
AN INVESTIGATION OF DATA

COMPRESSION TECHNIQUES FOR

HYPERSPECTRAL CORE IMAGER DATA

Kerry-Anne Cawse∗, Steven Damelin†, Louis du Plessis‡,
Richard McIntyre§, Michael Mitchley¶, Michael Sears‖

Abstract

We investigate algorithms for tractable analysis of real hyperspec-
tral image data, from core samples provided by AngloGold Ashanti.
In particular, we investigate feature extraction, non-linear dimension
reduction using diffusion maps and wavelet approximation methods on
our data.

1 Introduction

Until quite recently it was uncommon to have large amounts of hyperspectral
data to store and process. Most data sets – albeit large in terms of numbers
of bands – contained relatively low numbers of pixels. For example, a normal
strip of HyMap data would contain about 2 million pixels. Certainly, this

∗School of Computational and Applied Mathematics, University of the Witwatersrand,
Private Bag 3, Wits 2050, Johannesburg, South Africa. e-mail: acawse@telkomsa.net

†The Unit for Advances in Mathematics and its Applications, Department of Math-
ematical Sciences, GSU, P.O. Box 8093, Statesboro, GA 30460-8093, U.S.A. e-mail:
damelin@georgiasouthern.edu

‡School of Computer Science, School of Computational and Applied Mathematics,
University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa.
e-mail: laduplessis@gmail.com

§School of Computational and Applied Mathematics, University of the Witwatersrand,
Private Bag 3, Wits 2050, Johannesburg, South Africa. e-mail: mcintyrer@gmail.com

¶School of Computer Science, School of Computational and Applied Mathematics,
University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa.
e-mail: mitchleym@cs.wits.ac.za

‖School of Computational and Applied Mathematics, University of the Witwatersrand,
Private Bag 3, Wits 2050, Johannesburg, South Africa. e-mail: msears@icon.co.za

1

is plenty of data when the survey area consists of multiple strips and over
100 spectral bands are involved. In the case of the AngloGold Ashanti
Hyperspectral Core Imager (HCI), however, one metre of core generates 250
000 pixels and some 400 bands. This is the same order of magnitude, but
the instrument scans about 5 metres per hour, generating about 2Gb of data
in an hour. With core running to thousands of metres, it is easy to visualise
unmanageably large data sets being acquired quite rapidly.

On the satellite front, ASTER covers large area scenes, but the multi-
spectral nature of the data and the three independent spectrometers keep
the data sets relatively small. Hyperion produced true hyperspectral data,
but again the scenes were relatively small areas and sparsely acquired. How-
ever, the advent of the EnMap satellite system at the end of the decade – a
truly operational hyperspectral satellite system – will change the availability
of hyperspectral data sets and their size. Presumably the raw data will be
stored by the satellite principles. This makes compression possibilities still
more attractive for the users.

Figure 1: A view of the core sample data at a particular frequency on the
left and the masked image at a particular frequency on the right.

These sensor developments motivate the need for hyperspectral data
compression, and there are two potential aspects to address. The first of
these is storage. In the case of the HCI, it is natural to store the raw data,

2

but a variety of intermediate and final processing products produce multiple
copies of the data of the same size. There is thus a need for compression
to allow reasonably cost effective storage of these data sets. The second,
perhaps more compelling, motivation is the need to process ever larger hy-
perspectral data sets. In the case of the HCI, processing different parts of
the core independently leads to compatibility problems with the results. It
would thus be desirable to have much smaller data sets that can be pro-
cessed simultaneously over any coherent region of interest in the core. It
seems likely that similar issues will be relevant with the commercial advent
of EnMap data sets. In the case of airborne or satellite data, one would
expect an atmospheric correction to be done before any sort of compression.
Otherwise, inevitably most of the compressed information will explain the
atmospheric spectrum.

Because of the immediate interest and availability of data sets, the MISG
working group focussed on data from the HCI. A small test data set was
available, courtesy of the Geosciences Resource Group of Anglo Technical
Division. While the strongest motivation is to obtain compressed data that
will still yield satisfactory processed products, we did not have time to test
processing software on our compressed outputs. Further work on the project
will allow tests using several processing techniques and quantitative and
qualitative comparisons with the results obtained on uncompressed data.

The left of figure 1 above shows a monochrome image of the core sample
at a particular frequency. The Hyperspectral Core Imager (HCI) scans each
point of the core at 400 different frequencies. Note that the raw data needs
processing to remove, for example, the core tray shown at the right and left
edges. The cropped data is shown on the right of figure 1.

In view of the large size of even this data set, for convenience, we used
a still smaller sample of the core, as shown in figure 2. Figure 3 is a three-
dimensional view of what the data looks like – there are r frequencies, and
for each frequency, there is a map of dimension p×q. Using the r frequencies
a complete spectrum can be drawn for every pixel in the image.

Brainstorming around the problem suggested at least three approaches
worthy of pursuit. All needed to exploit the intrinsic redundancy inherent
in hyperspectral data sets.

The first method is to concentrate on the features in the spectra. Most
processing techniques identify endmembers in the data and then unmix
against an appropriate set of these. Both the selection of, and match with,
the endmembers is essentially an automated process of feature matching, so
this approach seems reasonable. Difficulty arises in the definition of what
constitutes a feature, and how to efficiently do the coding. The details of

3

Figure 2: The reduced sample used for testing.

Figure 3: The hyperspectral data cube.

4

the approach we adopted and some indications of its success are presented
in section 2 below.

The second approach is to mathematically exploit the redundancy di-
rectly using diffusion metrics. Here the dimensionality is reduced while pre-
serving local distance. This is exactly what one wants to do when clustering
mineral types within HCI data, and is the key idea behind the process-
ing method currently used by GRG which employs Self Organising Maps
(SOM). Intrinsically, this approach is thus very attractive and offers con-
siderable potential. The major issue here is a computational one: large
matrices need to be processed to obtain eigenvalues and eigenvectors. This
is an interesting issue in its own right, and worthy of research. In section
3 below the approach is described and some results presented. Since only
standard PCs were available at the workshop, it was impossible to process
even the available test data set completely.

The final approach is to use one of the standard wavelet coding proce-
dures for each spectrum. This offers a standard compression approach by
coding the data by the components of the basis wavelets used, and thus
reduces the dimensionality to the size of the basis chosen. The encouraging
nature of this approach is presented in section 4 below.

Finally, we were very fortunate to attract an enthusiastic and interested
group to work on this project. Certainly we would never have made the sort
of progress outlined below, if it hadn’t been for their commitment and hard
work.

2 Feature Extraction

As in all feature extraction procedures, the issue is deciding what constitutes
a feature and what is noise. However, the context is helpful. We are not
trying to identify relevant features for an application, but merely trying to
identify the key features which describe a particular spectrum.

The approach adopted was to look at the slope of the spectrum as a
function of the bands and to record the spectral value and the band at
which it occurred if the slope of the curve changed significantly at that
point. Of course, there is a change of slope at (almost) every band since
the spectrometer is discretising the spectrum in any case. So we slightly
smoothed the data and then selected every turning point. These turning
points were then clustered to show the major turning points. These were
around 20 points from the original data set of around 500. A useful aspect
of this procedure is that it automatically smoothes out noise in the data

5

Figure 4: The original trial spectrum features selected by the algorithm

6

Figure 5: Shape-following curve shown against feature points and original
spectrum.

Figure 6: The image on the left shows 4 clusters extracted with K-means,
and the image on the right 6.

7

by ignoring features arising from small changes resulting from system noise.
A less attractive feature is that the compressed data are hard to work with
because different spectra will have their 20 points selected at different bands.
This problem can be dealt with at a coding level.

When it comes to “decompressing” the data, it is easy to fit a curve
through the stored data points. Clearly we want to reconstruct the relatively
smooth nature of the data without the effects of noise, and also preserve the
shape features which were the motivation for the procedure in the first place.
This was done by fitting a shape-following curve.

When it comes to processing data after this procedure, the nature of the
information extraction problem needs to be considered. A feature extrac-
tion type requirement might allow processing directly from the extracted
features. In general, however, we would probably need to use the data re-
constructed as above. An indication of how this could work is shown below.
On the left of figure 6, K-means has been used with four clusters to classify
the reconstructed data, while on the right of figure 6, K-means has been
used with six clusters for classification. These are crude classification tech-
niques, but spatial coherence of the regions selected is indicated. The next
step in this approach would be to process the reconstructed data using more
sophisticated techniques such as those already developed for the processing
of “raw” HCI data, or by using SOM for example.

3 Diffusion Maps

The idea behind using diffusion metrics is to reduce dimensionality of the
data while preserving local distance between points. This is a particularly
interesting approach, because this is exactly the way in which the different
clusters need to be represented for the Hyperspectral Core Imager (HCI).
The approach is to represent the data optimally – in some sense – in a lower
dimensional space than the intractable 400 dimensional space in which the
data are collected.

3.1 Methodology

We start with a rectangular array of p×q data points, where each data point
is a spectrum of r values. This is reshaped to get a vector of N = pq data
points, Ω = {x1,x2, · · · ,xN} On Ω, we define a weight function, w(x,y)
such that w(x,y) = w(y,x) and w(x,y) ≥ 0. The affinity matrix, W, can
then be calculated, where the i, jth entry of W is defined to be w(xi,xj).

8

From the constraints imposed on the weight function, it is obvious to see
that W will be a symmetric semi-positive definite matrix.

The next step is to define a Markov random walk on the data set. The
i, jth element of the transition matrix for the Markov process, P, is given
by:

p(xi,xj) =
w(xi,xj)
d(xi)

(1)

where:

d(xi) =
∑
xj∈X

w(xi,xj) (2)

The probability of moving from one data point to another in one time
step is given by p(x,y). The time can be increased to find the probability
of moving from x to y in t time steps, pt(x,y). This probability is given by
the corresponding entry of P t [13].

It is reasonable to expect that as time tends toward infinity, the system
will converge to a steady state. As long as every state is reachable from
every other state, every column of Pt will converge to the same probability
as time tends toward infinity [10]. That is:

lim
t→∞

pt(x,y) = φ0(y) (3)

where φ0(y) is given by:

φ0(y) =
d(y)∑

z∈Ω d(z)
(4)

Another way to look at the Markov process is in terms of random walkers.
If a random walker starts at x and moves to other data points, based on
the values of the transition matrix, as time tends toward infinity, it will be
trapped for long times in certain subsets of points, with only rare transitions
between them [7]. These subsets are the clusters we are looking for.

We want to define a metric that preserves local distance between data
points. If the probability distributions of the two points are close, then the
points will be close as well. Using this observation, we define the diffusion
distance:

D2
t (x,y) =

∑
z∈Ω

(pt(x, z)− pt(y, z))2

φ0(z)
(5)

9

The diffusion distance reflects the connectivity of the data. Points that
are close together in the original data set will have a small diffusion distance.
The diffusion distance compares all possible paths from x to y, making it
very robust to noise [5]. Another way to look at the diffusion distance is as
a comparison between two random walks, starting at x and y, respectively
[7].

We can cluster together subsets of data points with a small diffusion
distance between them. As the time parameter, t, in the diffusion distance
is increased, the clusters defined by the diffusion distance becomes coarser
[13].

It is shown in [5] that P has a sequence ofN eigenvalues and eigenvectors.
Let |λ0| ≥ |λ1| ≥ · · · ≥ |λN−1| be the eigenvalues and ψ0, ψ1, . . . , ψN−1 the
corresponding set of right eigenvectors of P, such that Pψi = λiψi. It can
be verified that λ1 = 1 and ψ0 = 1 [10]. This follows from the property that
the sum of every row in P is equal to 1.

In [10] it is shown that the diffusion distance can be written as:

D2
t (x,y) =

N−1∑
j=1

λ2t
j (ψj(x)− ψj(y))

1
2 (6)

Note that ψ0 is not considered, since it is a constant vector and has no
effect on the sum. Because of the decay of the eigenvalues, D2

t (x,y) can
be approximated to the desired accuracy by only considering the first q(t)
eigenvalues. The accuracy is obtained by setting q(t) equal to the largest
index such that |λq(t)|t < δ|λ1|t where δ defines the accuracy.

D2
t (x,y) '

q(t)∑
j=1

λ2t
j (ψj(x)− ψj(y))

1
2 (7)

If we define the function Ψt : RN → Rq(t) where:

Ψt(x) =


λt

1ψ1(x)
λt

2ψ2(x)
...

λt
q(t)ψq(t)(x)

 (8)

then:

D2
t (x,y) '

q(t)∑
j=1

λ2t
j (ψj(x)− ψj(y))

1
2 = ‖Ψt(x)−Ψt(y)‖2 (9)

10

where ‖·‖ denotes the Euclidean norm. Ψt gives a mapping of the data
points from the original space to a q(t)-dimensional euclidean space.

3.2 Results

Figure 7: Results of applying the process of diffusion maps to the test data.
The diffusion map was applied with a Gaussian kernel of width σ = 103,
and reduced to 20 dimensions. The results were clustered using K-means.
The left image shows the result of using 6 clusters and the right 10 clusters.

In all experiments we used the Gaussian kernel with width σ as a weight
function:

wσ(x,y) = exp

(
−‖x− y‖2

σ2

)
(10)

where ‖·‖ again denotes the Euclidean norm. We chose this kernel as
it satisfies the requirements, and gives a high value for spectra that are
close together and a low value for very different spectra. This is ideal since
the weights will be mapped to probabilities. A high value means a high
probability for the random walker to cross between the two data points,
which in turn implies that the two points should be in the same cluster.

11

In [13] it is mentioned that there is currently no good theory for choosing
σ. In general σ gives the rate at which similarity between two different
spectra deteriorates. Choice of σ depends on the specific application, and is
a trade-off between sparseness of P, for a small σ, and whether the kernel
gives a true measure of affinity between the points.

Working code for the process of diffusion maps could not be implemented
at the conference. However, Matlab code was written afterward. The results
of applying the procedure on the data set is given in figure 7. The diffusion
map was used with a kernel width, σ = 103. All values less than 10−3 in
the initial affinity matrix were set to 0. The dimension was reduced to 20
and the results clustered using K-means, first with 6 clusters, shown on the
left, and then with 10 clusters, on the right. There is an obvious spatial
correlation between bands of the unprocessed data and the results.

Already at MISG 2008 it became apparent that the most costly part of
the process is the construction of the affinity matrix. However, this matrix
is symmetric, and all the diagonal entries are equal to one. This means that
we only need to calculate (N2 − N)/2 entries of the matrix. Calculating
this matrix could be very easily parallelized however, since any two entries
are completely independent of each other. The transition matrix, P, can be
obtained from W by dividing every row element-wise with d(xi), where i
corresponds to the row number. This could also be done in parallel. The
resulting matrix will hopefully be sparse, and since we only need to find the
first couple of eigenvectors and eigenvalues, this should not pose too much
of a problem.

4 Wavelet Approximation

Two applications of wavelets were considered at the MISG. The first appli-
cation, quickly discarded, was as a method of smoothing the data for feature
extraction. This was found to interfere with the mechanism of extraction,
however, due to the imposition of the features of the wavelet basis.

The second application was to use wavelet approximation it its own right.
Approximation theory tells us that we can approximate any piecewise con-
tinuous function using a family of orthogonal basis functions. The idea is
to map the spectral data of each pixel onto its approximating coefficients.
That is, for each pixel of the core, we store only the coefficients of the ap-
proximating functions. This maps the pixels into a much lower dimensional
space, provided the order of approximation is chosen appropriately.

Wavelets have been widely applied to the analysis of hyperspectral data

12

acquired from remote sensing [3, 8], as well as in the compression of hyper-
spectral data [6]. The method used will be presented in this section, together
with the results obtained. These results will be compared to those acquired
using Chebyshev functional approximation of the hyperspectral data.

4.1 Methodology

For any basis of orthogonal functions φn(x), we can find the coefficients an of
the projection of any function f(x) onto that basis using the inner product,
defined as

an =

∫ b
a w(x)φn(x)f(x)dx∫ b

a w(x)φn(x)φn(x)dx
(11)

where the interval [a, b] is the support of φn(x) and w(x) is the weight
function of the family of functions. For the Haar wavelets, this weight
function is simply 1, and the support is the interval [0, 1]. The daughter
functions of the mother wavelet ψ(x) are generated using

ψj,k(x) = 20.5jψ(2jx− k) (12)

for order j and 0 ≤ k ≤ 2j − 1. Since j and k take on discrete integer
values, the Haar wavelet is known as a discrete wavelet. Since wavelets
have a square-integral of 1, the coefficient of the projection of f(x) onto the
daughter wavelet ψj,k(x) is given by

aj,k = 20.5j

∫ 1

0
ψ(2jx− k)f(x)dx (13)

For MISG, it was assumed that the number of bands in the data set are
a power of two. This condition can be artificially reached by adding zero
entries to the spectral data of each pixel. Since the data is discrete, the
coefficient integral can be rewritten as

aj,k = 20.5j
n∑

i=0

(
fi

∫ xi+1

xi

ψ(2jx− k)dx
)

where x0 = 0 and xn+1 = 1, and fi the ith element of the data vector. By
the assumption that the number of bands (and thus the number of elements
in the data vector) is a power of two, this can be further simplified to

aj,k = 20.5j
n∑

i=0

(
fi
ψ(2jxi − k)

n

)
(14)

13

which can be represented as a matrix operation. By careful reshaping of the
data cube into a matrix, we can thus compute all the required coefficients
at once.

If the order of approximation is chosen such that the number of wavelets
used in the approximation is equal to the number of data points in the spec-
tral vector, the dimensionality of the data is not reduced. However, through
successive passes, and encoding techniques, lossless or lossy compression can
be achieved. Many wavelet compression schemes use this technique, result-
ing in less data to store.

However, if the order of approximation is chosen such that the number of
wavelets used is less than the number of bands, a different kind of dimension
reduction can be used. Clustering techniques can be applied directly to the
coefficient data, which may be less than an eighth of the size of the original
data. This claim is motivated with a simple Euclidean distance clustering
technique, although the more sophisticated K-means clustering algorithm
was used to produce results.

Consider two pixels with coefficient vectors a and b. For a suitable
mapping from a single index i to the wavelet daughter indices j, k, it is clear
that the approximated data can be thought of as a continuous function given
by
∑

i aiψi(x) and
∑

i biψi(x). If the Euclidean distance between these two
functions is less than some tolerance, the pixels are similar, and can be
grouped together. This is computed as∫ 1

0

(∑
i

aiψi(x)−
∑

i

biψi(x)

)2

dx (15)

which, through algebraic manipulation, we can rewrite as∫ 1

0

(∑
i

ψi(x)(ai − bi)

)2

dx

=
∑

i

∑
j

∫ 1

0
ψi(x)ψj(x)(ai − bi)(aj − bj)dx

=
∑

i

∑
j

(ai − bi)(aj − bj)
∫ 1

0
ψi(x)ψj(x)dx

However, the wavelet basis chosen is orthonormal, and so this becomes∑
i

∑
j

(ai − bi)(aj − bj)δi,j

14

where δi,j is the Kronecker delta function, and so the Euclidean distance
between the two pixels is simply given by∑

i

(ai − bi)2 (16)

which is the square of the Euclidean distance between the coefficient vectors
of the two pixels. There are two important features of this to note. Firstly,
we can find a clustering using only the approximating coefficients. That is to
say, it is not neccessary to reconstruct the original data. Secondly, because
the coefficients are those of an approximation, with a careful choice of order
we can reduce the errors within the data by smoothing it out, at the expense
of the smaller features. It is hoped, however, that the features neccessary
to identify a particular mineral are not dominated by error.

This result implies that we can simply apply the K-means clustering al-
gorithm to the coefficient data. The results of this application are presented
in the next section.

4.2 Results

For the wavelet method, a larger data sample was taken, spanning 226 x 62
pixels, with 226 spectral bands per pixel, artificially expanded to 256 bands
through the addition of zeros. The true-colour image is compared against the
6 group clustering obtained from a fifth-order Haar wavelet approximation in
figure 8. The sample data used in the MISG and presented in other sections
is a subset of this data, approximately delineated with a white border in the
true-colour image.

The shortage of time, however, prevented further investigation into more
sophisticated techniques. Work was later performed in a tangentially related
project on Chebyshev approximation of hyperspectral data, using the same
methodology. It was found that a similar clustering could be obtained using
Chebyshev approximation, with less than ten percent of the pixels being
grouped differently. Figure 9 shows the clustering obtained from a twentieth-
order Chebyshev approximation of the second kind. It can be shown that
taking an appropriately weighted distance measure between any two pixels
approximated by Chebyshev polynomials can also be reduced to the squared
Euclidean distance of the coefficients of approximation.

It can be seen that the clustering is coherent, showing geologically-sound
intrusion features. As Haar wavelets were used, it is possible that the method
described above could benefit from greater sophistication. The data, which

15

Figure 8: The k-means clustering obtained, together with the true-colour
image of the core sample on the right. The subset of data used in the other
methods is delineated in white on the true-colour image

16

Figure 9: A clustering obtained from a 20th order Chebyshev approximation
of the hyperspectral data.

consists of over three million values, was approximated in under a second
and clustered in under a minute.

5 Conclusion

The main focus of the project, was to provide (1) Real time time hyperspec-
tral data and (2) to investigate several algorithms for tractible analysis of
real hyperspectral data. We looked at feature extraction methods, nonlin-
ear dimension reduction methods and wavelet approximation methods. All
methods performed well and have given a strong basis for a more rigorous
study in the future. For example, the diffusion methods we used, need to
be made more robust and less memory intensive. We also wish to study
compressive sampling methods on our data and improve our wavelet ap-
proximation methods. This ongoing project and its outcomes will be used

17

for honours and graduate work of Louis du Plessis and Michael Mitchley
under the supervision of Steve Damelin and Michael Sears.

Acknowledgments

We are grateful to the staff at GRG of ATD of Anglo American for their
support with advice and test data. We would also like to thank Ian M.
Howat from the Applied Physics Lab at the University of Washington for the
function enviread.m, which was used to extract the test data into Matlab.
The function is available at http://www.mathworks.com/matlabcentral/.
The research of Steven Damelin was funded, in part by NSF-DMS-0555839,
the Unit for Advances in Mathematics and its Applications and CAM at
WITS.

A Feature Extraction Code

A.1 “interp.m”

This function finds special points in frequency graphs for each pixel in the
image.

function s=interp(data)

for outer=1:141
%outer and inner loops loop through every pixel in the image
for inner=1:60

%renumber pixels so that they form a vector
pixelnum=60*(outer-1)+inner;
y=reshape(data(outer,inner,:),1,141);

%determine the special (p,q) co-ordinates of special points
A=peak(y,1,5);
p=A(1,:);
q=A(2,:);

%show the special points on a graph
plot(p,q,’r’);

%we could reconstruct an approximation to the original graph
%using pchip (piecewise cubic Hermite interpolating polynomial)
%which uses the special points found by peak2

18

%regr=pchip(p,q,1:141);

%we would then normalise each point
%regr(pixelnum,:)=regr(pixelnum,:)/norm(regr(pixelnum,:),’fro’);

end

end

%s=regr;

A.2 “peak.m”

This function finds turning points in a graph smoothed to degree n.

function p=peak2(x,n,m)

t=1:length(x);
next=1;
plot(t,x);
o(1)=t(1);

for loop=n+1:length(x)-n
p1=polyfit(t(loop-n:loop),x(loop-n:loop),1);
p2=polyfit(t(loop:loop+n),x(loop:loop+n),1);
%draw straight lines to either side of a point and determine if turning point

if p1(1)*p2(1)<=0
o(next)=t(loop);
next=next+1;
%if turning point, save in o

end
end

o(end+1)=t(end);
q=clusterfeatures(o,x,m);
%clusterfeatures clusters the special points in o

p=[q;x(q)];

A.3 “clusterfeatures.m”

This function clusters special points and saves cluster centers.

function y = clusterfeatures(o,x,m)

19

next=1;
hold on

%begin a cluster
cluster = o(1);

for loop=2:length(o)

if sqrt((o(loop)-cluster(end))^2+(x(o(loop))-x(cluster(end)))^2)>m
%distance more than m, start new cluster
%compare cluster(end) to o(loop)

%get central point of cluster and store in c
c(loop-1) = cluster(round(end/2));

plot(c(loop-1),x(c(loop-1)),’o’);

%start new cluster
cluster = o(loop);

else
%distance less, add to cluster
cluster(end+1) = o(loop);

end

end

if c(1)~=o(1)
c=[o(1),c];
%if the first point is a cluster on its own

end
if c(end)~=o(end)

c(end+1)=o(end);
%if the last point is a cluster on its own

end

c=unique(c);
%only store unique cluster values

y=c;

20

B Diffusion Map Code

B.1 “diffMap.m”

Performs a diffusion map with time parameter t, that reduces dimension
to newdim, using a Gaussian kernel with width sigma on the image. The
result is clustered into cluster clusters using K-means.

function y = diffMap(image,sigma,tol,t,newdim,clusters)

[p,q,r] = size(image);
P = GetP(image,sigma,tol);
P = sparse(P);
[v,e] = eigs(P,newdim+1);
clear P; % Don’t need P anymore
y = doMap(v,e,t,newdim,p,q);
y = kmeans(y,clusters);
y = reshape(y,p,q);

B.2 “GetP.m”

Gets the transition matrix P on image, with kernel width sigma. All entries
less than tol are set to zero.

function P = GetP(image,sigma,tol)

[p,q,r] = size(image);
image = reshape(image,p*q,r);
sigma = 1/sigma^2;
P = ones(p*q,p*q);
for (i = 1:p*q)

for (j = i:p*q)
if (i ~= j)

P(i,j) = exp((-norm(image(i,:)-image(j,:))^2)*sigma);
if (P(i,j) < tol)

P(i,j) = 0;
end
P(j,i) = P(i,j);

end
end
P(i,:) = P(i,:)/sum(P(i,:));

end

21

B.3 “doMap.m”

Does the actual diffusion map.

function y = doMap(v,e,t,newdim,oldx,oldy)

e = diag(e);
m = length(v(:,1));
e = e(2:end);
for (i = 1:newdim+1)

if (v(1,i) < 0)
v(:,i) = -1.*v(:,i);

end
end
y = zeros(m,newdim);
for i = 1:m

y(i,:) = (e.^t)’.*v(i,2:end);
end
y = reshape(y,oldx,oldy,newdim);

C Wavelet Code

C.1 “haarapproximate.m”

This is the program used to find the grouping of the hyperspectral data. Its
primary function is to handle the reshapings required.

function flags = haarapproximate(data, order, cluster)
% Finds the grouping of normalised hyperspectral data, given an order of
% approximation, and the number of groups to supply to kmeans.

% First, find the coefficients of the approximation
[r, s, t] = size(data);
data = reshape(data, [], t);
if ceil(log(t)/log(2)) ~= log(t)/log(2)

pad = 2^(ceil(log(t)/log(2))) - t;
datapad = zeros(size(data, 1), pad);
data = [data, datapad];
t = size(data, 2);

end
A = generateHaarcoeffmatrix(t, order);
coeff = (2 / pi) * (data*A’);

% The coefficients are used to cluster
flags = kmeans(coeff, cluster);

22

flags = reshape(flags, r, s);

C.2 “generatecoeffmatrix.m”

This generates the matrix used to find the approximating coefficients. When
this matrix is multiplied with the reshaped data, all the coefficients are
obtained at once.

function A = generateHaarcoeffmatrix(n, ord)
% generates the matrix used to compute the coefficients of a haar
% approximation, assuming power of 2 bands. n is the number of bands, ord is the
% order of approximation required.

h= 1/n;
A = zeros(2^ord, n);
A(1, :) = ones(1, n);
r = 2;
for i=0:ord-1

for j=0:(2^i - 1)
for k=1:n

A(r, k) = 2^(0.5*i) * haarmother((2^i) * h * k - j);
end
r = r + 1;

end
end
A = A/n;

C.3 “haarmother.m”

This defines the Haar mother wavelet.

function val = haarmother(x)
if x <= 0

val = 0;
elseif x <= 0.5

val = 1;
elseif x <= 1

val = -1;
else

val = 0;
end

23

References

[1] E. Aboufadel and S. Schlicker. Discovering Wavelets. Wiley-
Interscience, Hoboken, New Jersey, 1st edition, 1999.

[2] Jeffrey H. Bowles and David B. Gillis. An optical real-time adaptive
spectral identification systems (ORASIS). In Chein-I Chang, editor,
Hyperspectral Data Exploitation: Theory and Applications, pages 77–
106. Wiley, 2007.

[3] L.M. Bruce, C.H. Koger, and Li Jiang. Dimensionality reduction of
hyperspectral data using discrete wavelet transform feature extraction.
IEEE Transactions on Geoscience and Remote Sensing, 40:2331–2338,
October 2002.

[4] R. Burden and J. Faires. Numerical Analysis. Brooks/Cole, Pacific
Grove, California, 7th edition, 2001.

[5] Ronal R. Coifman and Stephane Lafon. Diffusion maps. Journal of
Applied and Computational Harmonic Analysis, pages 5–30, April 2006.

[6] James E. Fowler and Justin T. Rucker. Three-dimensional wavelet-
based compression of hyperspectral imagery. In Chein-I Chang, editor,
Hyperspectral Data Exploitation: Theory and Applications, pages 379–
407. Wiley, 2007.

[7] Yosi Keller, Stephane Lafon, and Michael Krauthammer. Protein clus-
ter analysis via directed diffusion. Bioinformatics preprint, 2005.

[8] P. Kempeneers, S. De Backer, W. Debruyn, P. Coppin, and P. Sche-
unders. Generic wavelet-based hyperspectral classification applied to
vegetation stress detection. IEEE Transactions on Geoscience and Re-
mote Sensing, 43:610–614, March 2005.

[9] John P. Kerekes and John R. Schott. Hyperspectral imaging systems.
In Chein-I Chang, editor, Hyperspectral Data Exploitation: Theory and
Applications, pages 19–45. Wiley, 2007.

[10] Stephane Lafon and Ann B. Lee. Diffusion maps and coarse-graining:
A unified framework for dimensionality reduction, graph partitioning
and data set parameterization. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(9):1393–1403, September 2006.

24

[11] Boaz Nadler, Stephane Lafon, Ronald R. Coifman, and Ioannis G.
Kevrekidis. Diffusion maps, spectral clustering and reaction coordi-
nates of dynamical systems. submitted to Journal of Applied and Com-
putational Harmonic Analysis, March 2005.

[12] Randall B. Smith. Introduction to hyperspectral imaging. www.
microimages.com/getstart/pdf/hyprspec.pdf, July 2006. Down-
loaded from the Micro Images website, Last accessed on 28 January
2008.

[13] Rui Xu, Steven Damelin, and Donald C. Wunsch II. Applications of
diffusion maps in gene expression data-based cancer diagnosis analysis.
In Engineering in Medicine and Biology Society, 2007. EMBS 2007.
29th Annual International Conference of the IEEE, pages 4613–4616,
August 2007.

25

