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Abstract

Given X , some measurable subset of Euclidean space, one sometimes wants to con-
struct a finite set of points, P ⊂ X , called a design, with a small energy or dis-
crepancy. Here it is shown that these two measures of design quality are equivalent
when they are defined via positive definite kernels K : X 2(= X × X ) → R. The
error of approximating the integral

∫
X f(x) dµ(x) by the sample average of f over

P has a tight upper bound in terms the energy or discrepancy of P. The tightness of
this error bound follows by requiring f to lie in the Hilbert space with reproducing
kernel K. The theory presented here provides an interpretation of the best design
for numerical integration as one with minimum energy, provided that the measure
µ defining the integration problem is the equilibrium measure or charge distribution
corresponding to the energy kernel, K.

If X is the orbit of a compact, possibly non-Abelian group, G, acting as measur-
able transformations of X and the kernel K is invariant under the group action,
then it is shown that the equilibrium measure is the normalized measure on X in-
duced by Haar measure on G. This allows us to calculate explicit representations of
equilibrium measures.

Key words: capacity, cubature, discrepancy, distribution, group invariant kernel,
group invariant measure, energy minimizer, equilibrium measure, numerical
integration, positive definite, potential field, Riesz kernel, reproducing Hilbert
space, signed measure
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1 Introduction

The problem of uniformly distributing points on a sphere or other compact set
in Euclidean space with positive d dimensional Hausdorf measure is an inter-
esting and difficult problem. It was discussed already by Carl Friedrich Gauss
in his famous Disquisitiones arithmaticae in the case of a sphere, although it
is most likely that similar problems appeared in mathematical writings even
before that time. For d ≥ 1, let Sd denote the d-dimensional unit sphere in
Rd+1. For d = 1, the problem is reduced to uniformly distributing n ≥ 1 points
on a circle, and equidistant points provide an obvious answer. For d ≥ 2, the
problem becomes much more difficult, yet a physically motivated solution is to
treat the points as electrostatic charges and place them so that an electrostatic
energy is minimized. In the time since Gauss, the problem has expanded to
include general definitions of the energy, E, defined for charge distributions,
µ, on general subsets of Euclidean space, X . The problem remains as to how
to arrange a set of points P = {zi}ni=1 ⊆ X so that its energy, E(P), is
minimized. See for example [10,17,24,25] and the references cited therein.

Another approach to spreading points uniformly, developed initially for the
d-dimensional unit cube, [0, 1]d, is the discrepancy of Weyl [40]. This original
discrepancy is defined as the sup-norm of the difference between the uniform
distribution and the empirical distribution of the points, P . It is known in
the statistics literature as a Kolmogorov-Smirnov statistic [6,19]. In the past
decade attention has turned to cases where the discrepancy, D(P ;µ), is de-
fined as a Hilbert space norm of the difference between some arbitrary target
distribution, µ, and the empirical distribution of P [20]. Such discrepancies
appear as tight error bounds for numerical integration [18–20,29] and provide
insight into the tractability of numerical integration, i.e., the dependence of
the error as the dimension of the region tends to infinity [30]. The notion of
discrepancy has also been extended to more arbitrary sets, X , than the unit
cube [19,21].

Besides energy and discrepancy, other distance-based measures of even spread
include the fill distance (also known as the mesh norm or sphere covering ra-
dius) and the separation distance (also known as the sphere packing distance).
See [14,16,23,28,33,39] and the references cited therein, for discussions of these
concepts. Measures of quality placement of points arise in both the numeri-
cal analysis and statistics literatures, where P is known as the design. The
JMP statistical package [34] offers minimum energy, minimum discrepancy,
and sphere packing designs among its options for space-filling designs.

The literatures for these various kinds of even or space-filling points have
developed rather independently because different quality measures may lead
to different sets of points. It is shown here that minimum energy points and

2



minimum discrepancy points are the same under quite general assumptions.
Although the mathematical argument supporting this statement is rather ele-
mentary, this equivalence does not appear to have been observed in either the
energy or discrepancy literatures. There are some wrinkles in this equivalence
that are suggested in the paragraphs below and explained more fully in the
sections that follow.

The equivalence between energy and discrepancy benefits the energy commu-
nity by providing tight upper bounds on numerical integration error via the
energy of the design (see Corollary 10):

sup
‖f‖H(K)≤1

∣∣∣∣∣
∫
X
f(x) dµe(x)− 1

n

n∑
i=1

f(zi)

∣∣∣∣∣ =
√
E(P)− E(µe) = D(P ;µe),

where µe is the equilibrium charge distribution. A more general error bound
involving energy for integrals with respect to an arbitrary measure, µ, appears
in Corollary 6. The error bound above differs from most of those found in
the energy literature in that it is tight. In section 2, a kernel, K, is used to
define both energy in (1) and discrepancy in (8). In the definition of energy,
K(x,y) represents the energy of unit charges placed at the points x and y.
In the discrepancy literature K defines a reproducing kernel Hilbert space of
integrands, H(K), and this interpretation of K leads to the above worst-case
numerical integration error.

This equivalence between discrepancy and energy provides the discrepancy
community with a physical interpretation of discrepancy, namely as the square
root of an energy (see Proposition 3). The space of measures for which the
energy is finite,M(K), may be interpreted as a space of charge distributions,
and the energy is the square norm of those charge distributions. The reproduc-
ing kernel Hilbert space of integrands, H(K), may be interpreted as a space
of potential functions induced by the charge distributions inM(K). The dis-
crepancy of a design, D(P ;µ), depends on a target distribution defining the
integration problem, µ, however, when µ coincides with the equilibrium charge
distribution the expression for the discrepancy simplifies to the root difference
of two energies.

Section 2 of this article establishes the equivalence of discrepancy and en-
ergy and their relationship to error estimates for quadrature over measurable
subsets X of Euclidean space and for integrands f : X → R. In the energy
community there have been a number of results deriving quadrature error
bounds in terms of energy. For X = [−1, 1] the n nodes of the celebrated Gaus-
sian quadrature formula are uniquely determined as the zeros of the unique
monic polynomial of minimal mean-square deviation on X . In [8], this idea is
extended to spheres to obtain upper bounds for numerical integration using
energy functionals of an extremal Riesz energy problem and a class of invariant
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kernels defined on the spheres. In [12], upper bound quadrature error estimates
on classes of compact, homogeneous spaces embedded in Euclidean space are
proven via energy functionals defined by way of a class of invariant kernels
which are generalizations of zonal kernels on the sphere or radial kernels in
Euclidean space. In the results of [8,12], the discrepancy bound splits into two
parts. The first depending on the nodal set and the second depending on the
function space. In [1,2,4,35], the authors have investigated discrepancy esti-
mates using potentials on smooth curves in the complex plane and on spheres
in d ≥ 1 Euclidean space.

The discrepancy literature has provided many tight upper bounds on numeri-
cal integration error. Niederreiter [29] a describes the seminal work of Koksma
and Hlawka to obtain an error bound for the integration domain [0, 1]d as the
product of the star discrepancy of Weyl and the bounded variation of the
integrand. Niederreiter also describes the progress made in constructing low
discrepancy sets. Since the publication of [29] the Koksma-Hlawka inequality
has been generalized in terms of discrepancies defined by symmetric positive
definite kernels, e.g., [18–21] and for measures of integrand roughness cor-
responding to the semi-norms in Hilbert spaces where these kernels act as
reproducing kernels. The choice of kernel reflects the smoothness, possible
periodicity and other properties one wishes to assume about the integrands.

Reflecting on these parallel developments, it is observed in this article that
one may construct tight quadrature error bounds on measurable subsets X of
Euclidean space using energy functionals defined by way of a class of kernels
K : X 2(= X × X ) → R. The key is to directly link the space of possible
integrands to the energy kernel via a reproducing kernel Hilbert space.

Section 4, tackles the problem of calculating equilibrium measures, which play
a crucial role in the distribution of quadrature, interpolatory and minimal
energy points, zeroes of orthogonal and other extremal polynomials, as well
as suitably scaled eigenvalues in random matrix theory. See [3,7,9,11,13,22,26]
and [27,32,37,38] and the references therein. Recently, in [12], the authors
used the idea of group invariant kernels and measures to study equilibrium
measures over various compact sets in Euclidean space. In the current paper,
we show, (see Theorem 16 for complete details), that if X is the orbit of
a compact, possibly non-Abelian, group, G, of measurable transformations,
then the equilibrium measure for the induced G invariant kernel KG is the
normalized group invariant measure on X induced by the Haar measure on
G. This allows us to calculate explicit further representations of equilibrium
measures which even in one dimension are new. We note that even in one
dimension, calculation of explicit representations of equilibrium measures is
not well understood and in many cases, even their supports have only been
recently determined. See [3,9,11,13,27,22,32,37,38]. Group invariant measures
also appear in the discrepancy literature, such as the rotations of [5], and the
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digital shifts and scramblings of [31]. Examples of equilibrium measures are
provided in Section 5.

2 Kernels, Charge Distributions and Potential Fields

In this section, we define some central notions in the study of energy and
discrepancy. Here and throughout, let X be a measurable subset of Euclidean
space with Hausdorf dimension d and let ‖·‖2 denote the Euclidean norm. Let
B denote the space of all finite signed Borel measures (charge distributions) µ
on X . The measure of the whole set will be denoted Q(µ) := µ(X ) =

∫
X dµ(x),

which in the energy interpretation, is the total charge distributed on X .

2.1 Kernels and Energy

Let K : X 2 → R∪{+∞} be a function which is Borel measurable, symmetric,
bounded below and (strictly) positive definite. That is, ∀µ ∈ B

K(x,y) = K(y,x), ∀x,y ∈ X ,
∃LK ∈ R with K(x,y) ≥ LK ,

E(µ) :=
∫
X 2
K(x,y) dµ(x)dµ(y) > 0 for all µ 6= 0

for which K is |µ| × |µ| integrable. (1)

Here, E(µ) denotes the energy of the charge distribution µ. It must be re-
membered that the definition of energy depends on the kernel, K, although
this dependence is suppressed in the notation for simplicity’s sake. A positive
definite kernel implies that the energies of all nonzero charge distributions are
positive. In some cases, the kernel is allowed to be only conditionally positive
definite. This means that that E(µ) > 0 if µ 6= 0 and Q(µ) = 0, i.e., the
energy is positive for distributions with zero total charge. The kernel itself
may be infinite at some points in X 2, e.g., one important kernel defined on R
arising from electrostatic energy is K : (x, y) 7→ − log(|x− y|). From an en-
ergy perspective, the function K(·,y) is the potential field induced by a unit
point charge placed at y, and K(x,y) is then the potential energy of a unit
test charge placed at x under this field.

Example 1 (Riesz Kernel) The generalized Riesz kernels, also known as
the generalized multiquadric kernels are defined by

Ks,ε(x,y) =

sign(s)(‖x− y‖2
2 + ε2)−s/2, s 6= 0,

− log(‖x− y‖2
2 + ε2), s = 0.

(2)
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When ε = 0 the term generalized is omitted. Each kernel, Ks,ε, is symmetric
in its arguments. It is (strictly) positive definite on Rd if either s ≥ 0 and
ε > 0, or alternatively 0 ≤ s < d and ε = 0 [15, Sect. 4.5]. It is conditionally
positive definite for −2 < s < 0 [15, Sect. 8.1–2]. For s ≥ d and ε = 0, the
energy for the Riesz kernel is infinite for nonzero charge distributions.

The logarithmic potential, mentioned in the paragraph preceding this example,
and the Coulombic potential, ‖x− y‖−1

2 , are special cases of the Riesz kernel.

Example 2 (Symmetric, Positive Definite Matrix) If X = {1, . . . , N},
then the kernel, K, may be represented as an N × N symmetric, positive
definite matrix, K = (K(x, y))Nx,y=1. In this case, the space of signed measures
is B = RN , and the energy may be represented as the vector-matrix product
E(µ) = µTKµ.

Note that the definition of energy in (1) deviates somewhat from the usual
physical definition of energy for a total unit charge distributed over the n ≥ 1
points in P = {z1, . . . ,zn}:

Ephys(P) =
1

n2

∑
1≤i<j≤n

K(zi, zj). (3)

The reasons that we prefer E to Ephys are discussed in Section 3.

Let δz ∈ B be the Dirac delta measure that corresponds to a unit charge at
the point z ∈ X , i.e.,

∫
Y dδz(x) = 1 for all measurable sets Y ⊆ X with z ∈ Y .

The empirical distribution of the set P , defined as

µP :=
1

n

n∑
i=1

δzi
, (4)

assigns equal charge n−1 to each point in the set P for a total charge of
unity. When we talk of minimizing the energy of a set of points P , we mean
minimizing

E(P) := E(µP) =
1

n2

n∑
i,j=1

K(zi, zj). (5)

Here we abuse the notation to allow the argument of E to be a set of points
or a charge distribution.

2.2 Linear Spaces of Charge Distributions and Discrepancy

The quadratic form defining the energy in (1) may be used to define an inner
product. Let M(K) ⊆ B be the set of measures with finite energy, E(µ). We
assumeM(K) is a linear space. This is always true when K is bounded and it
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is true but non-trivial to prove for the singular Riesz kernels which are strictly
or conditionally positive definite. For this space one has an inner product:

〈µ, ν〉M(K) :=
∫
X 2
K(x,y) dµ(x)dν(y), (6)

and the energy then corresponds to the square norm of the measure, i.e.,

E(µ) = ‖µ‖2
M(K) . (7)

The discrepancy of the measure ν with respect to the measure µ is defined as
in [19] as

D(ν;µ) := ‖µ− ν‖M(K) . (8)

The definition of the discrepancy depends on the choice of kernel as well
as of the target distribution, µ. The definitions of energy and discrepancy
immediately yield the following equivalence theorem:

Proposition 3 For energy defined as in (1) and discrepancy defined as in (8)

it follows that D(ν;µ) =
√
E(µ− ν).

As with energy, the discrepancy of a set of points, P = {z1, . . . ,zn}, is defined
as the discrepancy of the empirical distribution function of that set of points,
namely,

D2(P ;µ) := D2(µP ;µ) =
∫
X 2
K(x,y) dµ(x)dµ(y)− 2

n

n∑
i=1

∫
X
K(zi,y) dµ(y)

+
1

n2

n∑
i,j=1

K(zi, zj), (9)

where the last term in this expression is E(µP). A generalization of the dis-
tribution µP places a charge of magnitude qi at each point zi, i.e., µP,q :=∑n
i=1 qiδzi . Its discrepancy is

D2(µP,q;µ) =
∫
X 2
K(x,y) dµ(x)dµ(y)−

n∑
i=1

qi

∫
X
K(zi,y) dµ(y)

+
n∑

i,j=1

qiqjK(zi, zj), (10)

where again the last term in this expression is E(µP,q).

Note that the definition of discrepancy in (8) does not strictly include the
discrepancy of Weyl [40], also called the L∞ star discrepancy [29], and defined
over X = [0, 1]d as

D∗,∞(ν;µ) = ‖µ− ν‖∞ = sup
x∈[0,1]d

|µ(x)− ν(x)| ,
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where x = (x1, . . . , xd), µ(x) := µ(
∏d
k=1(−∞, xk]). However, the closely re-

lated L2 star discrepancy,

D∗,2(ν;µ) = ‖µ− ν‖2 =

[∫
[0,1]d
|µ(x)− ν(x)|2 dx

]1/2

,

and its relatives [18] are special cases of (8).

Example 4 (Product Kernels) The L2 star discrepancy for [0, 1] is the
discrepancy associated to the kernel K(x, y) = 1 − |x− y| [18], which is a
slight modification of the Riesz kernel in Example 1 for s = −1. An analogous
discrepancy for the d-dimensional unit cube in dimensions d > 1 is typically
defined using a product kernel, such as in [18]:

K(x,y) =
d∏

k=1

[1− |xk − yk|], x,y ∈ [0, 1]d. (11)

2.3 Linear Spaces of Potential Fields and Numerical Integration Error

For every signed measure µ ∈ M(K), there exists a function fµ defined |µ|
almost everywhere by

fµ(x) =
∫
X
K(x,y) dµ(y).

In the energy literature, this function is the potential field induced by the
charge distribution µ. Let H(K) denote the linear space of all such potential
fields. The inner product on the linear space of charge distributions, M(K),
induces an inner product on the space of potential fields as follows:

〈fµ, fν〉H(K) := 〈µ, ν〉M(K) ∀fµ, fν ∈ H(K). (12)

When we need to denote the charge distribution that induces the field, the
subscript is used. Otherwise, we simply denote elements ofH(K) by the letters
f, g, etc.

The space of potential fields,H(K), arises in the study of numerical integration
error. Note that for any µ ∈ M(K), integration against this measure gives a
continuous linear functional, Lµ, on H(K) :

Lµ(fν) =
∫
X
fν(y) dµ(y) =

∫
X 2
K(x,y) dν(x)dµ(y) = 〈fν , fµ〉H(K) . (13)

This says that the linear functional Lµ(·) = 〈·, fµ〉H(K) whose representer is
the potential field fµ is just integration against the measure µ. The integral
Lµ(fν) may be interpreted physically as the energy of the charge distribution
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µ under the potential field fν . The Cauchy-Bunyakovsky-Schwarz inequality
then implies that the largest possible difference between the integrals of f with
respect to two different measures has a tight bound in terms of the discrepancy.

Theorem 5 For any µ, ν ∈M(K) it follows that

sup
‖f‖H(K)≤1

∣∣∣∣∫
X
f(x) dµ(x)−

∫
X
f(x) dν(x)

∣∣∣∣ = D(ν;µ).

PROOF. By (13), the definition of the norm in H(K), and the Cauchy-
Bunyakovsky-Schwarz inequality, one may write

sup
‖f‖H(K)≤1

∣∣∣∣∫
X
f(x) dµ(x)−

∫
X
f(x) dν(x)

∣∣∣∣ = sup
‖f‖H(K)≤1

∣∣∣∣∫
X
f(x) d(µ− ν)(x)

∣∣∣∣
= sup
‖f‖H(K)≤1

∣∣∣〈f, fµ−ν〉H(K)

∣∣∣ = ‖fµ−ν‖H(K) = ‖µ− ν‖M(K) = D(ν;µ),

which completes the proof. 2

An immediate consequence of this theorem is that the maximum value of an
integral for potential fields with norm no greater than unity is simply the
square root of the energy of the charge distribution defining the integral:

sup
‖f‖H(K)≤1

∣∣∣∣∫
X
f(x) dµ(x)

∣∣∣∣ = D(0;µ)

=
√
E(µ) =

√∫
X 2
K(x,y) dµ(x)dµ(y). (14)

This implies that |
∫
X f(x) dµ(x)| ≤

√
E(µ) ‖f‖H(K).

For numerical integration we approximate an integral
∫
X f(x) dµ(x) by the

sample average of the integrand values on a set P of n points, 1
n

∑
z∈P f(z) =∫

X f(x) dµP(x). A sufficient condition for the measure µP to lie in M(K) is
that all the point charges lie in M(K), i.e.,

δz ∈M(K) ∀z ∈ X .

For kernels, K, satisfying this condition, the linear space H(K) contains all
potential fields of the form K(·,y) for y ∈ X . Moreover, the space of potential
fields may be completed. The kernel K is then called the reproducing kernel,
and K(·, z) =

∫
X K(·,y) dδz(y) is the representer for function evaluation at

the point z. We denote the completion of H(K) by H(K) as well. Similarly,
ifM(K) can be completed, we denote this completion byM(K) as well. The
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worst case numerical integration error is given by the discrepancy, as specified
in the corollary below, which follows from Proposition 3 and Theorem 5.

Corollary 6 Suppose that the kernel K defines a reproducing kernel Hilbert
space, H(K), µ is some fixed measure in M(K), and P = {z1, . . . ,zn} ⊆ X .
Then it follows that

sup
‖f‖H(K)≤1

∣∣∣∣∣
∫
X
f(x) dµ(x)− 1

n

n∑
i=1

f(zi)

∣∣∣∣∣ = D(P ;µ) = D(µP ;µ) =
√
E(µ− µP).

The essence of Corollary 6 is that optimal point sets, P , for numerical inte-
gration are those that minimize D(P ;µ). How small the discrepancy can be
made for a given n depends on the difficulty of the numerical integration prob-
lem, which depends on what functions are allowed in the space of integrands,
H(K). The reproducing kernel, K, defines the degree of smoothness and other
properties of the integrands lying in H(K). Kernel (11) in Example 4 defines
a space of integrands that have square integrable mixed partial derivatives of
order up to one in each variable [18]. The discrepancy for this kernel when µ
is the uniform measure decays at best as O(n−1+ε) for any ε > 0 and this rate
of decay is observed for certain low discrepancy sequences [18,29,36].

3 Singular Kernels and Physical Energy

The tight upper bound on the numerical integration error in Corollary 6 is
the discrepancy, D(P ;µ). The expression for D2(P ;µ) in (9), consists of three
terms: the first is E(µ) and the third is E(P). In fact, in the next section in
Corollary 10 it is shown that for certain important choices of µ, D2(P ;µ) =
E(P)−E(µ). Thus, the energy of the sample points, E(P) plays an important
role in bounding the numerical integration error. This energy can be written
in terms of the physical energy as

E(P) =
1

n2

n∑
i,j=1

K(zi, zj) =
1

n2

n∑
i=1

K(zi, zi) + 2Ephys(P),

where Ephys is defined in (3). For the tight upper bound on the numerical
integration error to be guaranteed finite, K(x,x) must be finite for all x ∈ X .
This is the case for a generalized Riesz kernel with either ε > 0 or s < 0, but
not for s ≥ 0 and ε = 0 together.

Unfortunately, many popular kernels in the energy literature are singular, i.e.,
K(x,x) =∞ for one or more x ∈ X . The Riesz kernels with s ≥ 0 and ε = 0
are prime examples. For these Riesz kernels, and many other singular kernels,
Ephys(P) is always finite, but E(P) is not. Thus, some may prefer Ephys as the
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Table 1
The energy, E, and physical energy, Ephys, for evenly spaced distribution of charges
on a circle for the generalized Riesz kernels, (2), with s = 1 and various values of ε.

ε n 1 2 4 8 16 32 64 128 256

1 E 1.000 0.724 0.650 0.643 0.643 0.643 0.643 0.643 0.643

Ephys 0.000 0.224 0.400 0.518 0.580 0.611 0.627 0.635 0.639

0.01 E 100.000 50.250 25.479 13.201 7.172 4.268 2.924 2.358 2.167

Ephys 0.000 0.250 0.479 0.701 0.922 1.143 1.362 1.577 1.776

0 E ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Ephys 0.000 0.250 0.479 0.701 0.922 1.143 1.364 1.584 1.805

definition of energy rather than E as defined here. There are several reponses
to this potential criticism.

First of all, note that whenever one has a singular kernel, the space of potential
fields, H(K), automatically contains singular functions, i.e., there exist f ∈
H(K) for which f(x) =∞ for some x ∈ X . If E(µ) is finite, then the integral
of any potential field, f ∈ H(K) must be finite by (14). On the other hand,
the estimate of this integral by using an average of the potential field f at a
finite number of points may be infinite because f may be singular. Thus, once
one considers singular kernels, it is impossible to guarantee a finite numerical
integration error bound.

Second, many energy kernels, including the generalized Riesz kernels, are sta-
tionary, i.e., K(x,y) = K̂(x− y). For a stationary kernel

E(P) =
1

n
K̂(0) + 2Ephys(P).

If K̂(0) is finite, then for a fixed n, choosing P to minimize E(P) is equivalent
to choosing P to minimize Ephys(P).

For example, Table 1 displays E(P) and Ephys(P) defined by the generalized
Riesz kernels with s = 1 (Coulombic case) and various ε. The positions of
the charges P are equally spaced on the circle, which is the minimum energy
configuration for either E or Ephys. In all cases, E decreases as n increases,
but Ephys increases as n increases.

On the other hand, Table 1 illustrates a positive use of Ephys. For the moment,
let Eε and Ephys,ε denote the energy and physical energy with the dependence
on ε, a parameter in the definition of the defining kernel, Kε. If Kε(x,y) ≤
K0(x,y) for all x,y ∈ X , as it is for the generalized Riesz kernels, then it
follows in a straightforward manner that Eε(P) ≤ E0(P) and Ephys,ε(P) ≤
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Ephys,0(P). Table 1 shows this. Thus, Ephys,0(P) may be used to obtain an
upper bound on Eε(P) as follows:

Eε(P) ≤ 1

n2

n∑
i=1

K(zi, zi) + 2Ephys,0(P)

=
1

n
K̂(0) + 2Ephys,0(P) if K is stationary.

In Table 1 the bound of Ephys,ε(P) by Ephys,0(P) is rather tight for small
enough ε and n. Associating energy to numerical integration error for singular
kernels, K0, has been studied by considering these kernels as limits of finite-
valued kernels Kε as ε ↓ 0 [8,12].

4 Equilibrium Measures and Minimizers

While Corollary 6 relates numerical integration error to the energy, it does not
necessarily imply that minimum energy point sets, i.e., P minimizing E(P),
yield the smallest numerical integration error. To make a direct connection
between minimum energy points and numerical integration error we need to
look deeper into the energy paradigm, in particular at equilibrium measures
and minimizers.

4.1 Equilibrium Measures Minimize the Energy

Definition 7 Consider a symmetric, positive definite kernel K on X and the
energy, E, defined in (1). Let Y be a measurable subset of X and let supp(µ)
denote the support of a measure µ. The capacity of a measurable set Y ⊆ X is
defined as the inverse of the infimum of the energies for charge distributions
with support in Y and unit total charge:

CK(Y) =

 inf
µ∈M(K)

supp(µ)⊆Y
Q(µ)=1

E(µ)


−1

.

A minimizer on Y, µmin,K,Y , when it exists, is defined as the charge distribution
with unit total charge that attains this minimum energy:

E(µmin,K,Y) =
1

CK(Y)
.

The minimizer on X is denoted simply by µmin,K, and the corresponding ca-
pacity is denoted simply CK. An equilibrium measure on Y, µe,K,Y , when it

12



exists, is defined as the charge distribution µ ∈ M(K) supported in Y with
unit total charge that induces a constant potential field on Y:

fµe,K,Y (x) =
∫
Y
K(x,y) dµe,K,Y(y) =

1

CK,e(Y)
∀x ∈ Y

for some constant CK,e(Y). The equilibrium measure on X is denoted simply
µe,K. See Theorem 9 below for uniqueness.

Note that the capacity is an increasing function, i.e, Y ⊆ Z implies CK(Y) ≤
CK(Z). Physically, this is because as the support of the charge distribution
increases, the charges may spread out to give a smaller energy. To facilitate
the proof of the uniqueness of the equilibrium measure we observe a lemma
that follows from the above definition:

Lemma 8 Let µe,K denote any equilibrium measure on X (when it exists) and
µ, ν ∈ M(K) denote any measures. Then Q(µ)µe,K is the orthogonal pro-
jection of µ on the line through µe,K. It follows that the energy of µ may be
decomposed as the sum of two parts:

E(µ) = E (µ−Q(µ)µe,K) + [Q(µ)]2E(µe,K).

Moreover, the inner product for measures defined in (6), 〈µ, ν〉M(K), may be
decomposed as follows:

〈µ, ν〉M(K) = 〈µ−Q(µ)µe,K , ν −Q(ν)µe,K〉M(K) +Q(µ)Q(ν)E(µe,K). (15)

PROOF. All the claims follow if µe,K is orthogonal to ω = µ − Q(µ)µe,K .
This orthogonality holds since the definition of an equilibrium measure shows:

〈µe,K , ω〉M(K) =
∫
X 2
K(x,y) dµe,K(x)dω(y) =

∫
X
fµe,K (y)dω(y)

=
∫
X

1

CK,e
dω(y) =

Q(ω)

CK,e
= 0. (16)

2

Note that this lemma is also true if the support of the measures is restricted to
some Y ⊆ X , thereby reducing M(K) to such measures and µe,K is replaced
by µe,K,Y , an equilibrium measure on Y . This lemma is now used to show the
uniqueness of the equilibrium measure.

Theorem 9 If a minimizer exists on Y, it is unique. If an equilibrium mea-
sure on Y exists, it is unique. When µe,K,Y exists, it is the same as µmin,K,Y ,
and fµe,K,Y is the constant inverse of the capacity, CK(Y)−1.

13



PROOF. We prove this result for Y = X because the proof for arbitrary
Y ⊆ X is analogous. Given any two minimizers, µ1 and µ2, the function

h(t) = E(µ1 + t(µ2 − µ1)) = E(µ1) + 2t 〈µ1, µ2 − µ1〉M(K) + t2E(µ2 − µ1)

is a quadratic function of t that obtains its minimum value at t = 0, 1. Thus
h(t) must be constant, and the coefficient of its quadratic term must be zero,
i.e., E(µ2 − µ1) = 0. Thus, µ1 = µ2 since E1/2 is a norm on the space M(K),
and the minimizer is unique.

Consider any equilibrium measure µe,K , and any other measure µ ∈ M(K)
with unit total charge. Lemma 8 implies that E(µ) = E(µ−µe,K)+E(µe,K) >
E(µe,K), since µ 6= µe,K and so E(µ− µe,K) > 0. Therefore, µe,K is the mini-
mizer, and fµe,K (y) = C−1

K,e = C−1
K . Since the minimizer is unique, the equilib-

rium measure is also unique. 2

Note that Definition 7 may also be extended to conditionally positive definite
kernels, K, and Lemma 8 and Theorem 9 also hold in this case because their
proofs only require that the kernel be conditionally positive definite, i.e., that
E1/2 is a norm on the subspace of M(K) where Q(µ) = 0. However, for
conditionally positive definite kernels the capacity may be infinite or negative.
Thus, the capacity may no longer be an increasing function, but the inverse
capacity (minimum energy of a unit charge distribution) remains a decreasing
function.

4.2 Discrepancy Involving Equilibrium Measures

Let ν be any measure with unit total charge. Lemma 8 implies that E(ν) =
E(ν − µe,K) +E(µe,K), or equivalently, E(µe,K − ν) = E(ν)−E(µe,K). Thus,
choosing ν to make E(µe,K−ν) small is equivalent to choosing ν with small en-
ergy. This relationship, together with the theorems and corollary above shows
that measures or points with small energy are the best for approximating inte-
grals with respect to the equilibrium measure. See [8,12] for further discussion
of this principle.

Corollary 10 Let ν ∈ M(K) be some distribution with unit total charge,
a particular case of which is the empirical distribution, µP , for the design
P = {zi}ni=1 ⊆ X . It follows from Proposition 3 that

D(ν;µe,K) =
√
E(ν)− E(µe,K), D(P ;µe,K) =

√
E(P)− E(µe,K).

14



By Theorem 5 and Corollary 6, it then follows that

sup
‖f‖H(K)≤1

∣∣∣∣∫
X
f(x) dµe,K(x)−

∫
X
f(x) dν(x)

∣∣∣∣ =
√
E(ν)− E(µe,K),

sup
‖f‖H(K)≤1

∣∣∣∣∣
∫
X
f(x) dµe,K(x)− 1

n

n∑
i=1

f(zi)

∣∣∣∣∣ =
√
E(P)− E(µe,K).

Unfortunately, the measure defining the integration problem of interest may
not be the equilibrium measure for the kernel of interest, K. In this case, a
simple modification of K yields a kernel with the desired equilibrium measure.

Let K be a symmetric, conditionally positive definite kernel on X with equilib-
rium measure µe,K and capacity CK . Let 〈µ, ν〉M(K) =

∫
X 2 K(x,y) dµ(x) dν(y)

as in (6), even though K may not be strictly positive definite and CK is not
necessarily positive. The inner product decomposition in Lemma 8 suggests the
definition of a new inner product in terms of an arbitrary measure µ̃ ∈M(K)
with unit total charge and an arbitrary positive constant, C:

〈µ, ν〉M(K̃) := 〈µ−Q(µ)µ̃, ν −Q(ν)µ̃〉M(K) +
Q(µ)Q(ν)

C

=
∫
X 2
K(x,y) dµ(x) dν(y)−Q(µ)

∫
X 2
K(x,y) dµ̃(x) dν(y) (17)

−Q(ν)
∫
X 2
K(x,y) dµ(x) dµ̃(y)

+Q(µ)Q(ν)
∫
X 2
K(x,y) dµ̃(x) dµ̃(y) +

Q(µ)Q(ν)

C

=
∫
X 2
K̃(x,y) dµ(x) dν(y), (18)

where this new inner product is defined in terms of the kernel K̃, which itself
is defined as follows:

K̃(x,y) :=
∫
X 2
K(t, z) d[δx − µ̃](t) d[δy − µ̃](z) +

1

C

= K(x,y)−
∫
X
K(x, z) dµ̃(z)−

∫
X
K(t,y) dµ̃(t)

+
∫
X 2
K(t, z) dµ̃(t) dµ̃(z) +

1

C
. (19)

This new kernel K̃ is symmetric by definition. Its (strict) positive definiteness
may be verified by checking that the energy defined by K̃ of a nonzero charge
distribution, µ, is positive:

Ẽ(µ) = 〈µ, µ〉M(K̃) = 〈µ−Q(µ)µ̃, µ−Q(µ)µ̃〉M(K) +
Q(µ)Q(µ)

C

= E(µ−Q(µ)µ̃) +
Q(µ)Q(µ)

C
> 0, (20)
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since when Q(µ) = 0 then first summand in (20) is positive since K is con-
ditionally positive definite, while if Q(µ) 6= 0 then the second summand is
positive.

Moreover, by definition of K̃ in (19), the potential field induced by µ̃ for the
kernel K̃ is |µ̃| almost everywhere constant,

∫
X
K̃(x,y) dµ̃(y) =

1

C
|µ̃|a.e., and Ẽ(µ̃) =

1

C
,

which means that µ̃ is the equilibrium measure for K̃ with capacity CK̃ = C.
Note also that energies defined by the two kernels are related as follows:

Ẽ(µ−Q(µ)µ̃) = Ẽ(µ)− [Q(µ)]2Ẽ(µ̃) = E(µ−Q(µ)µ̃). (21)

The first equality comes from Lemma 8 and the second equality comes from
(20).

The discussion above is summarized in the following proposition. The corol-
lary that follows shows that the best design, P , for numerical integration of
potential functions in H(K) is the one that minimizes the energy defined by
kernel K̃.

Proposition 11 Let K be a symmetric, conditionally positive definite kernel
on X with equilibrium measure µe,K and capacity CK. Let µ̃ be an arbitrary
measure in M(K) with unit total charge, and let C be any positive number.
Then, the kernel K̃ defined by (19) is symmetric and positive definite kernel
with capacity CK̃ = C and equilibrium measure µe,K̃ = µ̃.

Corollary 12 Let K be a symmetric, positive definite kernel on X . Let µ̃ be
an arbitrary measure in M(K) with unit total charge, and let the symmetric,
positive definite kernel K̃ be defined by (19). Let D, and E denote the discrep-
ancy and energy, respectively, defined by kernel K, and let D̃ and Ẽ denote
the analogous quantities for kernel K̃. Let ν ∈M(K) be any distribution with
unit total charge, a particular case of which is the empirical distribution, µP ,
for the design P = {zi}ni=1 ⊆ X . It follows that

sup
‖f‖H(K)≤1

∣∣∣∣∫
X
f(x) dµ̃(x)−

∫
X
f(x) dν(x)

∣∣∣∣
= D(ν; µ̃) =

√
E(µ̃− ν) =

√
Ẽ(µ̃− ν) =

√
Ẽ(ν)− Ẽ(µ̃) = D̃(ν; µ̃)

= sup
‖f‖H(K̃)≤1

∣∣∣∣∫
X
f(x) dµ̃(x)−

∫
X
f(x) dν(x)

∣∣∣∣ .
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sup
‖f‖H(K)≤1

∣∣∣∣∣
∫
X
f(x) dµ̃(x)− 1

n

n∑
i=1

f(zi)

∣∣∣∣∣
= D(P ; µ̃) =

√
E(µ̃− µP) =

√
Ẽ(µ̃− µP) =

√
Ẽ(P)− Ẽ(µ̃) = D̃(P ; µ̃)

= sup
‖f‖H(K̃)≤1

∣∣∣∣∣
∫
X
f(x) dµ̃(x)− 1

n

n∑
i=1

f(zi)

∣∣∣∣∣ .

PROOF. The second set of equalities is a special case of the first with ν = µP .
The equivalence of energies E(µ̃ − ν), Ẽ(µ̃ − ν), and Ẽ(ν) − Ẽ(µ̃) follows
from (21). The equivalence of the energies E and Ẽ to their corresponding
discrepancies and numerical integration errors follows from Proposition 3 and
Theorem 5. 2

This corollary implies that changing the integration problem from one with
integrands that are potential functions in H(K) to one with integrands that
are potential functions in H(K̃), does not change the quality measure of the
design. In fact, the Hilbert spacesH(K) andH(K̃) contain the same functions,
and the two integration problems have exactly the same difficulty. According
to (18) and (19), the inner products defined by the two different kernels are
related as follows:

〈fµ, fν〉M(K̃) =
〈
fµ − fQ(µ)µ̃, fν − fQ(ν)µ̃

〉
M(K)

,

where fµ, fν , fQ(µ)µ̃, and fQ(ν)µ̃ are the potential fields induced by the charge
distributions µ, ν, Q(µ)µ̃, and Q(ν)µ̃, respectively, under the energy kernel
K.

4.3 Group Invariance and Equilibrium Measures

Sometimes the domain, X , and the kernel, K, are invariant under a group of
transformations. This invariance may be used to facilitate finding the equi-
librium measure and the minimum energy or discrepancy points. Specifically,
suppose that one has a compact, perhaps non-Abelian, group G of measurable
maps of X and G acts transitively on X . The ‘transitive’ condition means that
for any point η ∈ X , its orbit, Gη = {gη : g ∈ G} is all of X . When X is
viewed as the orbit of some point η that point is often referred to as a pole.
By convention, given a pole η, gx will denote any element of G that maps the
pole into x, i.e., x = gxη. Some natural examples of spaces with transitive,
measurable group actions are:

i) The unit d-sphere, X = Sd ⊂ Rd+1, which is the orbit of any unit vector
under the action of SO(d+ 1), the group of d+ 1 dimensional orthogonal
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matrices of determinant 1. The standard 2-sphere, S2, with its ‘north’
pole, (0, 0, 1)T , i.e. x = 0, y = 0, z = 1, is the inspiration for the pole
terminology.

ii) The flat d-torus, Td = (S1)d ⊂ (R2)d, which is the orbit of the point
((1, 0), (1, 0), . . . , (1, 0)) under rotation by (θ1, θ2, . . . , θd). Since T is just
the compact quotient group, R/2πZ, the flat d-torus is the product group
G = (R/2πZ)d.

iii) A non-flat 2-torus in R3 given by

{(x, y, z) : x = (r1 + r2 sin(θ2)) cos(θ1), y = (r1 + r2 sin(θ2)) sin(θ1),

z = r2 cos(θ2), 0 ≤ θ1 < 2π, 0 ≤ θ2 < 2π},

with fixed r1 > r2 > 0. The group G = (R/2πZ)2 acts transitively via
translation in the θ1, θ2 coordinates.

iv) An important variant of the flat d-torus is the half-open unit d-cube,
[0, 1)d. This admits a transitive measurable action of the compact group
(R/Z)d given by translation modulo one. To understand that this is a
measurable action it suffices to note first that the composite map [0, 1)→
R → R/Z is a continuous bijection with a measurable inverse. Then
applying this inverse to the second factor and the image in the continuous
product map R/Z × R/Z → R/Z yields a measurable action R/Z ×
[0, 1) → [0, 1) which is just translation modulo one. The d-fold product
of this action is the desired transitive measurable action.

Definition 13 Suppose X admits a transitive, measurable action by a group
G. Then G actions on finite signed Borel measures, measurable functions and
measurable kernels on X are defined for any g ∈ G, any µ ∈ B, measurable
function f or measurable kernel K by:

i) (g · µ)(Y) := µ(g−1Y) for all Borel sets, Y ⊆ X .
ii) (g · f)(x) := f(g−1x) for all x ∈ X .

iii) (g ·K)(x,y) := K(g−1x, g−1y) for all x,y ∈ X .

Definition 14 A G-invariant measure on X , µG, is a measure with total unit
charge, Q(µG) = 1, for which g ·µG = µG for all g ∈ G. Any kernel K is called
G-invariant iff g ·K = K for all g ∈ G.

Every compact group, G, acts transitively on itself via the product map and
has a unique G-invariant measure, called the normalized Haar measure on G,
which we denote by λG. When X admits a measurable transitive action by G,
then the Haar measure on G induces a G-invariant measure µG defined relative
to a choice of pole η ∈ X by:

µG(Y) = λG({g ∈ G : gη ∈ Y})
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for any measurable Y ⊆ X . The G-invariance and normalization of µG follows
immediately from the corresponding properties of Haar measure. Similarly if
x = gxη is another pole then

µG(Y) = λG({g ∈ G : gη ∈ Y}) = λG({g ∈ G : ggx
−1x ∈ Y})

= λG({g ∈ G : gx ∈ Y}gx) = λG({g ∈ G : gx ∈ Y}),

since λG, the Haar measure on a compact group, is invariant under both left
and right translations. Thus the definition of µG is independent of the choice
of pole.

Each of the first two examples above is a(n) (algebraic) submanifold of the con-
taining Euclidean space. As such there is a local orthogonal coordinate system
for the Euclidean space around a pole, η ∈ X , such that the first d coordinates
form an orthogonal coordinate system along the submanifold and the remain-
ing coordinates form a coordinate system along submanifolds perpendicular
to the original manifold. This local coordinate system provides a splitting of
Lebesgue measure as a product dxT dxN of a tangential, dxT = dx1 · · · dxd
and a normal component. Since G acts as orthogonal transformations of the
containing Euclidean space, the product splitting can be transformed over
X = Gη and the tangential component of Lebesgue measure along X is G-
invariant and when normalized is the measure µG. In the third example the
measure dθ1 dθ2/(4π

2) is G-invariant, while in the last example, Lebesgue
measure is invariant under translations modulo one (in each coordinate).

For G-invariant kernels, it follows that

K(x,y) = K(g−1
y x, g

−1
y y) = K(g−1

y x,η), ∀x,y ∈ X ,

where g−1
y denotes the group inverse of gy, any element that takes the pole to

y. This implies that G-invariant kernels are defined by a function of a single
variable, K(·,η).

Theorem 15 Let K be a G-invariant kernel on X satisfying (1). Then the G
action on M(K) preserves total charge, the energy and inner product. More-
over, if M(K) 6= {0} then the G-invariant measure µG has finite energy and
is the equilibrium measure and energy minimizer in M(K).

PROOF. Let µ ∈ M(K) be any finite energy measure. Total charge is G-
invariant since Q(g · µ) = µ(g−1X ) = µ(X ) = Q(µ). Also, since K is G-
invariant and the action of G on functions or kernels is dual to its action on
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measures it follows that

E(µ) =
∫
X 2
K(x, y) dµ(x) dµ(y) =

∫
X 2

(g−1 ·K)(x, y) dµ(x) dµ(y)

=
∫
X 2
K(x, y) d(g · µ)(x) d(g · µ)(y) = E(g · µ). (22)

So the action of G conserves energy. In particular, g · µ ∈ M(K) for each
µ ∈M(K) and g ∈ G. Inner products are also unchanged under group actions,
i.e., 〈g ·µ, g ·ν〉M(K) = 〈µ, ν〉M(K), since inner products can be defined in terms
of energies by

〈µ, ν〉M(K) =
1

4
E(µ+ ν)− 1

4
E(µ− ν).

Now suppose that µ ∈M(K) has total charge one, i.e.,Q(µ) = 1. The measure
µAV G defined for each Y ∈ B by

µAV G(Y) =
∫
G
g · µ(Y) dλG(g)

is then a unit total charge measure which is G-invariant. So by uniqueness
of the G-invariant measure µAV G = µG. Since µAV G integrates a function f
via

∫
X f(x) dµAV G(x) =

∫
G
∫
X f(g · x) dµ(x) dλG(g), the energy of µAV G can

be estimated using the isometric action of G and the Cauchy-Bunyakovsky-
Schwarz inequality as follows.

E(µAV G) :=
∫
G2

∫
X 2
K(gx, hy) dµ(x) dµ(y) dλG(g) dλG(h)

=
∫
G2

∫
X 2
K(x,y) d(g · µ)(x) d(h · µ)(y) dλG(g) dλG(h)

=
∫
G2
〈g · µ, h · µ〉M(K) dλG(g) dλG(h)

≤
∫
G2
E1/2(g · µ)E1/2(h · µ) dλG(g) dλG(h) = E(µ).

Hence E(µG) = E(µAV G) ≤ E(µ) which shows µG is in M(K). It also shows
µG is the energy minimizer since µ is an arbitrary unit total charge measure in
M(K). The potential field induced by µG ∈M(K) evaluated at an arbitrary
point x = gxη ∈ X , may be written in terms of the fixed pole η as∫
X
K(x,y) dµG(y) =

∫
X
K(gxη, gxg

−1
x y) dµG(y) =

∫
X
K(η, g−1

x y) dµG(y),

since K is G-invariant. Letting z = g−1
x y, the right-hand integral above can

be re-written as∫
X
K(η, z) d(g−1

x · µG)(z) =
∫
X
K(η, z) dµG(z),

since µG is G-invariant. This last integral is independent of x. Thus the po-
tential field is constant and µG is the equilibrium measure. 2
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Theorem 16 Let λG be the normalized Haar (G-invariant) measure on G.
Then the kernel obtained by filtering K as follows,

KG(x,y) :=
∫
G
(g ·K)(x,y) dλG(g) =

∫
G
K(g−1x, g−1y) dλG(g), (23)

is G-invariant, and if K was G-invariant to begin with, then KG = K.

Furthermore, if M(KG) 6= {0} then µG ∈ M(KG), and it is the equilibrium
and minimum energy measure for KG, i.e., µe,KG = µG = µmin,KG . Finally, the
mean energy and the root mean square discrepancy of a measure ν under the
group G with respect to the kernel K are the energy and discrepancy of ν with
respect to the kernel KG, i.e.,

∫
G
E(g · ν) dλG(g) = EG(µ), (24a)∫

G
D2(g · ν;µG) dλG(g) = D2

G(ν;µG) = EG(ν)− EG(µG). (24b)

Here EG and DG denote the energy and discrepancy defined using the filtered
kernel KG.

PROOF. Since both K and the action of G are measurable, the function K
is bounded below by LK , and λG is a positive measure, the filtered version
of K is a well-defined kernel satisfying the conditions in (1). Moreover, KG
is G-invariant because the averaging is done with respect to the G-invariant
measure, λG. Specifically, for any g1 ∈ G, it follows by a change of variable,
Fubini’s theorem and the G-invariance of the measure that

(g1 ·KG)(x,y) =
∫
G
(g1 · (g ·K))(x,y) dλG(g)

=
∫
G
(g ·K)(x,y) d(g1

−1 · λG)(g) =
∫
G
(g ·K)(x,y) dλG(g) = KG(x,y).

Thus, KG is G-invariant. Moreover, if K was G-invariant to begin with, then
K(gx, gy) = K(x,y), and so the filtering step, (23), makes no change to K.

Now suppose 0 6= µ ∈ M(KG). Then Theorem 15 says µG ∈ M(KG), and
µe,KG = µG = µmin,KG .

Finally, consider the average energy of a measure ν ∈M(KG) under the group
action on the left hand side of (24a). Again using the duality between the G
actions on measures and kernels, the measurability of K and Fubini’s theorem
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together yields (24a):

∫
G
E(g · ν) dλG(g) =

∫
G

∫
X 2
K(x,y) d(g · ν)(x) d(g · ν)(y) dλG(g)

=
∫
G

∫
X 2

(g−1 ·K)(x,y) dν(x) dν(y) dλG(g)

=
∫
X 2

∫
G
(g−1 ·K)(x,y) dλG(g) dν(x) dν(y)

=
∫
X 2
KG(x,y) dν(x) dν(y) = EG(ν).

Equation (24b) follows from the definition of discrepancy (8) in terms of energy
and the fact that the G-invariance of µG ∈ M(KG) means that E(g · µG) =
EG(µG) for all g ∈ G. 2

Remark 17 We have shown that our existence results hold when X is a G-
orbit of a group of measurable maps acting on X (or even on some set contain-
ing X ) and that the kernel KG admits some non-trivial finite energy measure.
These results should be compared to those of [12] which hold whenever X is
the orbit of a group of isometries of the containing space.

Some designs P utilize group actions in their construction, e.g.,

P = {gη : g ∈ G̃}, (25)

for some G̃ that is an n element subgroup of G. Rank-1 integration lattices
[36] are an example of such designs. Digital nets [23,29] are another example.
For designs of the form (25), the formulas for the energy EG(P) and the
discrepancy DG(P ;µG) may be simplified as single sums rather than double
sums, namely,

EG(P) =
1

n2

∑
g,h∈G̃

KG(gη, hη) =
1

n2

∑
g,h∈G̃

KG(h
−1gη,η)

=
1

n

∑
g∈G̃

KG(gη,η),

[DG(P ;µG)]
2 = EG(P)− EG(µG)

=
1

n

∑
g∈G̃

KG(gη,η)− 1

CKG

.

Contrast these formulae with those in (5) and (9), where double sums are
needed to evaluate the energy and discrepancy.
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5 Examples

To illustrate some of the results above we consider some simple examples.
First consider the unit interval domain, X = [0, 1], and the Riesz-like kernel

K(x, y) = 1− |x− y| . (26)

The inner product for the space of charge distributions, M(K), defined by
this kernel may be written, after some elementary algebra, as

〈µ, ν〉M(K) =
∫ 1

0

∫ 1

0
[1− |x− y|] dµ(x)dν(y)

=
1

2
Q(µ)Q(ν) + 2

∫ 1

0

[
µ(x)− 1

2
Q(µ)

] [
ν(x)− 1

2
Q(ν)

]
dx.

The energy this kernel is then given as in (7) as

E(µ) = ‖µ‖2
M(K) =

1

2
[Q(µ)]2 + 2

∫ 1

0

[
µ(x)− 1

2
Q(µ)

]2

dx,

and the square discrepancy by (8) is

D2(ν;µ) = ‖µ− ν‖2
M(K)

=
1

2
[Q(µ− ν)]2 + 2

∫ 1

0

[
µ(x)− ν(x)− 1

2
Q(µ− ν)

]2

dx. (27)

When µ and ν have the same total charge, then D(ν;µ) =
√

2 ‖µ− ν‖2, which
is essentially the L2 star discrepancy.

The equilibrium measure for this kernel and domain is concentrated at the
endpoints of the interval, i.e., µe,K = (δ0 + δ1)/2, since

fµe,K (x) =
∫ 1

0
K(x, y) dµe,K(x) =

K(0, y) +K(1, y)

2
=

1

2
,

and so the capacity is CK = 2. For any charge distribution, ν, with unit total
charge, one has

D2(ν;µe,K) = E(ν)− E(µe,K) = 2
∫ 1

0
[ν(x)− 1/2]2 dx.

For a distribution with support on two points, y and z, with equal charge at
these points, ν = (δy + δz)/2, the square discrepancy and energy become

D2(ν;µe,K) = E(ν)− E(µe,K) =
1− |y − z|

2
.

This expression is minimized, and in fact vanishes, when the two points are
moved to the ends of the interval and ν replicates the equilibrium distribution,
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i.e., D2(ν;µe,K) = E(ν) − E(µe,K) = 0 when ν = (δ0 + δ1)/2 = µe,K . If ν
consists of a single unit point charge, ν = δy, then D2(ν;µe,K) = E(ν) −
E(µe,K) = 1/2, independent of the placement of the point charge. This means
that the minimum energy point can be placed anywhere in the interval [0, 1].
If ν consists of a single point charge of magnitude q, ν = qδy, then by (27) it
follows that

D2(ν;µe,K) = E(µe,K − ν) =
(1− q)2

2
+ 2

∫ 1

0

[
q

2
− qδz(x)

]2

dx = q2 − q +
1

2
.

Again the placement of this point charge does not affect the value of the
discrepancy, but the minimum discrepancy is obtained for q = 1/2, not a unit
charge, and D2(δz/2;µe,K) = 1/4.

The Hilbert space of potential fields, H(K), based on the kernel (26) is the
space of absolutely continuous functions with square integrable first deriva-
tives, and the inner product is

〈f, g〉H(K) =
1

2

{
[f(0) + f(1)][g(0) + g(1)] +

∫ 1

0
f ′(x)g′(x) dx

}
.

The integral with respect to the equilibrium measure, µe,K = (δ0 + δ1)/2,
corresponds to the average of the function at the two endpoints of the integral:∫ 1

0
f(x) dµe,K(x) =

1

2
[f(0) + f(1)],

and the representer of the integration functional is fµe,K (x) = 1/2. By Theorem

5, the worst-case error for approximating this integral by
∫ 1

0 f(x) dν(x) is the
discrepancy, D(ν;µe,K).

Based on the observations above, approximating [f(0) + f(1)]/2 by [f(y) +
f(z)]/2 has a worst-case error of 1− |y − z| /2, which vanishes for y = 0 and
z = 1. The worst-case potential field is (proportional to) the piecewise linear
function

fµe,K−ν(x) =
|x− y|+ |x− z|

2
=


(y + z)/2− x, 0 ≤ x ≤ min(y, z),

|y − z| /2, min(y, z) < x ≤ max(y, z),

x− (y + z)/2, max(y, z) < x ≤ 1.

Approximating [f(0) + f(1)]/2 by the single weighted function value qf(y)
has a worst-case error of q2 − q + 1/2, independent of y, and the worst-case
potential field is the v-shaped

fµe,K−ν(x) =
1− 2q + 2q |x− y|

2
.

The worst-case error attains a minimum value of 1/4 for q = 1/2.
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Integration with respect to µe,K = (δ0 + δ1)/2 is a rather simple problem,
since it may be done exactly with just two well-chosen function evaluations. A
more typical problem is integration with respect to a continuous distribution,
such as the uniform distribution, µ̃(x) = x. Modifying the Riesz kernel in
Example 1 using Proposition 11 to change the equilibrium measure to the
uniform measure on [0, 1] yields the kernel

K̃(x, y) = sign(s)

[
|x− y|−s − x1−s + (1− x)1−s + y1−s + (1− y)1−s

1− s

+ max

(
2

(1− s)(2− s)
, 0

)]
+

1

C̃
,

where C̃ is an arbitrary positive constant. For s = 0, 1 the above formula
must be modified with certain powers replaced by logarithms. For s ≥ 1
Proposition 11 cannot be applied directly since the integral of the Riesz kernel
with respect to the uniform measure is infinite. Thus, we consider the kernel
K(x, y) = sign(s)(|x− y| + ε)−s, and take limits as ε ↓ 0. Letting Ẽ denote
the energy defined by the kernel K̃, it follows that Ẽ(µ̃) = 1/CK̃ for s < 1.

The discrepancy, D̃ defined by K̃ and the discrepancy D defined by K, are
the same, so for s = −1 and any measure ν,

D̃2(ν; µ̃) = D2(ν; µ̃) =
1

2
[1−Q(ν)]2 + 2

∫ 1

0

[
x− 1

2
− ν(x) +

1

2
Q(ν)

]2

dx.

When ν has unit total charge, this simplifies to

D2(ν; µ̃) = D̃2(ν; µ̃) = Ẽ(ν)− Ẽ(µ̃)

= sup
‖f‖H(K̃)≤1

∣∣∣∣∫
X
f(x) dµ(x)−

∫
X
f(x) dν(x)

∣∣∣∣2

= sup
‖f‖H(K)≤1

∣∣∣∣∫
X
f(x) dµ(x)−

∫
X
f(x) dν(x)

∣∣∣∣2 = 2
∫ 1

0
[x− ν(x)]2 dx.

When ν = µP,q =
∑n
i=1 qiδzi , the sum of n point charges of possibly differing

magnitudes but total charge one, then

D2(µP,q; µ̃) = D̃2(µP,q; µ̃) = Ẽ(µP,q)− Ẽ(µ̃)

= sup
‖f‖H(K)≤1

∣∣∣∣∣
∫
X
f(x) dµ(x)−

n∑
i=1

qif(zi)

∣∣∣∣∣
2

= 2

1

3
+

n∑
i=1

qiz
2
i −

n∑
i,j=1

qiqj max(zi, zj)

 .
and when ν = µP = n−1∑n

i=1 δzi , the empirical distribution of the design P ,
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Fig. 1. Configurations of four points, P, with minimizing the energy Ephys(P) on
the left, and Ẽphys(P) on the right for the Riesz kernel, (2), as a function of the
parameter s.

then

D2(µP ; µ̃) = D̃2(µP ; µ̃) = Ẽ(µP)− Ẽ(µ̃)

= sup
‖f‖H(K)≤1

∣∣∣∣∣
∫
X
f(x) dµ(x)− 1

n

n∑
i=1

f(zi)

∣∣∣∣∣
2

= 2

{
1

3
+

1

n

n∑
i=1

z2
i −

1

n2

n∑
i=1

max(zi, zj)

}
.

Figure 1 displays the minimum energy points, Ephys(P) and Ẽphys(P), defined
above in (3) for the Riesz kernel and the modified Riesz kernel in dimension
one. Because Ephys(P) ignores the diagonal terms K(zi, zi), these energies are
finite even for s ≥ 0. For s < 0 the points minimizing Ephys(P) and E(µP) are
the same since the diagonal terms are constant. The point configurations on
the right also minimize the discrepancy D(µP ; µ̃) = D̃(µP ; µ̃) for s < 0.

The minimum discrepancy points for s = −1 are the evenly spaced points
P = {1/8, 3/8, 5/8, 7/8}, and as s increases these points move towards the
center. This can be understood by looking at the modified Riesz kernel K̃,
and noting that its definition adds the external fields placed at 0 and 1, which
act to repel the point charges away from the boundaries. In contrast, we see
that the original Riesz kernel pushes the charges towards the boundaries. For
s = −1, we have that the points end up at each end of the interval, while for
other values of s, at least one point charge is at each endpoint.

If one considers the group of measure preserving bijections G = {g∆x := x+∆
mod 1 : 0 ≤ ∆ < 1}, then the filtered Riesz kernel defined in (23) is

KG(x, y) = sign(s)
[
|x− y|−s (1− |x− y|) + |x− y| (1− |x− y|)−s

]
.
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For this kernel, the set of evenly spaced points with shift ∆, 0 ≤ ∆ ≤ 1,
i.e., P = {∆, 1/n + ∆, . . . , (n − 1)/n + ∆}, has an energy and discrepancy
independent of the ∆. For s = −1, it is known to be the minimum energy
point set.

6 Discussion and Conclusion

We conclude by highlighting some further open questions arising from our
investigations here.

i. Many symmetric positive definite kernels possess a maximum principle.
This means that the potential field induced by the equilibrium measure,
µe,K,Y , attains its maximum on its support, Y . However, this maximum
principle does not hold in general, even under what might seem to be
some reasonable additional conditions. Returning to Example 2, let X =
{1, 2, 3} and write the kernel, K, in the form of a 3×3 symmetric, positive
definite matrix:

K =


9 1 6

1 9 6

6 6 14

 = V


4 0 0

0 8 0

0 0 22

VT , V =


1√
3

1√
2

1√
6

1√
3

−1√
2

1√
6

−1√
3

0 2√
6

 ,

which is even diagonally dominant. For Y = {1, 2} the equilibrium po-
tential is (0.5, 0.5)T , and the potential field is (5, 5, 6)T which, on Y is the
constant 5, but attains its maximum value of 6 outside Y . It would be
nice to know under what general conditions a kernel possesses a maximum
principle.

ii. For some kernels KG it is known that minimum energy or discrepancy
points are of the form in (25), but it is not known in general.

iii. In Theorem 5 and Corollary 10 the energy based on a kernel is identified
as the tight numerical integration error bound for a Hilbert space of
integrands defined by that same kernel. For some energy kernels with a
simple form, such as the Riesz kernel, the corresponding Hilbert space
of integrands cannot be simply described. On the other hand, for some
spaces of integrands with a simple description, the corresponding kernel
may not have a simple expression. A greater understanding is needed of
how well minimum energy or discrepancy points defined using one kernel
are good for use in approximating an integral for a space of integrands
defined by a similar kernel.

iv. There exist other distance-based criteria for constructing designs, such
as minimizing the covering radius or maximizing the separation distance.
For example, the design minimizing the energy Ẽphys in Figure 1 for
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s = −1 is a minimum covering radius design, and the design minimizing
(fill distance) the energy Ephys in Figure 1 for s ↑ ∞ is a maximum sepa-
ration distance (also called a sphere-packing) design. For some situations
these correspond to minimum energy or discrepancy designs, but in other
situations they are different. It would be helpful to understand how well a
design that optimizes one criterion measures up under another criterion.
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