

λK

0 0

⎞

⎟⎟⎠+ σ 2 Ip.

However, this is only true when the standard deviation of the
noise is constant across bands. The method using constant
noise standard deviation was applied directly to hyperspectral
imagery in [25] and, although the method showed good
results when applied to synthetic images, on a real image
no eigenvalue was found to satisfy (5). This result was to
be expected, since it is known that hyperspectral images do
not have the same noise standard deviation in each band.
Whitening methods were examined in [24], which decorrelate
the noise and force the noise standard deviation to become
constant in each band so that the original method should be
applicable. This improved the previous results, but K was still
overestimated. In this paper we will further develop the method
so that it is applicable for non-i.i.d. noise, and in order to do
that we must first prove that the eigenvalues are still separable
in the non-i.i.d. case. To show this we derive Propositions 1
and 2 below.

Proposition 1: Suppose x̃ ∈ R
p is a random column vector

described by x̃ = V ũ + ξ̃ , where V is a (p× K ) matrix with
linearly independent columns, ũ is a random vector in R

K , ξ̃

is a random vector in R
p, where ξ̃ ∼ N (0,�), and � is the

noise correlation matrix.
Assuming that E [ũũT ] has full rank K , and that (V ũ)

and ξ̃ are independent, the expectation S = E[x̃ x̃ T ] may be
decomposed as S = � + �, where � is a symmetric matrix
of rank K .

Proof: See Appendix VI-A.
Proposition 1 shows that under an assumption of indepen-

dence, the signal and noise are separable in the correlation
matrix, even if the noise correlation matrix � contains varying
diagonal terms and/or off-diagonal terms i.e. the noise is not
i.i.d.. Random Matrix Theory formulae rely on � having the
form σ 2 Ip , so let us write � as σ 2 Ip + ε̄, where σ 2 is the
average of the diagonal terms of �. Note that S and � are
symmetric, resulting in symmetric �. The following proposi-
tion proves that the eigenvalues of the observation covariance
matrix are also separable, so that the RMT evaluation may be
applied.

Proposition 2: Suppose S is a (p × p) symmetric matrix
described by S = �+�, where � and � are also symmetric.
Suppose � = σ 2 Ip + ε̄ (σ 2 is scalar). Let λS

i be the i th

eigenvalue of S (sorted in descending order) and λ�
i be the i th

eigenvalue of � (sorted in descending order). Then, assuming
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(x�
i )T x S

i 
= 0

λS
i = λ�

i +
(x�

i )T �x S
i

(x�
i )T x S

i

(9)

= λ�
i + σ 2 + (x�

i )T ε̄x S
i

(x�
i )T x S

i

, (10)

where x S
i and x�

i are the eigenvectors of S and �, correspond-
ing to λS

i and λ�
i respectively.

Proof: See Appendix VI-B.
This result is analogous to the one obtained in the case

where � = σ 2 Ip shown in (4), but with extra terms involving
the eigenvectors of � and S. Propositions 1 and 2 provide
a new formula for the noise in the RMT evaluation. For all
1 ≤ i ≤ p

ρi = (x�
i )T �x S

i

(x�
i )T x S

i

, (11)

where ρi is the difference between the i th observed eigen-
value of S and the i th signal eigenvalue as described by
Proposition 2. The original RMT theory in [19] is used to
describe the distribution of the largest eigenvalue of a Random
Matrix. The authors in [1] have shown that this theory may
also be used to detect the largest noise eigenvalue, where the
study assumed Gaussian and i.i.d. noise. Since we evaluate
each eigenvalue individually, each may be thought of as the
largest eigenvalue of a submatrix, where the submatrix of size
(q × q), q = 1, . . . , p, has eigenvalues corresponding to the
q smallest eigenvalues of S. So the threshold condition for
noise eigenvalues (5) may now be written, for i = 1, . . . , p, as:

λi < ρi R,

where R = (Rμ(N, p) + s(α)Rσ (N, p)). (12)

Now ρi depends on knowledge of the noise correlation matrix
�, the eigenvalues of � (remember that the observation covari-
ance matrix S(N) approximates �+�), and the eigenvalues
of S(N). Note that every eigenvalue must be tested, since the
value for ρi will differ for each evaluation.

In this section the theory has been derived to determine the
ID of a hyperspectral image, using RMT. This method allows
for non-i.i.d. and correlated noise and requires only an estimate
of the noise covariance matrix.

The next section will show how this theory can be used
in practice for the estimation of intrinsic dimension, giving a
summary of the algorithm used.

III. ALGORITHM

In section II, we showed how eigenvalue evaluation could
be used theoretically to discriminate noise from signal eigen-
values. In order to apply these theoretical results in practice,
we need to compute the observation covariance matrix S(N)
from the data and approximate the noise correlation matrix �.

Note that the RMT significance level, α, may in principle
be used as a free parameter as in [22], but we choose to fix
this value for all images so that there is no user-determined
parameter. This is reasonable because the RMT evaluation
is not sensitive to α when images are large, since s(α) is

Algorithm 1
S(N)← observation covariance matrix
λ ← [λ1, . . . , λp], the sorted (descending) eigenvalues of
S(N)

p← length(λ)
Rμ ← 1

N (
√

N − 0.5+√p − 0.5)2

Rσ ← 1
N (
√

N − 0.5+√p − 0.5)( 1√
N−0.5

+ 1√
p−0.5

)
1
3

s ← (− 3
2 log[4√π α

100 ])
2
3

R← Rμ + s × Rσ

f ← call NoiseApproximationFunction(Image)
� ← diagonal matrix containing variances per band deter-
mined by f
σ 2 ← mean of the noise variances over all bands i.e.
mean([�1,1, . . . ,�p,p])
E1 ← eigenvectors of S(N) (sorted so that corresponding
eigenvalues are descending)
E2 ← eigenvectors of (S(N) − �) (sorted so that corre-
sponding eigenvalues are descending)

for i = 1→ p do

ρi ← Ei
1.�.Ei

2
Ei

1.E
i
2

end for
ρ ← [ρ1, · · · , ρp]
K ← intersection between λ and ρ × R

multiplied by Rσ (N, p), which tends to zero as N → ∞
(see (5) and (7)). In [1], Kritchman and Nadler fixed alpha
to be 0.5%. Using this value in experiments with pure noise
images, containing low numbers of pixels (∼1,000) we found
that 99.7% of the time all eigenvalues were ascribed to noise.
On the other hand, if a single signal is included in the
image, one eigenvalue was always ascribed to signal. From
these experiments this is indeed a reasonable value for α for
hyperspectral data and everywhere in this paper it will be
assumed that α = 0.5%. It should be noted that α is not
dependent on the image (as it is fixed for all images) and is
not considered a tuneable parameter.

To approximate the noise, we chose an algorithm described
by Meer et al. in [18]. This is a pyramid algorithm that
searches for homogeneous areas, and it has various rules to
allow for outliers. In test images, this algorithm was able to
approximate the noise accurately with RMSE of 1%. This
particular algorithm produces only the variance per band,
so in this case � is diagonal. Since we are assuming this
noise approximation method, from this point on we assume
a diagonal noise covariance matrix. Note that this is not a
restriction to our method, any preferred noise approximation
algorithm may be used. Meer’s method was chosen since it
estimates the noise on a band-by-band basis, and thus it is
independent of any relationship between bands, such as noise
correlation. The sensitivity of our method with respect to
the accuracy of the noise approximation will be tested and
discussed in Section IV-B.

Unlike previous versions [1], [25], our method allows for
non-i.i.d. noise. This procedure is summarised in algorithmic
format above.
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The algorithm requires only the image itself as an input, and
returns the intrinsic dimension of the image, K . It requires
no prior knowledge about the image, and requires no user-
determined inputs. In the next section, the robustness of this
approach is analysed with regards to each variable of the
model, using simulated data.

IV. PERFORMANCE ANALYSIS

A. Description of the Test Dataset

We simulated a dataset using 20 minerals taken from the
JPL spectral library [26]. At each iteration of the algorithm,
K unique minerals are chosen randomly from the dataset, and
the proportions of each of the basis vectors in each pixel are
randomly selected with the only restrictions being the positive
and sum-to-one conditions that are enforced. We also varied
our values for p (number of bands), N (number of pixels),
and σ (the average of noise standard deviations across all
bands) in these images. As seen in Figure 1, the spectra in
our dataset vary widely—some are similar and others easily
separable. By mixing random spectra together we simulate
images that may be easy or difficult to process. Since the
proportions are randomly selected as well, one or more basis
vector may occur in very small proportions in the image.
All of these properties were created in order to simulate as
realistic a dataset as possible.

While pure endmembers may be well understood in mineral
applications, this idea becomes more subjective in data that
contains vegetation spectra, which may vary according to
species, phenology, etc. In this paper it is assumed that each
target may be represented by a single spectral signature, where
variation around this target is understood to be smaller in
magnitude than the noise present in the image. If the variation
is larger than this, then certain vegetation classes may be
represented by more than one spectral signature.

In each test, we fixed all variables (except the one being
examined) at the following default values: N = 10, 000,
p = 200, σ = 10−3, K = 5.

When noise statistics are assumed known, the method is
independent of N and p. In this case, the method also produces
100% success rates for non-i.i.d. noise and noise that is
correlated between bands. Note that in all tests below, the
actual noise values used to construct the synthetic dataset are
known, so that we test the robustness of the ID method rather
than the accuracy of any noise approximation method. If the
noise is approximated, accuracy will decrease.

B. Robustness to the Noise Level

Noise is an important element to test, as high noise eigen-
values can become very close to small signal values, making
them difficult to separate. With low SNR (signal to noise
ratio), two similar spectra will become indistinguishable. As
seen in Figure 1, our test dataset does contain some basis
vectors which are very close together, and so we are interested
to test the level at which they are impossible to separate.
Our tests in Figure 2 show that the mean estimated K, over
20 simulations, is exactly 5 for noise standard deviation below
σ = 0.02. We use the SNR definition in [6] which says that the

(b)

(a)

Fig. 1. (a) All the spectra used to make up the test data set. Note that there is
a mix between similar and easily separable spectra, flat spectra and those with
sharp features, spectra with high and low amplitude, etc. This is done to mimic
a real environment. (b) Spectrum (Graphite 1A) with the lowest amplitude is
shown at a larger scale. Take note of the noisiness of the spectrum.

Fig. 2. Mean-estimated ID with regards to different noise levels. Twenty
different images per noise level were simulated to calculate these values, and
the true value for K is 5. Note that the method produces the correct value
K = 5 in all 20 simulations for noise standard deviation up to 0.02.

SNR is equal to half the mean signal divided by the standard
deviation of the noise. Since our synthetic image mean is close
to 0.5, a noise value of σ = 0.01 is equivalent to an SNR of
25:1, which is the limit of the noise tested in [8]. This lower
bound is much lower than current hyperspectral sensors, with
AVIRIS having an SNR of approximately 500:1 [3]. It should
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be noted, however, that the intrinsic dimension will not be
accurately determined for images containing very high levels
of noise.

Note in Figure 1(a) that there are two spectra of a much
lower amplitude than the rest. We will discuss these in
Section IV-C, and study the impact of the number of basis
vectors on the performance.

C. Performance With Regards to the Spectral Characteristics
of Basis Vectors

Certain characteristics of basis vectors will make them
difficult to detect in any model. Multiple spectra that have
similar spectral signatures may be difficult to separate, and
spectra with low amplitudes may be confused with noise.
We have investigated the impact of such scenarios in our
simulated dataset. Figure 1 clearly shows that our dataset
contains spectra with different characteristics in order to mimic
a real environment. Some spectra may appear to be similar,
but our method was able to separate these. Two spectra
stand out with very low amplitudes, and one spectrum in
particular, Graphite, (Figure 1(b)) has low amplitude and high
noise (mean reflectance 0.0475 and standard deviation 0.007).
This spectrum was impossible to distinguish from noise with
the default noise standard deviation of σ = 10−3. This is
equivalent to an SNR of 250:1, which is still low compared
to real images (recall that AVIRIS has SNR = 500:1). Note
that if the noise is reduced to σ = 10−4, the basis vectors are
separated with 100% accuracy. It is interesting that the other
low-amplitude spectrum is still accurately detected—it may be
the combination of the noisy signal and the low amplitude in
Graphite that causes it to be recognised as noise in a noisy
image.

D. Robustness to Noise Approximation

As previously stated, our algorithm does not depend on a
specific noise approximation algorithm. However, the algo-
rithm that is used must be accurate enough for our purposes.
In this section, we test the impact of errors in noise approx-
imation on the accuracy of our method in order to evaluate
how accurate the noise approximation needs to be.

If we assume that the noise distribution in all bands is
N (0, σ 2 Ip), Figure 3 shows that our algorithm only tolerates
up to 10% underestimation, and overestimations of constant
noise are well tolerated. This asymmetrical behaviour is firstly
due to the eigenvalue spread (noise eigenvalues are closer
together, so a noise approximation error towards the noise
direction will result in higher errors in estimating K ), and
secondly due to the fact that the RMT evaluation in (5) is a
single sided inequality; i.e. if the upper limit for the largest
noise eigenvalue is increased, the noise eigenvalue will still
fall below this limit. Conversely, if it is decreased, some
noise eigenvalues will be recognised as signal. Again, this
is made more predominant due to the asymmetrical spread
of the eigenvalues. Therefore, for the best results, the noise
approximation algorithm should be chosen with care, since
the ID may not be accurate if noise is underestimated.
Note that when the noise is spectrally correlated, it is often

Fig. 3. Mean-estimated ID with regards to the accuracy of the noise
estimation. If we assume that the standard deviation of the noise σ is in
fact estimated by σ(1+ε) (where ε is constant), then the results are given for
the overestimation, ε. Twenty different images were simulated for each value
of ε to calculate these mean estimates, where the true value for K is 5. Our
algorithm only tolerates small underestimations of the noise (up to 10%) and
fails for more severe underestimation, but is widely tolerant of overestimation.

underestimated. Even though our method tolerates up to 10%
underestimation, it rapidly becomes a limiting factor. In [27]
we show that spatially based noise estimation method such as
Meer are not sensitive to correlated noise, and that statistical
estimations may be improved by a simple band removal
process.

V. RESULTS ON REAL IMAGES

A. Datasets

We test the algorithm on two pairs of real datasets. The first
is a pair of hyperspectral images taken over Cuprite, Nevada.
One image is an AVIRIS scene, and the other is a SpecTIR
scene. The second dataset is a pair of images taken over Lunar
Lakes, Nevada, USA. One is an AVIRIS image, and the other
is a Hyperion image.

AVIRIS is flown by NASA’s Jet Propulsion Lab on the
NASA ER-2 aircraft, and is a whiskbroom sensor with approx-
imately 10 nm spectral resolution, over the range 0.4-2.5 μm.
This image was obtained from an altitude of 20 km and
has a spatial resolution of 20m [28]. The Cuprite image we
are considering is a subset from a freely available1 image
taken in 1997, and has 350 × 350 pixels, 189 bands (bands
1–3, 105–115, and 150–170 were removed from the original
data due to water absorption and low SNR, as in [6], [29]),
and an average SNR of approximately 500:1 [28]. This was
calculated by dividing the mean by the standard deviation of a
homogeneous area (Stonewall Playa) and normalising to 50%
reflectance [28]. While the exact intrinsic dimension of this
dataset is unknown, it is a well-studied image, and Wu et al.
[6] have tested 6 other methods to determine K in this image.
Also, ground truth collected by Swayze et al. found at least
18 substances [30] (which may not include rarer minerals),
and Chang et al. reported that K = 22 was the minimum

1Available at aviris.jpl.nasa.gov/html/aviris.freedata.html.
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number to guarentee that his endmember extraction algorithm
could identify five minerals at the ground truth points in the
image [29]. The Lunar Lakes scene was acquired in 2009, has
350× 350 pixels, and 189 spectral bands.

The SpecTIR subset that we are using contains 320× 320
spatial pixels, and 230 spectral bands. SpecTIR is a pushb-
room sensor flown commercially. The bands are in the range
0.440−1.700 μm, with approximately 5nm intervals, and the
spatial resolution is 1m. The data was processed to reflectance
using the same procedures as AVIRIS. The SpecTIR scene is a
subset of the AVIRIS scene (but with higher spatial resolution),
and so we expect similar results. This dataset is freely available
online2.

Hyperion is a hyperspectral sensor mounted on the EO-1
satellite. Hyperion is capable of producing 220 spectral bands
over the spectral range 0.4 − 2.4 μm, with approximately
10 nm spectral resolution and 30 m spatial resolution. The
original images are 7.5 km wide and 100 km long and two
separate grating image spectrometers detect VNIR and SWIR
wavelengths. Data are available for free online3. A subset
of the original image is considered, with 250 × 250 pixels.
Hyperion is known to contain very noisy bands and highly
correlated bands, and these are removed for this analysis.

The Hyperion and AVIRIS scenes over Lunar Lakes do
not cover the exact same spatial area, but they are located
in similar areas in the Lunar Lakes region, and so we expect
the results over both images to be comparable. The SpecTIR
scene over Cuprite is a subset of the AVIRIS scene, but once
again we expect the ID estimates to be comparable over both
scenes.

B. Results Obtained

The AVIRIS Cuprite image was also tested in [25] and [24].
Constant σ was assumed in [25] and no eigenvalue satisfied
the RMT noise evaluation. When whitening was applied in
[24], the number of endmembers K , was determined to be 37.
This was considered high for the Cuprite area. When using
our non-i.i.d. method on the same scene (using Meer’s noise
approximation method), we calculated that K = 21 (as seen
in Table I), which is very much in line with the results found
in [6]. For the SpecTIR scene our method finds that K = 24.
We might expect this value to be slightly higher than K
determined for AVIRIS, since SpecTIR covers a smaller area
at a higher spatial resolution. It is reasonable that at the higher
spatial resolution of the SpecTIR sensor, more pure substances
should be identifiable.

When analysing Lunar Lakes, Table II shows that the RMT
method (again using Meer’s noise approximation) found K =
13 for AVIRIS and K = 15 for Hyperion. In comparison,
HFC found ID estimates for Hyperion that are approximately
double those of AVIRIS.

C. Statistical Noise Estimation Methods

RMT may be used with any accurate noise approximation
method. In this section we test RMT with multiple regression

2Available at www.spectir.com/download.html.
3Available at http://edcsns17.cr.usgs.gov/NewEarthExplorer/.

TABLE I

APPROXIMATIONS TO K USING HARSANYI-FARRAND-CHANG METHOD

(WITH FD VALUE IN BRACKETS) APPLIED TO AVIRIS AND SPECTIR

CUPRITE, FOR DIFFERENT USER-DETERMINED VALUES OF FD . NOTE

THAT THE METHOD IS VERY SENSITIVE TO THESE FALSE ALARM RATES.

RMT, USING MEER’S NOISE APPROXIMATION, PRODUCES SIMILAR

VALUES TO HFC, BUT THE METHOD DOES NOT REQUIRE ANY

PARAMETERS TO BE SET BY THE USER

HFC(10−2) HFC(10−3) HFC(10−4) RMT

AVIRIS 30 24 22 21

SpecTIR 24 23 19 24

TABLE II

APPROXIMATIONS TO K USING HARSANYI-FARRAND-CHANG METHOD

(WITH FD VALUE IN BRACKETS) APPLIED TO AVIRIS AND HYPERION

LUNAR LAKES, FOR DIFFERENT USER-DETERMINED VALUES OF FD .

NOTE THAT THE METHOD IS VERY SENSITIVE TO THESE FALSE ALARM

RATES. RMT, USING MEER’S NOISE APPROXIMATION, ESTIMATES THE

ID TO BE SIMILAR FOR AVIRIS AND SLIGHTLY SMALLER FOR HYPERION

HFC(10−2) HFC(10−3) HFC(10−4) RMT

AVIRIS 13 10 9 13

Hyperion 21 20 19 15

and residual noise approximation methods, and compare the
results to HySime [12] (which uses the multiple regression
noise estimation) and NSP [8] (which uses the residual noise
approximation). The values returned are shown in Table III,
where only one value is shown for RMT since both noise
approximations yield the same ID estimate. It is obvious that
while the AVIRIS results are believable and consistent with
the range obtained by HFC and RMT in Table I, the figures
for SpecTIR are ridiculous.

The SpecTIR scene over Cuprite contains high levels of
spectral correlation—possibly due to the nature of the sensor
or to preprocessing of the data. The effects of spectrally
correlated noise have been analysed in [27], and these effects
explain the ridiculous figures seen in Table III. When the
worst of the correlated bands are removed, the results obtained
become much more realistic as shown in Table IV. However,
only 74 of the original 250 bands remained. In comparison,
the AVIRIS scene had only a few badly correlated bands, and
so retained all but 8 of its original 189 bands. Nevertheless,
the AVIRIS results are also improved. It is unsurprising that
now more materials are detected in the AVIRIS scene than in
the SpecTIR scene with far fewer spectral bands.

Note that Meer’s noise approximation algorithm estimates
the noise on a band-by-band basis, and so is not affected by
spectrally correlated noise. These results serve as a caution
that while RMT may be used with any accurate noise estima-
tion method, statistical noise approximation methods are not
accurate in the presence of spectrally correlated noise.

D. Discussion

The algorithm introduced in this paper was able to improve
on previous experiments that applied RMT to hyperspectral
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TABLE III

APPROXIMATIONS TO K USING NSP, HYSIME AND RMT

WITH STATISTICAL NOISE ESTIMATIONS, APPLIED TO

AVIRIS AND SPECTIR CUPRITE

NSP RMT HySime

AVIRIS 28 31 15
SpecTIR 139 156 140

TABLE IV

APPROXIMATIONS TO K USING NSP, HYSIME AND RMT WITH

STATISTICAL NOISE ESTIMATIONS, APPLIED TO AVIRIS AND SPECTIR

CUPRITE, WITH CORRELATED BANDS REMOVED. HYSIME ESTIMATES

THE SAME VALUE FOR BOTH SCENES, AND RMT AND NSP ESTIMATES

ARE SIMILAR. NOTE THAT WHEN SPECTRALLY CORRELATED

BANDS WERE REMOVED FOR THE STATISTICAL NOISE

ESTIMATE, SPECTIR RETAINED LESS THAN HALF THE

BANDS RETAINED IN THE AVIRIS IMAGE

NSP RMT HySime

AVIRIS 26 29 17
SpecTIR 21 22 17

imagery. The results were comparable to the well-known
method HFC in the Cuprite scene acquired by AVIRIS and
SpecTIR (see Table I), with the advantage of not requiring
a user-defined parameter, as does HFC. The accuracy of our
method may be seen in Tables I, II and IV, where the results
of our method are shown to be consistent for both scenes
acquired by different sensors.

HFC does not require a noise approximation and so has
the advantage of not being dependent on reliable noise
estimations. An adaptation of HFC—namely NSP [8]—was
developed to reduce sensitivity to the user-defined parameter,
although it relies on a statistical noise estimate. Our method
is also compared with statistical noise estimates, and when
correlated bands are removed, similar values are obtained for
the AVIRIS Cuprite scene (see Table IV).

Simulated experiments showed that the RMT method
allowed for some error in noise approximation (especially
overestimation), although the noise approximation algorithm
used should be chosen with care. The method was also
accurate up to the same noise levels as HFC, and produced
good results for highly variable non-i.i.d. noise.

VI. CONCLUSION

A method has been introduced that uses Random Matrix
Theory to determine the intrinsic dimension of a hyperspectral
image. This method requires only the assumption of Gaussian
noise, (noise may be non-i.i.d. and correlated) and a method
of estimating the noise variance in each band. The assumption
of Gaussian noise is a common one, and it would be an
interesting extension of this work to consider other noise
distributions. Our method will accept any noise approximation
method, and has been shown to be very tolerant of noise
overestimation. In future work, we will test other noise approx-
imation methods in the application to real images. Our method
has been successfully tested on real and simulated images, and

is comparable to one of the best existing methods, Harsanyi-
Farrand-Chang [16], with the advantage that it does not require
any user-determined parameters.

APPENDIX

A. Proof of Proposition 1

Proof:

Define S = E

[
x̃ x̃ T

]

= E

[
(V ũ)(V ũ)T + (V ũ)ξ̃

T

+ ξ̃ (V ũ)T + ξ̃ ξ̃
T
]

= E

[
(V ũ)(V ũ)T

]
+ E

[
ξ̃ ξ̃

T
]

= V E

[
ũũT

]
V T +�

Let � = V E

[
ũũT

]
V T

Then S = �+�

S is of rank K since E [ũũT ] is of rank K and V has linearly
independent columns.

B. Proof of Proposition 2

Proof:

λS
i (x�

i )T x S
i = (x�

i )T Sx S
i

= (x�
i )T (�+�)x S

i

= (x�
i )T �x S

i + (x�
i )T �x S

i

= λ�
i (x�

i )T x S
i + (x�

i )T �x S
i

λS
i = λ� + (x�

i )T �x S
i

(x�
i )T x S

i

provided that (x�
i )T x S

i 
= 0. (10) follows at once from the
form of �.
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Determining the Intrinsic Dimension
of a Hyperspectral Image Using

Random Matrix Theory
Kerry Cawse-Nicholson, Steven B. Damelin, Amandine Robin, and Michael Sears, Member, IEEE

Abstract— Determining the intrinsic dimension of a hyper-
spectral image is an important step in the spectral unmixing
process and under- or overestimation of this number may lead
to incorrect unmixing in unsupervised methods. In this paper,
we discuss a new method for determining the intrinsic dimension
using recent advances in random matrix theory. This method is
entirely unsupervised, free from any user-determined parameters
and allows spectrally correlated noise in the data. Robustness
tests are run on synthetic data, to determine how the results were
affected by noise levels, noise variability, noise approximation,
and spectral characteristics of the endmembers. Success rates are
determined for many different synthetic images, and the method
is tested on two pairs of real images, namely a Cuprite scene
taken from Airborne Visible InfraRed Imaging Spectrometer
(AVIRIS) and SpecTIR sensors, and a Lunar Lakes scene taken
from AVIRIS and Hyperion, with good results.

Index Terms— Hyperspectral, intrinsic dimension, linear
mixture model, random matrix theory, unmixing.

I. INTRODUCTION

DETERMINING the number of sources in a signal is
important for the processing of many different types

of data, including chemical unmixing [1], extracting speech
signals in a noisy line [2], unmixing minerals [3] and unmixing
environmental landscapes [4], among many others. Determi-
nation of this number is necessary for classification methods,
unmixing methods and target detection [5]. It is common
practice for the user to select the number of endmembers
to suit the application, but this does not necessarily agree
with the intrinsic dimension of the image, and an incorrect
estimation of this number may have detrimental effects on the
end results [6].
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In this paper, we will focus on the application to hyper-
spectral imagery, although this does not preclude applicability
to other areas. A hyperspectral image may be visualised as a
3-dimensional data cube of size (m × n × p). This is a set
of p images of size N = m × n pixels, where all images
correspond to the same spatial scene, but are acquired at p
different wavelengths.

In a hyperspectral image, the number of bands, p, is large
(typically p ≈ 200). This high spectral resolution enables
separation of substances with very similar spectral signatures.
However, even with high spatial resolution, each pixel is often
a mixture of pure components.

It is of interest to unmix each pixel, to determine the
abundances of certain pure substances in the image. In unsu-
pervised remote sensing, the spectra of the K pure substances
themselves are also unknown, and the presence of noise forces
the dataset to full dimension p. In practice the data set will
involve significant redundancy. If we suppose that the data are
noise free, then they would be contained in a proper vector
subspace R

K of R
p . Various terms have been introduced in

the literature for similar concepts.
Bioucas-Dias and Nascimento [7] define the Intrinsic

Dimension of the image (ID) as the dimension of the signal
subspace. Chang and Du [8] define ID as the “minimum
number of parameters required to account for the observed
properties of the data.” They also define a separate estimate,
called Virtual Dimension (VD), which is the number of end-
members necessary to give accurate unmixing, which may be
larger than the number of so-called “idealized substances.”
Here substances may be understood as pure targets or end-
members, and could represent different objects depending on
the application, e.g. chemical powders, cover types such as
tree species, etc. By definition, VD may be dependent on
the unmixing method that is used, unlike ID. Wu et al. have
compared estimates of VD and ID in their survey paper [6] and
found them to be comparable for the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) scene of Cuprite.

Bajorski [9], however, found that the concept of VD may
be misleading in certain circumstances, since the value may
change when the image is shifted and rotated. Bajorski [9]
instead defines the Effective Dimensionality (ED) as “the
dimensionality of the affine subspace giving an acceptable
approximation to all pixels.” Schlamm et al. [10] define an
Inherent Dimension K ′, where “the entire spectral image can
lie in the same K ′-dimensional hyperplane.” These authors
also claim that the Inherent Dimension is not equivalent to

1057–7149/$31.00 © 2012 IEEE
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VD, or the number of spectral signatures present in the image.
In contrast, the Spanning Dimension is defined as the “min-
imum number of basis vectors required to span the space”
of pixel observations [10]. Schlamm et al. define many
other types of dimensions which may apply to hyperspec-
tral imagery, to display the confusion around the term.
These authors also define their own intrinsic dimension
as “the smallest number of parameters needed to con-
tain all of the variability in the data through a mapping
function.” This differs from Bioucas-Dias and Nascimento’s
definition.

The many different definitions of Intrinsic Dimension may
be confusing, and although some of the above definitions
are closely connected, some definitions may lead to different
results, and so it is core for this paper to state a formal
definition for ID that is independent of the method used to
calculate it.

First, we define some generic notation that will be used in
this paper. Underlined variables, such as x represent vectors,
random variables are denoted by a tilde, x̃ , and subscript
indices x i refer to measurement x for the i th sample.

For each pixel i , 1 ≤ i ≤ N , let x i ∈ R
p be the observed

spectral measurement. Assuming the measurement may be
decomposed into signal and noise, write xi = si + ξ

i
, where

si represents the information in pixel i and ξ
i

represents the
noise. We introduce the following definition.

Definition 1 (Intrinsic Dimension): The Intrinsic Dimen-
sion (ID) of a dataset [x1, . . . , x N ] is the dimension, K , of
the vector subspace spanned by {si , 1 ≤ i ≤ N}.

Definition 1 is considered to be equivalent to the Bioucas-
Dias and Nascimento definition [7], since {s1, . . . , s N } spans
the signal subspace, and therefore K is the dimension of
the signal subspace. This is also equivalent to the spanning
dimension defined in [10].

A. Literature Review

Some of the most popular methods to calculate the ID
of a hyperspectral image include Maximum Orthogonal-
Complements Algorithm (MOCA) [11], Harsanyi–Farrand–
Chang (HFC) [8] and HySime [12]. HySime is a modi-
fication of Signal Subspace Estimation (SSE) [7]. MOCA
is specifically designed to preserve rare substances and has
been improved in terms of computational complexity by
Acito et al. in [13]. This method has also been combined
with HFC by Acito et al. [14] and Chang et al. [15]. MOCA
assumes independent identically distributed (i.i.d.), Gaussian
noise, but may be adapted for non-i.i.d. and correlated
noise [11].

In 2007, Wu et al. [6] provided a summary of methods to
determine the intrinsic dimension of a hyperspectral image.
This paper compares the HFC Detection Method [16], which
assumes white noise with zero mean, with a number of other
methods which require various noise assumptions. All the
methods discussed only use the eigenvalues of the observation
covariance matrix. In all cases, nothing needs to be known
about the basis vectors, which is an advantage over supervised
methods. These methods are all taken from different areas,

including chemistry and signal array processing, and are
applied to hyperspectral imagery.

From the real and synthetic experiments described in [6],
the authors determined that the best method for hyperspectral
imagery was HFC, and the methods with the strictest noise
assumptions (i.e. that the noise is Gaussian and i.i.d.) per-
formed the worst. On the other hand, HFC was shown to be
sensitive to user-defined values.

B. Linear Mixture Model

A common model used in remote sensing to separate
mixed signals is the linear mixture model, introduced by
Horwitz et al. [17]. This model assumes that the measurement
in each pixel is made up of a convex linear combination of
pure components. Kritchman and Nadler [1] define the set of
pixel observations by the (p × N) matrix X = [x1, . . . , x N ]
and assume that for each pixel indexed by i , the observed
measurement vector x i ∈ R

p is a realisation of a random
vector x̃ , so that

x̃ = V ũ + ξ̃ , (1)

where ũ is a (K × 1) random vector subject to the constraints
ũ ≥ 0 and 1T ũ = 1, and represents the proportions of pure
components; V is a (p×K ) deterministic matrix, with columns
corresponding to the spectral measurements characterizing the
pure components present in the whole scene; ξ̃ is a random
vector in R

p representing the noise; and K is the total number
of pure components.

It is commonly assumed that ξ̃ follows a Gaussian dis-
tribution N (0,�), where � is the noise correlation matrix.
This model allows the noise to be spectrally but not spatially
correlated. This assumption has been successfully used in
chemical unmixing [1] and in many methods described in the
survey paper by Wu et al. [6]. The matrix � must be estimated
from the data using a noise approximation method such as
Meer’s method [18].

C. Background on Random Matrix Theory

Determining the ID of a dataset is most often done by ana-
lyzing the eigenvalues of the observation covariance matrix,
S(N), defined as

S(N) := 1

N

N∑

i=1

xi x
T
i , (2)

where N is the number of samples. Without loss of generality,
centered data is assumed, so that the mean pixel value over the
entire image is 0. The matrix S(N) is used to distinguish the
eigenvalues due to signal and the eigenvalues due to noise.
This procedure is used to unmix hyperspectral images [6],
signals [2], chemical mixtures [1] and others [3], [4].

In [1], x̃ and ξ̃ are independent, and � = σ 2 Ip . This
is reasonable in the chemical application being considered,
since repeated samples are taken from the same mixture.
The model covariance S is defined by S = E [x̃ x̃ T ]. S may
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be diagonalised by W so that

W T SW = W T V E

[
ũũT

]
V T W + σ 2 Ip (3)

=

⎛

⎜⎜⎝

l1 0
...

lK

0 0

⎞

⎟⎟⎠+ σ 2 Ip (4)

where li represents the i th signal eigenvalue, and the observed
eigenvalues tend toward li + σ 2 for 1 ≤ i ≤ K and to
σ 2 for the remaining (noise) eigenvalues. The authors in [1]
state that S(N) → S as N → ∞ with probability one.
Since in a hyperspectral image N is large, the eigenvalues
of the sample covariance might be expected to show this clear
distinction between eigenvalues due to signal and eigenvalues
due to noise, allowing easy calculation of K . However, in
practice, the values of the observed noise eigenvalues can be
highly variable, making it difficult to distinguish between a
small signal eigenvalue and a large noise eigenvalue. Several
methods have been developed to address this problem.

In the method described in [1], the following assumptions
are made: the columns of V are linearly independent; the abun-
dance correlation matrix E [ũũT ] has full rank; and the noise
is uncorrelated with the signal. In order to better understand
the assumption that E [ũũT ] has full rank, consider an example
where two vectors in V always occur in the same proportions,
resulting in reduced rank of E [ũũT ]. In this case, however, we
would expect that the value of K for the scene would be lower
than the number of pure substances. Thus this assumption that
E [ũũT ] has rank K is reasonable.

In [1], Kritchman and Nadler have worked with new results
in Random Matrix Theory (RMT) to determine which eigen-
values are due to noise and which are due to signal. Because
Gaussian noise is assumed, the noise eigenvalues perform like
eigenvalues of a random matrix. The distribution of the largest
such eigenvalue (the first non-signal eigenvalue) has been well
studied [19], [20], and this allows accurate determination of K .
The advantage to this method is that there are no parameters
that need to be set by the user. It achieved good results in
chemical testing.

Wishart matrices play an important part in RMT. John-
stone [19] describes a random cross-product matrix Ã = X̃ X̃ T ,
where X̃ contains N independent column vectors, each follow-
ing a p-variate Gaussian distribution N (μ,�). Then Ã has a
p-variate Wishart distribution with N degrees of freedom,
Wp(�, N). Johnstone [19] derives results for the case where
the mean of each column is zero and the standard deviation of
the p-variate Gaussian distribution is the identity matrix, i.e.
each column of X follows the normal distribution N (0, Ip),
and then Ã ∼ Wp(Ip, N).

Random matrices were first used in physics, to determine
quantum energy levels [19]. In this setting, both p and N
were large, breaking away from traditional statistics, where p
was fixed. And so the authors in [1] assume that N → ∞,
p→∞, with p

N → c, where c > 0 is constant. A large body
of research in RMT has been dedicated to the distribution
of the largest eigenvalue of a matrix following a Wishart
distribution [1], [19].

Kritchman and Nadler [1] used some of Johnstone’s results
[19] in their chemical application to determine the largest
noise eigenvalue, by determining the largest sample covariance
eigenvalue consistent with the distribution of the largest eigen-
value from a Wishart matrix. This method assumes i.i.d. noise.
According to Johnstone [19], the largest eigenvalue of such a
real-valued Wishart matrix, λ̃1, fulfills the following condition
with convergence in distribution in the limit as N, p → ∞,
p/N → c > 0:

Pr{λ̃1 ≤ σ 2(Rμ(N, p) + s(α)Rσ (N, p))} ∼ T W, (5)

where T W denotes the Tracy-Widom distribution, and the rate
of convergence is O(p−2/3) [1]. In (5), σ 2 is the variance of
the Gaussian noise, α is a significance level and s(α) may be
found by inverting the Tracy-Widom distribution (in [1], α =
0.5%, and after experimentally investigating the sensitivity
to α, we determine that this is optimal and fix this value
for all images investigated). The Tracy-Widom distribution is
the solution of a second order Painlevé ordinary differential
equation [1].

For real valued data define

Rμ(N, p) = 1

N

(√
N − 1

2
+

√
p − 1

2

)2

(6)

Rσ (N, p) = 1

N

(√
N − 1

2
+

√
p − 1

2

)

×
⎛

⎝ 1√
N − 1

2

+ 1√
p − 1

2

⎞

⎠
1/3

. (7)

Note that these functions do not depend on the intrinsic
dimension, K . It is also important that Rσ (N, p) → 0 as p,
N → ∞, p/N = c fixed, so that the s(α)Rσ (N, p) term in
(5) tends to zero as the image becomes larger. This means
that, especially for large images, the formula is not sensitive
to the choice of α.

Traditionally, statistical techniques consider the scenario p
fixed, with p << N , and in this case, the observed noise
eigenvalues should be very close to σ 2 in the case of i.i.d.
noise [21]. However, although the number of pixels in a hyper-
spectral image are several orders of magnitude larger than the
number of spectral bands, the dividing line between signal
and noise eigenvalues is in practice still unclear. El Karoui
[21] found that high dimensional problems (a hyperspectral
image may contain hundreds of spectral bands) might be better
solved by assuming that p and N are both large, with their
ratio fixed. Similarly, Kritchman and Nadler [1] state that (5)
still holds in the case of finite but large N and p, and in
fact their algorithm deals specifically with small N , with good
results.

There is, however, a limit to the size of the eigenvalue that
may be successfully detected. The phase transition phenom-
enon described in [20] results in the limit λcrit , below which
the noise eigenvalue will not be successfully identified. This
limit is defined as

λcrit = σ 2
√

p

N
. (8)
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The use of RMT in the chemical application proved to
be very powerful in the circumstances investigated [1], but
the experiments were limited to small numbers of samples,
multiple measurements of the same mixture, and i.i.d. noise.
This work has been continued by the same authors in [22],
where Kritchman and Nadler showed that the method is
applicable to a large number of samples in a signal processing
environment.

However, the noise was still assumed to be i.i.d. across
bands and across samples. Nadler and Johnstone [23] further
pursued the idea by considering i.i.d. noise, but possibly
correlated samples. They assume the existence of noise only
observations and show that the data may be whitened and a
variation of Roy’s test may be applied.

Since some of the assumptions are not applicable to hyper-
spectral imagery, in this paper, we extend the RMT ideas
from [1] so that they are appropriate for a wider range of
applications. We consider large numbers of samples, where
each sample may differ greatly from the sample mean,
and Section II shows that RMT can be used to develop
a new procedure that is applicable to hyperspectral images
even in the presence of non-i.i.d. and spectrally correlated
noise.

Section III shows the new method in algorithmic format,
Section IV shows that this method performs well on synthetic
data, and Section V shows that RMT is now applicable to real
hyperspectral images. The advantage of the method presented
is that it is not dependent on a user-determined parameter, as
are other hyperspectral methods discussed above.

II. MODEL FORMULATION

Some of the most accurate methods described above have
drawbacks in terms of noise assumptions or sensitivity to
user-defined parameters. We introduce a method which only
assumes Gaussian noise that is independent from the signal
(the noise may be correlated across bands, however), and
does not rely on user-defined parameters. Specifically, V ũ is
independent from ξ̃ in (1), and we replace the i.i.d. noise
variance σ 2 Ip used in [1] with a variance � that allows for
correlated, non-i.i.d. noise. The core of the method is based on
Random Matrix Theory (RMT), and in this section the model
will be developed.

First we consider the threshold λcrit in (8), below which
noise eigenvalues will not be detected. In hyperspectral
images, N is typically much larger than p, and we assume that
the eigenvalues we test are above this limit. (Experimentally,
in our images this has proven to be true.)

To investigate whether the method described in [1] is
applicable to hyperspectral images, we consider a hyper-
spectral image of pure noise, i.e. the measurement x̃ i in
each pixel follows a Gaussian distribution N (0,�). We
define X̃ = [x̃1, . . . , x̃ N ], then as stated above, Ã =
X̃ X̃ T follows a Wishart distribution Wp(�, N). Denoting
S̃(N) = N−1 ∑N

i=1 x̃ i x̃
T
i , which may also be written as

S̃(N) = N−1 X̃ X̃ T , then N S̃(N) follows a Wishart distribution
Wp(�, N). Hence, S(N) defined in (2) may be seen as a
realisation of S̃(N) in the case of a pure noise image.

The i.i.d. noise assumption in [1] is not applicable to hyper-
spectral images, and whitening methods were determined to
be unsuccessful in a hyperspectral application [24]. Therefore
a new method will be developed to allow for correlated and
non-i.i.d. noise.

In [1], the separation between noise and signal eigenvalues
is possible because the eigenvalues of S, where S(N) → S
for N →∞, are given by

⎛

⎜⎜⎝

λ1 0
...

λK

0 0

⎞

⎟⎟⎠+ σ 2 Ip.

However, this is only true when the standard deviation of the
noise is constant across bands. The method using constant
noise standard deviation was applied directly to hyperspectral
imagery in [25] and, although the method showed good
results when applied to synthetic images, on a real image
no eigenvalue was found to satisfy (5). This result was to
be expected, since it is known that hyperspectral images do
not have the same noise standard deviation in each band.
Whitening methods were examined in [24], which decorrelate
the noise and force the noise standard deviation to become
constant in each band so that the original method should be
applicable. This improved the previous results, but K was still
overestimated. In this paper we will further develop the method
so that it is applicable for non-i.i.d. noise, and in order to do
that we must first prove that the eigenvalues are still separable
in the non-i.i.d. case. To show this we derive Propositions 1
and 2 below.

Proposition 1: Suppose x̃ ∈ R
p is a random column vector

described by x̃ = V ũ + ξ̃ , where V is a (p× K ) matrix with
linearly independent columns, ũ is a random vector in R

K , ξ̃

is a random vector in R
p, where ξ̃ ∼ N (0,�), and � is the

noise correlation matrix.
Assuming that E [ũũT ] has full rank K , and that (V ũ)

and ξ̃ are independent, the expectation S = E[x̃ x̃ T ] may be
decomposed as S = � + �, where � is a symmetric matrix
of rank K .

Proof: See Appendix VI-A.
Proposition 1 shows that under an assumption of indepen-

dence, the signal and noise are separable in the correlation
matrix, even if the noise correlation matrix � contains varying
diagonal terms and/or off-diagonal terms i.e. the noise is not
i.i.d.. Random Matrix Theory formulae rely on � having the
form σ 2 Ip , so let us write � as σ 2 Ip + ε̄, where σ 2 is the
average of the diagonal terms of �. Note that S and � are
symmetric, resulting in symmetric �. The following proposi-
tion proves that the eigenvalues of the observation covariance
matrix are also separable, so that the RMT evaluation may be
applied.

Proposition 2: Suppose S is a (p × p) symmetric matrix
described by S = �+�, where � and � are also symmetric.
Suppose � = σ 2 Ip + ε̄ (σ 2 is scalar). Let λS

i be the i th

eigenvalue of S (sorted in descending order) and λ�
i be the i th

eigenvalue of � (sorted in descending order). Then, assuming



IE
EE

Pr
oo

f

CAWSE-NICHOLSON et al.: DETERMINING THE INTRINSIC DIMENSION OF A HYPERSPECTRAL IMAGE 5

(x�
i )T x S

i 
= 0

λS
i = λ�

i +
(x�

i )T �x S
i

(x�
i )T x S

i

(9)

= λ�
i + σ 2 + (x�

i )T ε̄x S
i

(x�
i )T x S

i

, (10)

where x S
i and x�

i are the eigenvectors of S and �, correspond-
ing to λS

i and λ�
i respectively.

Proof: See Appendix VI-B.
This result is analogous to the one obtained in the case

where � = σ 2 Ip shown in (4), but with extra terms involving
the eigenvectors of � and S. Propositions 1 and 2 provide
a new formula for the noise in the RMT evaluation. For all
1 ≤ i ≤ p

ρi = (x�
i )T �x S

i

(x�
i )T x S

i

, (11)

where ρi is the difference between the i th observed eigen-
value of S and the i th signal eigenvalue as described by
Proposition 2. The original RMT theory in [19] is used to
describe the distribution of the largest eigenvalue of a Random
Matrix. The authors in [1] have shown that this theory may
also be used to detect the largest noise eigenvalue, where the
study assumed Gaussian and i.i.d. noise. Since we evaluate
each eigenvalue individually, each may be thought of as the
largest eigenvalue of a submatrix, where the submatrix of size
(q × q), q = 1, . . . , p, has eigenvalues corresponding to the
q smallest eigenvalues of S. So the threshold condition for
noise eigenvalues (5) may now be written, for i = 1, . . . , p, as:

λi < ρi R,

where R = (Rμ(N, p) + s(α)Rσ (N, p)). (12)

Now ρi depends on knowledge of the noise correlation matrix
�, the eigenvalues of � (remember that the observation covari-
ance matrix S(N) approximates �+�), and the eigenvalues
of S(N). Note that every eigenvalue must be tested, since the
value for ρi will differ for each evaluation.

In this section the theory has been derived to determine the
ID of a hyperspectral image, using RMT. This method allows
for non-i.i.d. and correlated noise and requires only an estimate
of the noise covariance matrix.

The next section will show how this theory can be used
in practice for the estimation of intrinsic dimension, giving a
summary of the algorithm used.

III. ALGORITHM

In section II, we showed how eigenvalue evaluation could
be used theoretically to discriminate noise from signal eigen-
values. In order to apply these theoretical results in practice,
we need to compute the observation covariance matrix S(N)
from the data and approximate the noise correlation matrix �.

Note that the RMT significance level, α, may in principle
be used as a free parameter as in [22], but we choose to fix
this value for all images so that there is no user-determined
parameter. This is reasonable because the RMT evaluation
is not sensitive to α when images are large, since s(α) is

Algorithm 1
S(N)← observation covariance matrix
λ ← [λ1, . . . , λp], the sorted (descending) eigenvalues of
S(N)

p← length(λ)
Rμ ← 1

N (
√

N − 0.5+√p − 0.5)2

Rσ ← 1
N (
√

N − 0.5+√p − 0.5)( 1√
N−0.5

+ 1√
p−0.5

)
1
3

s ← (− 3
2 log[4√π α

100 ])
2
3

R← Rμ + s × Rσ

f ← call NoiseApproximationFunction(Image)
� ← diagonal matrix containing variances per band deter-
mined by f
σ 2 ← mean of the noise variances over all bands i.e.
mean([�1,1, . . . ,�p,p])
E1 ← eigenvectors of S(N) (sorted so that corresponding
eigenvalues are descending)
E2 ← eigenvectors of (S(N) − �) (sorted so that corre-
sponding eigenvalues are descending)

for i = 1→ p do

ρi ← Ei
1.�.Ei

2
Ei

1.E
i
2

end for
ρ ← [ρ1, · · · , ρp]
K ← intersection between λ and ρ × R

multiplied by Rσ (N, p), which tends to zero as N → ∞
(see (5) and (7)). In [1], Kritchman and Nadler fixed alpha
to be 0.5%. Using this value in experiments with pure noise
images, containing low numbers of pixels (∼1,000) we found
that 99.7% of the time all eigenvalues were ascribed to noise.
On the other hand, if a single signal is included in the
image, one eigenvalue was always ascribed to signal. From
these experiments this is indeed a reasonable value for α for
hyperspectral data and everywhere in this paper it will be
assumed that α = 0.5%. It should be noted that α is not
dependent on the image (as it is fixed for all images) and is
not considered a tuneable parameter.

To approximate the noise, we chose an algorithm described
by Meer et al. in [18]. This is a pyramid algorithm that
searches for homogeneous areas, and it has various rules to
allow for outliers. In test images, this algorithm was able to
approximate the noise accurately with RMSE of 1%. This
particular algorithm produces only the variance per band,
so in this case � is diagonal. Since we are assuming this
noise approximation method, from this point on we assume
a diagonal noise covariance matrix. Note that this is not a
restriction to our method, any preferred noise approximation
algorithm may be used. Meer’s method was chosen since it
estimates the noise on a band-by-band basis, and thus it is
independent of any relationship between bands, such as noise
correlation. The sensitivity of our method with respect to
the accuracy of the noise approximation will be tested and
discussed in Section IV-B.

Unlike previous versions [1], [25], our method allows for
non-i.i.d. noise. This procedure is summarised in algorithmic
format above.



IE
EE

Pr
oo

f

6 IEEE TRANSACTIONS ON IMAGE PROCESSING

The algorithm requires only the image itself as an input, and
returns the intrinsic dimension of the image, K . It requires
no prior knowledge about the image, and requires no user-
determined inputs. In the next section, the robustness of this
approach is analysed with regards to each variable of the
model, using simulated data.

IV. PERFORMANCE ANALYSIS

A. Description of the Test Dataset

We simulated a dataset using 20 minerals taken from the
JPL spectral library [26]. At each iteration of the algorithm,
K unique minerals are chosen randomly from the dataset, and
the proportions of each of the basis vectors in each pixel are
randomly selected with the only restrictions being the positive
and sum-to-one conditions that are enforced. We also varied
our values for p (number of bands), N (number of pixels),
and σ (the average of noise standard deviations across all
bands) in these images. As seen in Figure 1, the spectra in
our dataset vary widely—some are similar and others easily
separable. By mixing random spectra together we simulate
images that may be easy or difficult to process. Since the
proportions are randomly selected as well, one or more basis
vector may occur in very small proportions in the image.
All of these properties were created in order to simulate as
realistic a dataset as possible.

While pure endmembers may be well understood in mineral
applications, this idea becomes more subjective in data that
contains vegetation spectra, which may vary according to
species, phenology, etc. In this paper it is assumed that each
target may be represented by a single spectral signature, where
variation around this target is understood to be smaller in
magnitude than the noise present in the image. If the variation
is larger than this, then certain vegetation classes may be
represented by more than one spectral signature.

In each test, we fixed all variables (except the one being
examined) at the following default values: N = 10, 000,
p = 200, σ = 10−3, K = 5.

When noise statistics are assumed known, the method is
independent of N and p. In this case, the method also produces
100% success rates for non-i.i.d. noise and noise that is
correlated between bands. Note that in all tests below, the
actual noise values used to construct the synthetic dataset are
known, so that we test the robustness of the ID method rather
than the accuracy of any noise approximation method. If the
noise is approximated, accuracy will decrease.

B. Robustness to the Noise Level

Noise is an important element to test, as high noise eigen-
values can become very close to small signal values, making
them difficult to separate. With low SNR (signal to noise
ratio), two similar spectra will become indistinguishable. As
seen in Figure 1, our test dataset does contain some basis
vectors which are very close together, and so we are interested
to test the level at which they are impossible to separate.
Our tests in Figure 2 show that the mean estimated K, over
20 simulations, is exactly 5 for noise standard deviation below
σ = 0.02. We use the SNR definition in [6] which says that the

(b)

(a)

Fig. 1. (a) All the spectra used to make up the test data set. Note that there is
a mix between similar and easily separable spectra, flat spectra and those with
sharp features, spectra with high and low amplitude, etc. This is done to mimic
a real environment. (b) Spectrum (Graphite 1A) with the lowest amplitude is
shown at a larger scale. Take note of the noisiness of the spectrum.

Fig. 2. Mean-estimated ID with regards to different noise levels. Twenty
different images per noise level were simulated to calculate these values, and
the true value for K is 5. Note that the method produces the correct value
K = 5 in all 20 simulations for noise standard deviation up to 0.02.

SNR is equal to half the mean signal divided by the standard
deviation of the noise. Since our synthetic image mean is close
to 0.5, a noise value of σ = 0.01 is equivalent to an SNR of
25:1, which is the limit of the noise tested in [8]. This lower
bound is much lower than current hyperspectral sensors, with
AVIRIS having an SNR of approximately 500:1 [3]. It should
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be noted, however, that the intrinsic dimension will not be
accurately determined for images containing very high levels
of noise.

Note in Figure 1(a) that there are two spectra of a much
lower amplitude than the rest. We will discuss these in
Section IV-C, and study the impact of the number of basis
vectors on the performance.

C. Performance With Regards to the Spectral Characteristics
of Basis Vectors

Certain characteristics of basis vectors will make them
difficult to detect in any model. Multiple spectra that have
similar spectral signatures may be difficult to separate, and
spectra with low amplitudes may be confused with noise.
We have investigated the impact of such scenarios in our
simulated dataset. Figure 1 clearly shows that our dataset
contains spectra with different characteristics in order to mimic
a real environment. Some spectra may appear to be similar,
but our method was able to separate these. Two spectra
stand out with very low amplitudes, and one spectrum in
particular, Graphite, (Figure 1(b)) has low amplitude and high
noise (mean reflectance 0.0475 and standard deviation 0.007).
This spectrum was impossible to distinguish from noise with
the default noise standard deviation of σ = 10−3. This is
equivalent to an SNR of 250:1, which is still low compared
to real images (recall that AVIRIS has SNR = 500:1). Note
that if the noise is reduced to σ = 10−4, the basis vectors are
separated with 100% accuracy. It is interesting that the other
low-amplitude spectrum is still accurately detected—it may be
the combination of the noisy signal and the low amplitude in
Graphite that causes it to be recognised as noise in a noisy
image.

D. Robustness to Noise Approximation

As previously stated, our algorithm does not depend on a
specific noise approximation algorithm. However, the algo-
rithm that is used must be accurate enough for our purposes.
In this section, we test the impact of errors in noise approx-
imation on the accuracy of our method in order to evaluate
how accurate the noise approximation needs to be.

If we assume that the noise distribution in all bands is
N (0, σ 2 Ip), Figure 3 shows that our algorithm only tolerates
up to 10% underestimation, and overestimations of constant
noise are well tolerated. This asymmetrical behaviour is firstly
due to the eigenvalue spread (noise eigenvalues are closer
together, so a noise approximation error towards the noise
direction will result in higher errors in estimating K ), and
secondly due to the fact that the RMT evaluation in (5) is a
single sided inequality; i.e. if the upper limit for the largest
noise eigenvalue is increased, the noise eigenvalue will still
fall below this limit. Conversely, if it is decreased, some
noise eigenvalues will be recognised as signal. Again, this
is made more predominant due to the asymmetrical spread
of the eigenvalues. Therefore, for the best results, the noise
approximation algorithm should be chosen with care, since
the ID may not be accurate if noise is underestimated.
Note that when the noise is spectrally correlated, it is often

Fig. 3. Mean-estimated ID with regards to the accuracy of the noise
estimation. If we assume that the standard deviation of the noise σ is in
fact estimated by σ(1+ε) (where ε is constant), then the results are given for
the overestimation, ε. Twenty different images were simulated for each value
of ε to calculate these mean estimates, where the true value for K is 5. Our
algorithm only tolerates small underestimations of the noise (up to 10%) and
fails for more severe underestimation, but is widely tolerant of overestimation.

underestimated. Even though our method tolerates up to 10%
underestimation, it rapidly becomes a limiting factor. In [27]
we show that spatially based noise estimation method such as
Meer are not sensitive to correlated noise, and that statistical
estimations may be improved by a simple band removal
process.

V. RESULTS ON REAL IMAGES

A. Datasets

We test the algorithm on two pairs of real datasets. The first
is a pair of hyperspectral images taken over Cuprite, Nevada.
One image is an AVIRIS scene, and the other is a SpecTIR
scene. The second dataset is a pair of images taken over Lunar
Lakes, Nevada, USA. One is an AVIRIS image, and the other
is a Hyperion image.

AVIRIS is flown by NASA’s Jet Propulsion Lab on the
NASA ER-2 aircraft, and is a whiskbroom sensor with approx-
imately 10 nm spectral resolution, over the range 0.4-2.5 μm.
This image was obtained from an altitude of 20 km and
has a spatial resolution of 20m [28]. The Cuprite image we
are considering is a subset from a freely available1 image
taken in 1997, and has 350 × 350 pixels, 189 bands (bands
1–3, 105–115, and 150–170 were removed from the original
data due to water absorption and low SNR, as in [6], [29]),
and an average SNR of approximately 500:1 [28]. This was
calculated by dividing the mean by the standard deviation of a
homogeneous area (Stonewall Playa) and normalising to 50%
reflectance [28]. While the exact intrinsic dimension of this
dataset is unknown, it is a well-studied image, and Wu et al.
[6] have tested 6 other methods to determine K in this image.
Also, ground truth collected by Swayze et al. found at least
18 substances [30] (which may not include rarer minerals),
and Chang et al. reported that K = 22 was the minimum

1Available at aviris.jpl.nasa.gov/html/aviris.freedata.html.
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number to guarentee that his endmember extraction algorithm
could identify five minerals at the ground truth points in the
image [29]. The Lunar Lakes scene was acquired in 2009, has
350× 350 pixels, and 189 spectral bands.

The SpecTIR subset that we are using contains 320× 320
spatial pixels, and 230 spectral bands. SpecTIR is a pushb-
room sensor flown commercially. The bands are in the range
0.440−1.700 μm, with approximately 5nm intervals, and the
spatial resolution is 1m. The data was processed to reflectance
using the same procedures as AVIRIS. The SpecTIR scene is a
subset of the AVIRIS scene (but with higher spatial resolution),
and so we expect similar results. This dataset is freely available
online2.

Hyperion is a hyperspectral sensor mounted on the EO-1
satellite. Hyperion is capable of producing 220 spectral bands
over the spectral range 0.4 − 2.4 μm, with approximately
10 nm spectral resolution and 30 m spatial resolution. The
original images are 7.5 km wide and 100 km long and two
separate grating image spectrometers detect VNIR and SWIR
wavelengths. Data are available for free online3. A subset
of the original image is considered, with 250 × 250 pixels.
Hyperion is known to contain very noisy bands and highly
correlated bands, and these are removed for this analysis.

The Hyperion and AVIRIS scenes over Lunar Lakes do
not cover the exact same spatial area, but they are located
in similar areas in the Lunar Lakes region, and so we expect
the results over both images to be comparable. The SpecTIR
scene over Cuprite is a subset of the AVIRIS scene, but once
again we expect the ID estimates to be comparable over both
scenes.

B. Results Obtained

The AVIRIS Cuprite image was also tested in [25] and [24].
Constant σ was assumed in [25] and no eigenvalue satisfied
the RMT noise evaluation. When whitening was applied in
[24], the number of endmembers K , was determined to be 37.
This was considered high for the Cuprite area. When using
our non-i.i.d. method on the same scene (using Meer’s noise
approximation method), we calculated that K = 21 (as seen
in Table I), which is very much in line with the results found
in [6]. For the SpecTIR scene our method finds that K = 24.
We might expect this value to be slightly higher than K
determined for AVIRIS, since SpecTIR covers a smaller area
at a higher spatial resolution. It is reasonable that at the higher
spatial resolution of the SpecTIR sensor, more pure substances
should be identifiable.

When analysing Lunar Lakes, Table II shows that the RMT
method (again using Meer’s noise approximation) found K =
13 for AVIRIS and K = 15 for Hyperion. In comparison,
HFC found ID estimates for Hyperion that are approximately
double those of AVIRIS.

C. Statistical Noise Estimation Methods

RMT may be used with any accurate noise approximation
method. In this section we test RMT with multiple regression

2Available at www.spectir.com/download.html.
3Available at http://edcsns17.cr.usgs.gov/NewEarthExplorer/.

TABLE I

APPROXIMATIONS TO K USING HARSANYI-FARRAND-CHANG METHOD

(WITH FD VALUE IN BRACKETS) APPLIED TO AVIRIS AND SPECTIR

CUPRITE, FOR DIFFERENT USER-DETERMINED VALUES OF FD . NOTE

THAT THE METHOD IS VERY SENSITIVE TO THESE FALSE ALARM RATES.

RMT, USING MEER’S NOISE APPROXIMATION, PRODUCES SIMILAR

VALUES TO HFC, BUT THE METHOD DOES NOT REQUIRE ANY

PARAMETERS TO BE SET BY THE USER

HFC(10−2) HFC(10−3) HFC(10−4) RMT

AVIRIS 30 24 22 21

SpecTIR 24 23 19 24

TABLE II

APPROXIMATIONS TO K USING HARSANYI-FARRAND-CHANG METHOD

(WITH FD VALUE IN BRACKETS) APPLIED TO AVIRIS AND HYPERION

LUNAR LAKES, FOR DIFFERENT USER-DETERMINED VALUES OF FD .

NOTE THAT THE METHOD IS VERY SENSITIVE TO THESE FALSE ALARM

RATES. RMT, USING MEER’S NOISE APPROXIMATION, ESTIMATES THE

ID TO BE SIMILAR FOR AVIRIS AND SLIGHTLY SMALLER FOR HYPERION

HFC(10−2) HFC(10−3) HFC(10−4) RMT

AVIRIS 13 10 9 13

Hyperion 21 20 19 15

and residual noise approximation methods, and compare the
results to HySime [12] (which uses the multiple regression
noise estimation) and NSP [8] (which uses the residual noise
approximation). The values returned are shown in Table III,
where only one value is shown for RMT since both noise
approximations yield the same ID estimate. It is obvious that
while the AVIRIS results are believable and consistent with
the range obtained by HFC and RMT in Table I, the figures
for SpecTIR are ridiculous.

The SpecTIR scene over Cuprite contains high levels of
spectral correlation—possibly due to the nature of the sensor
or to preprocessing of the data. The effects of spectrally
correlated noise have been analysed in [27], and these effects
explain the ridiculous figures seen in Table III. When the
worst of the correlated bands are removed, the results obtained
become much more realistic as shown in Table IV. However,
only 74 of the original 250 bands remained. In comparison,
the AVIRIS scene had only a few badly correlated bands, and
so retained all but 8 of its original 189 bands. Nevertheless,
the AVIRIS results are also improved. It is unsurprising that
now more materials are detected in the AVIRIS scene than in
the SpecTIR scene with far fewer spectral bands.

Note that Meer’s noise approximation algorithm estimates
the noise on a band-by-band basis, and so is not affected by
spectrally correlated noise. These results serve as a caution
that while RMT may be used with any accurate noise estima-
tion method, statistical noise approximation methods are not
accurate in the presence of spectrally correlated noise.

D. Discussion

The algorithm introduced in this paper was able to improve
on previous experiments that applied RMT to hyperspectral
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TABLE III

APPROXIMATIONS TO K USING NSP, HYSIME AND RMT

WITH STATISTICAL NOISE ESTIMATIONS, APPLIED TO

AVIRIS AND SPECTIR CUPRITE

NSP RMT HySime

AVIRIS 28 31 15
SpecTIR 139 156 140

TABLE IV

APPROXIMATIONS TO K USING NSP, HYSIME AND RMT WITH

STATISTICAL NOISE ESTIMATIONS, APPLIED TO AVIRIS AND SPECTIR

CUPRITE, WITH CORRELATED BANDS REMOVED. HYSIME ESTIMATES

THE SAME VALUE FOR BOTH SCENES, AND RMT AND NSP ESTIMATES

ARE SIMILAR. NOTE THAT WHEN SPECTRALLY CORRELATED

BANDS WERE REMOVED FOR THE STATISTICAL NOISE

ESTIMATE, SPECTIR RETAINED LESS THAN HALF THE

BANDS RETAINED IN THE AVIRIS IMAGE

NSP RMT HySime

AVIRIS 26 29 17
SpecTIR 21 22 17

imagery. The results were comparable to the well-known
method HFC in the Cuprite scene acquired by AVIRIS and
SpecTIR (see Table I), with the advantage of not requiring
a user-defined parameter, as does HFC. The accuracy of our
method may be seen in Tables I, II and IV, where the results
of our method are shown to be consistent for both scenes
acquired by different sensors.

HFC does not require a noise approximation and so has
the advantage of not being dependent on reliable noise
estimations. An adaptation of HFC—namely NSP [8]—was
developed to reduce sensitivity to the user-defined parameter,
although it relies on a statistical noise estimate. Our method
is also compared with statistical noise estimates, and when
correlated bands are removed, similar values are obtained for
the AVIRIS Cuprite scene (see Table IV).

Simulated experiments showed that the RMT method
allowed for some error in noise approximation (especially
overestimation), although the noise approximation algorithm
used should be chosen with care. The method was also
accurate up to the same noise levels as HFC, and produced
good results for highly variable non-i.i.d. noise.

VI. CONCLUSION

A method has been introduced that uses Random Matrix
Theory to determine the intrinsic dimension of a hyperspectral
image. This method requires only the assumption of Gaussian
noise, (noise may be non-i.i.d. and correlated) and a method
of estimating the noise variance in each band. The assumption
of Gaussian noise is a common one, and it would be an
interesting extension of this work to consider other noise
distributions. Our method will accept any noise approximation
method, and has been shown to be very tolerant of noise
overestimation. In future work, we will test other noise approx-
imation methods in the application to real images. Our method
has been successfully tested on real and simulated images, and

is comparable to one of the best existing methods, Harsanyi-
Farrand-Chang [16], with the advantage that it does not require
any user-determined parameters.

APPENDIX

A. Proof of Proposition 1

Proof:

Define S = E

[
x̃ x̃ T

]

= E

[
(V ũ)(V ũ)T + (V ũ)ξ̃

T

+ ξ̃ (V ũ)T + ξ̃ ξ̃
T
]

= E

[
(V ũ)(V ũ)T

]
+ E

[
ξ̃ ξ̃

T
]

= V E

[
ũũT

]
V T +�

Let � = V E

[
ũũT

]
V T

Then S = �+�

S is of rank K since E [ũũT ] is of rank K and V has linearly
independent columns.

B. Proof of Proposition 2

Proof:

λS
i (x�

i )T x S
i = (x�

i )T Sx S
i

= (x�
i )T (�+�)x S

i

= (x�
i )T �x S

i + (x�
i )T �x S

i
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i (x�

i )T x S
i + (x�

i )T �x S
i

λS
i = λ� + (x�
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i

(x�
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i

provided that (x�
i )T x S

i 
= 0. (10) follows at once from the
form of �.
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