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Purpose
The purpose of this paper is to survey new and simplified

statements of local Paley Wiener theorems, due to the authors, on
the n−1 dimensional unit sphere realized as a subset of n = 2,3
Euclidean space. More precisely, given a function f : Cn → C,
n = 2,3, whose restriction to an n− 1 sphere is analytic, we es-
tablish necessary and sufficient conditions determining whether
f is the Fourier transform of a compactly supported, bounded
function F : Rn → C. The essence of this investigation is that
because of the local nature of the problem, the mapping f → F
is not in general invertible and so the problem cannot be studied
via a Fourier integral. Our proofs are new.

Summary
A problem of interest in radiation and scattering problems is

that of determining the support of a compactly supported, square
integrable scattering potential, F : Rn →C, n = 2,3 from far field
data given by a function f : Cn → C.

Suppose, approri, that we know that for every vector z ∈
Sn−1, the n−1 dimensional unit sphere, realized as a proper sub-
set of Rn, the far field data f is given locally by an integral such
as

f (z) =
Z

τ

F(x)e−ik(z.x)dn(x) (0.1)

for some bounded set τ ∈ Rn and bounded, compactly supported
F : Rn → C with support in τ. In practice, z is the unit vector
in the direction where f is measured and k is an absolute real
constant. The inverse support problem, as treated here, studies
the problem of determining bounds for the support of the set τ,
assuming the model (0.1). For many applications, assumption
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(0.1) on the given f is strong and often not obvious from the
given data.

The purpose of this paper is to survey new and simplified
statements of local Paley Wiener theorems on Sn−1. More pre-
cisely, given a function f : Cn →C, n = 2,3, whose restriction to
Sn−1 is analytic, we establish necessary and sufficient conditions
determining whether f is the Fourier transform of a compactly
supported, bounded function F : Rn →C. The essence of this in-
vestigation, is that because of the local nature of the problem, the
mapping f → F is not in general invertible and so the problem
cannot be studied via a Fourier integral. Our proofs are new and
use a beautiful interplay between plane wave expansions and Eu-
clidean geometrical arguments. We will show that provided the
restriction of f to Sn−1 is analytic and f satisfies a growth con-
dition of exponential type at infinity, then (0.1) holds for some
compact set τ ∈ Rn and bounded F : Rn → C with compact sup-
port in τ. We also describe the smallest supports sets for which
our results are best possible. Results of this type are typically
known in the literature as Paley Wiener theorems [PW]. In this
paper, we seek generalizations of [PW] in that we do not assume
that f is entire nor that its restriction to Rn is square integrable.
The later assumptions are basic in [PW]. Indeed, we show that
(a) a growth condition of f of exponential type at infinity and
(b) an assumption that the restriction of f to Sn−1 is analytic,
are enough to deduce (0.1). In [PW], the function F obtained is
square integrable on Rn, compactly supported but not necessarily
bounded.

Structure of paper
The remainder of this paper is as follows:

(a) Notation
(b) The Paley Wiener Theorems in Rn

(c) Main Results: Local Paley Weiner theorems on spheres,
comparisons and problems with local inversion
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Notation
In order to motivate what follows, we need to introduce

some needed notation. Throughout, for any non zero real se-
quences an and bn, we shall write an = O(bn) if the ratio an/bn is
uniformly bounded in n and an ∼ bn if an/bn → 1, n→ ∞. Sim-
ilar notation will be used for functions and sequences of func-
tions. Throughout, we shall say that a function f : Cn → C is of
exponential type a > 0 at infinity, if

| f (z)|= O
(

ea|z|
)

, |z| → ∞.

Finally, given f : Cn → C, by fA, we will always mean the re-
striction of f to a proper subset A of Cn. Given x ∈ Rn, by the
vector x, we will mean the point x with a given direction from the
origin. Similar notation will be used for complex vectors. Asso-
ciated with the euclidean metric on Rn and Cn, we have the usual
inner product and in what follows, v1.v2 will denote the usual in-
ner product of two vectors v1 and v2 in Rn or Cn. Throughout,
L2(Rn) will denote the class of all square integrable functions
F : Rn → C.

The Paley Wiener Theorems in Rn

The relationship of the growth of an entire function with
the properties of its Fourier transform are embodied in the well
known Paley-Wiener theorems. For functions of complex vari-
able, we have:

Theorem 1 (PW1). A function f : C→ C is an entire function
of exponential type with its restriction fR ∈ L2(R) iff

f (z) =
1√
2π

Z b

a
F(x)e−ixzdx, z ∈ C.

for some F ∈ L2(R) with support in [a,b] Moreover, [a,b] is the
smallest set containing the support of F and

a =− limsup
y→∞

log | f (−iy)|
y

, b = limsup
y→∞

log | f (iy)|
y

.

Analogues of [PW1], which we denote for simplicity by [PW2],
exist for n ≥ 1 complex variables. See for example [6, pg 181,
Theorem 7.3.1] for a clear exposition of these results.

In what follows, we will need the notion of a support func-
tion of the smallest convex set outside of which which a com-
pactly supported function F : Rn → C vanishes. This function is
defined by

ρ(u) := sup
x∈τF

(u.x)

where τF is the support of F and u ∈ Rn is a given unit vector.
The function ρ(u) is used to define a convex region τc,F ⊃ τF
which is formed from tangent planes to τF having normal vectors
u and located at a distance ρ(u,τF) from the origin.

It is clear that the function ρ depends on F via its support
τF but since F is always fixed, for ease of notation, we will drop
this dependence henceforth.

Main Results: Local Paley Weiner theorems, compar-
isons and problems with local inversion

In this section, we state our main results which constitute
generalizations of [PW] for n = 2,3. Following is our first result:

Theorem 2 (LPW1). Let n = 2,3 and let f : Cn →C be a func-
tion whose restiction to Sn−1 is analytic. Let k,a be positive num-
bers. Suppose that for any fixed real vector u ∈ Sn−1.

| f (z)|= O
(

eka(u.ℑ(z))
)

, u.ℑ(z)→ ∞, z ∈ Cn.

Then,

f (z) =
Z

Ba

F(x)e−ik(z.x)dnx, z ∈ Sn−1

where F is a bounded function supported in the closed ball Ba ∈
Rn with centre 0 and radius a.

Remark 1

(a) Note that in the statement of [LPW1], compared to that of
[PW1], we use smoothness properties of f only on Sn−1 to
establish our result and square integrability and analyticity
of the restriction of f off the given sphere is not required nor
used in our results. The function F obtained is both bounded
and compactly supported in Rn. As z ∈ Cn and u ∈ Rn, the
inner product ℑz.u is well defined.

(b) [LPW1] is similar to [7, Theorems 9, 12, Section 4] which
were established earlier. In these later results, the authors
consider a wide class of distribution functions and study
bounds on their coefficients under similar smoothness as-
sumptions to ours. The method of proof in [7], uses a com-
bination of clever and sophisticated machinary of Bessel and
spherical harmonics and is of independent interest. In par-
ticular, we mention that Bessel and spherical harmonics al-
low for extensions from n = 2 to n = 3. We are able to es-
tablish [LPW1] using different techniques which involve an
interplay between plane wave expansions and geometrical
arguments. These later techniques also provide a natural but
different method to move from n = 2 to n = 3.
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(c) It is easy to establish a partial converse of [LPW1] which is
the following: Suppose

f (z) =
Z

Ba

F(x)e−ik(z.x)dnx, z ∈ Cn

where F is a bounded function supported in the closed ball
Ba ∈ Rn with centre 0 and radius a. Then

| f (z)|= O
(

eka(u.ℑ(z))
)

, u.ℑ(z)→ ∞.

(c) [LPW1] stated above does not, in general, yield the smallest
support volume for the function F . However, the smallest
convex support volume for this function can be obtained in
analogy with [PW2]. This is contained in Theorem 3 below.

Theorem 3 (LPW II). Let n = 2,3, k a positive constant and f :
Cn →C be a function whose restiction fSn−1 is analytic. Suppose
that for any fixed real vector u ∈ Sn−1,

| f (z)|= O
(

ekρ(u)(u.ℑ(z))
)

, u.ℑ(z)→ ∞, z ∈ Cn.

Then

f (z) =
Z

τc

F(x)e−ik(z.x)dnx, z ∈ Sn−1

where F is a bounded function supported in the convex region τc
having support function ρ(u,τc) for any vector u ∈ Sn−1.

Remark 2 [LPW2] is similar to [7, Corollary 4.7]. The
proof in this former paper uses much in the spirit of [7, Theo-
rems 9, 12], Bessel and spherical harmonics whereas our proof
uses a different method of proof which relies on geometry and
wave expansions. We believe both methods of proof to be of in-
dependent interest. It is easy to see also that much as in [LPW1],
we have the following: Suppose that

f (z) =
Z

τc

F(x)e−ik(z.x)dnx, z ∈ Cn

where F is a bounded function supported in the convex region τc
having support function ρ(u,τc) for any vector u ∈ Sn−1. Then

| f (z)|= O
(

ekρ(u)(u.ℑ(z))
)

, u.ℑ(z)→ ∞.

Problems with local inversion
The new theorems [LPW1] and [LPW2] stated here are in-

herently different from the conventional Paley Wiener theorems
[PW1] and [PW2]. For example, consider the case where the
function f (z) is the boundary value of an entire function G(ω)
which satisfies the conditions of the conventional Paley Wiener
theorem; i.e.,

f (z) = G(ω)|z=kω.

While each theorem guarantees that the associated function is the
transform of a compactly supported function in Rn, the supports
for these two functions will, in general, be different. Indeed, f (z)
is totally independent of components of G(ω) which vanish on
the sphere z = kω so that while these components contribute to
the overall support a ssociated with G(ω), they do not contribute
to the support associated with f (z). Such components, which are
known as non-radiating sources and are well known to play an
important role in inverse source and scattering problems.

The difference between the conventional and generalized
Paley Wiener theorems is also apparent from the fact that the two
functions f and F are reciprocally related via a Fourier transform
pair in the conventional Paley Wiener theorem. On the other
hand, in the new theorems f can be computed from F via the
boundary value of a Fourier transform but a unique inverse map-
ping does not exist. Indeed, any non-radiating source supported
within the support of F can be added to F without changing f .
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