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Abstract. Let Σ ⊂ R be compact. In this paper, we study the support of the equilibrium measure for a class of external fields Q : Σ → R,
whose associated signed equilibrium measure has a positive part with concave density supported on at most two intervals. We prove that the support
of the equilibrium measure is at most two intervals. Our proof uses the iterated balayage algorithm. As a corollary we obtain by a constructive
method that the equilibrium measure of any two intervals has convex density. A non-trivial counterpart of the results to the unit circle is also
presented.
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1. Introduction. In recent years minimal energy problems with external fields have found many applications in a
variety of areas ranging from diverse subjects such as orthogonal polynomials, weighted Fekete points, numerical con-
formal mappings, weighted polynomial approximation, rational and Páde approximation, integrable systems, random
matrix theory and random permutations. Let Σ ⊂ C be closed. An essential step towards the solution of such minimal
energy problems is the determination of the nature of the support of the equilibrium measure µ := µQ associated with
a given external field Q : Σ → (−∞,∞]. As described by Deift [8, Chapter 6], information that the support consists
of finitely many intervals allows one to set up a system of equations for the endpoints, from which the endpoints may
be calculated, and thus, the equilibrium measure may be obtained from a Riemann-Hilbert problem or, equivalently, a
singular integral equation. It is for this reason, that it is important to have a priori, conditions to ensure that the support
S of µ is the union of a finite number of intervals. For more on the various applications of minimal energy problems
we refer the reader to the references [1, 2, 3, 6, 7, 8, 9, 15, 17, 18, 19, 20] and those listed there in.

In this paper we establish a sufficient condition that the equilibrium support consists of at most two intervals. The
method utilizes the Iterated Balayage Algorithm, introduced and used first in the papers [15, 6, 7]. As a result from
our analysis we establish also that the equilibrium measure for any two intervals is convex. In order to formulate our
results we introduce some needed definitions and notations from potential theory.

1.1. Potential-Theoretical Preliminaries. Let Σ = ∪n
i=1[ai, bi] or let Σ be finitely many closed arcs on the unit

circle. Let w = exp(−Q) be a function (called weight), where Q : Σ → (−∞,∞] is continuous in an extended sense
but not identically infinity.

Given a Borel probability measure ν supported on Σ, its logarithmic potential and logarithmic energy are respec-
tively given by

Uν(z) :=
∫

log
1

|z − t|dν(t), I(ν) :=
∫ ∫

log
1

|s− t|dν(s)dν(t).

The weighted energy of ν associated with the external field Q (or weight w) is defined as

Iw(ν) := I(ν) + 2
∫

Q(x) dν(x).

It is well known (see [11], [19, Theorem 1.3]), that under the above assumptions there exists a unique equilibrium
measure µ := µw associated with Q, that solves the minimal energy problem

Iw(µ) = Ew := minν∈P(Σ)Iw(ν) (1.1)
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where P(Σ) denotes the class of all Borel probability measures supported on Σ. The support of the equilibrium
measure is denoted by Sµ or SQ. This measure is completely characterized by the Gauss variational conditions

{
Uµ(x) + Q(x) = F, x ∈ SQ,
Uµ(x) + Q(x) ≥ F, x ∈ Σ,

(1.2)

with some constant F . We note that under the assumptions we have, the logarithmic potential Uµ(z) is continuous in
C. In the particular case when Q ≡ 0 the unique minimizer µΣ of (1.1) is called an equilibrium measure of Σ.

Next we introduce the notion of signed equilibrium (see [4]).
DEFINITION 1. Given a compact subset E ⊂ C and an external field Q, we call a signed measure ηE supported

on E, and of total mass ηE(E) = 1, a signed equilibrium on E associated with Q, if

UηE (x) + Q(x) = FE for all x ∈ E. (1.3)

The choice of the normalization ηE(E) = 1 is just for convenience in the applications here.
The next subsection is a brief summary of an essential tool in our analysis, called the Iterated Balayage Algorithm

(see [15, 6, 7]). For the rest of the paper we will assume that Σ is a union of finitely many intervals and that the
external field Q has δ-Hölder continuous first derivative for some δ > 0.

1.2. The Iterated Balayage Algorithm (IBA). We recall the notion of balayage onto a compact set (see [16,
Chapter IV]). Let M be a compact subset of the complex plane with positive logarithmic capacity and such that the
complement C \M is regular. Then, if ν is any finite positive Borel measure on C with compact support, there exists
a unique measure ν̂ supported on M such that ‖ν‖ = ‖ν̂‖, and for some constant C,

U ν̂(z) = Uν(z) + C, z ∈ M.

The measure ν̂ is called the balayage of ν onto M and we denote it by Bal(ν; M). For a signed measure σ = σ+−σ−,
the balayage is defined as Bal(σ; M) := Bal(σ+; M)− Bal(σ−; M).

The Iterated Balayage Algorithm (IBA), presents an iterative method to solve the variational problem (1.2). Given
an external field Q on Σ0 := Σ one proceeds as follows. The first step is to solve the integral equation

∫

Σ0

log |x− t|v0(t)dt = Q(x)− F0, x ∈ Σ0, (1.4)

subject to the condition
∫

Σ0

v0(t)dt = 1. (1.5)

Here, F0 is a fixed constant.
Since Q ∈ C1+δ(Σ0) (recall that Σ0 consists of finitely many intervals), it can be shown that (1.4)–(1.5) has a

unique solution v0(t), given by the Sokhotski-Plemelj formula (see [12, p. 425]). In the simplest case when Σ0 = [a, b]
the formula for v0 is (see [12, p. 428]),

v(x) = v0(x) :=
1

π
√

(b− x)(x− a)

[
1 +

1
π

P.V.

∫ b

a

Q′(t)
t− x

√
(b− t)(t− a)dt

]
, a < x < b, (1.6)

where the above integral is a Cauchy principle value integral.
In view of Definition 1, v0 is the density of the signed equilibrium on Σ0. If v0 happens to be non-negative on Σ0

then it is the density of the equilibrium measure with external field Q and we are done. If not, then we put

dσ0(t) := v0(t)dt,
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so that σ0 is a signed measure of Σ0. Clearly,

Uσ0(x) + Q(x) = F0 for all x ∈ Σ0

Let σ0 = σ+
0 − σ−0 be the Jordan decomposition of σ0 and let

Σ1 := supp(σ+
0 ).

From [15, Lemma 3], µ ≤ σ+
0 and supp(µ) ⊂ Σ1, so that in determining µ and its support we may restrict ourselves

in (1.1) to Σ = Σ1.
The next step is to determine the signed equilibrium associated with Q on Σ1, which is to solve the singular

equation
∫

Σ1

log |x− t|dσ1(t) = Q(x)− F1, x ∈ Σ1 (1.7)

subject to the condition

∫

Σ1

dσ1 = 1. (1.8)

Alternatively, using balayage one derives that the signed measure σ1 := σ+
0 − Bal(σ−0 , Σ1) satisfies

Uσ1(x) + Q(x) = F1 for all x ∈ Σ1,

provided Σ1 is regular (which will be the case in our applications), and by uniqueness it is the solution to (1.7)-(1.8).
If Σ1 is not regular the equality holds q.e. and still uniqueness holds, but we will not elaborate on this generality here.

To describe this process, an operator J was introduced in [15, 6, 7] on all finite signed measures σ on [a, b] with∫
dσ = 1 and cap(supp(σ+)) > 0 as follows

J(σ) := σ+ − Bal(σ−; supp(σ+)) = Bal(σ; supp(σ+)).

Since the operator J sweeps the negative part of the measure σ onto the support of the positive part, we have that
J(σ)+ ≤ σ+.

The IBA scheme

I(σ0) = {(Σk, σk)}∞k=0

is obtained as the iterates of the operator J applied to a signed (equilibrium) measure σ0 supported on the set Σ0, i.e.,

Σk := supp(σ+
k−1), σk := J(σk−1) = Jk(σ0), k = 1, 2, . . . . (1.9)

The measures σk are signed measures which have a Jordan decomposition σk = σ+
k − σ−k . It follows that

σ+
0 ≥ σ+

1 ≥ · · · ≥ µ, (1.10)

and that

Σ0 ⊃ Σ1 ⊃ Σ2 ⊃ · · · ⊃ S. (1.11)

Even for more general Σ0 one expects from (1.10) and (1.11) that the sequence {σ+
k }∞k=0 converges in the weak∗

topology to the equilibrium measure µ, but this has not been proven yet. If it holds, then we say that the IBA converges.
Besides presenting a possible algorithm for numerical calculations, the iterated Balayage algorithm can also be used
to prove rigorous results on the support of µ in certain situations. The main difficulty in proving that the iterated
Balayage algorithm converges generally, lies in the fact that one has to show that the negative parts σ−k tend to zero as
k tends to ∞. This can be shown, if one can control the limiting set Σ∗ := ∩∞k=1Σk. See for example [15, 6, 7].

Note that the IBA scheme is derived similarly if Σ0 is union of finitely many arcs of the unit circle T := {z ∈ C :
|z| = 1}, in which case one uses [12, p. 425]. Finally, we remark that recently a continuous version of this algorithm
has been used to solve the equilibrium problem for minimal Riesz energy problems for axis-symmetric external fields
on the unit sphere Sd (see [5]).
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1.3. Balayage and Kelvin Transform. There is a natural relationship between balayage measures and equilib-
rium measures. Let us recall that the Kelvin transform K : C̄→ C̄with center z0 and radius R is given as the inversion
with respect to the circle {|z − z0| = R}, namely if z∗ = K(z), then z∗ lies on the ray stemming from z0 passing
through z and distances satisfy |z − z0||z∗ − z0| = R2. The distance distortion is given by

|z∗ − x∗| = R2|z − x|
|z − z0||x− z0| . (1.12)

To any measure ν we associate its Kelvin transform ν∗ = K(ν) as dν∗(x∗) = dν(x). Observe, that both the point
and measure conversion are self-inverse.

Given a compact set A and a point z0 6∈ A we find the balayage δ̂z0 of the Dirac-delta measure δz0 using Riesz’s
approach [16, Chapter IV, §5], namely if A∗ = K(A), then the following relation holds

δ̂z0 = K(µA∗), (1.13)

where µA∗ is the equilibrium measure of A∗.

2. Results and examples. Following is our main result.

THEOREM 2. Let Σ ⊆ R and w : Σ → [0,∞), w = exp(−Q) as described in Section 1.1. Suppose that the
signed equilibrium on Σ associated with Q exists and is denoted by σ0. If supp(σ+

0 ) consists of at most two intervals
A1, A2, and σ+

0 has a concave density on each subinterval, then the equilibrium support supp(µ) consists of at most
two intervals B1, B2, with B1 ⊂ A1, B2 ⊂ A2, and the equilibrium density is concave on each of these intervals.

We remark that the theorem remains valid for any Σ ⊆ R compact set as long as σ+
0 has a support consisting of at

most two intervals and σ+
0 has a concave density. Also, the δ-Hölder continuous first derivative condition on Q must

be satisfied only on supp(σ+
0 ).

The proof of this theorem relies on a lemma concerning the balayage of a measure onto one or two intervals,
which we deem important by itself and include in this section.

LEMMA 3. Let A be an interval or a union of two intervals, and let ν be a positive measure with compact support
in R, such that ν(A) = 0. Then the balayage ν̂ = Bal(ν, A) of ν onto A is absolutely continuous with convex density
on every subinterval.

If we consider ν = δs, where δs is the Dirac-delta measure with point mass at s, and let s → ∞, then it is well
known that densities of the balayage measures δ̂s converge to the density of the equilibrium measure µA. Therefore,
we obtain as a byproduct of our analysis the following corollary.

COROLLARY 4. The density of the equilibrium measure of the union of any two intervals is convex on every
subinterval.

EXAMPLE 5. Let Σ = [0, 3π] and Q(x) := 0.5
∫ 3π

0
ln |x − t| sin t dt. We can verify that the signed equilibrium

is dη = 0.5 sin t dt. Since it is positive and concave on [0, π] ∪ [2π, 3π], we conclude that the equilibrium measure
associated with Q(x) is supported on at most two intervals I1 ∪ I2, where I1 ⊂ [0, π] and I2 ⊂ [2π, 3π], and that the
equilibrium density is concave. We remark that by symmetry, in fact the support will consist of two intervals which
are symmetric to the point 1.5π. We also remark that this external field is not weak convex in the sense defined in [2,
Definition 9], therefore it is an essentially new example in the literature.

EXAMPLE 6. (Freud weights example) The following classical Freud weights example w(x) = e−|x|
λ

(see [19,
Example IV.1.15]) provides a nice illustration of our results. For simplicity of the computations, we shall assume that
λ = 2, or equivalently Q(x) = x2, and Σ = R. General theory yields that the support of the equilibrium measure
associated with Q(x) is compact, so we may restrict ourselves to solving the minimal energy problem on the interval
[−β, β] for some large enough β. Using (1.6) we easily find that the density of the signed equilibrium in this case is
given by

vβ(x) =
2
π

√
β2 − x2 − β2 − 1

π
√

β2 − x2
. (2.1)

For β > 1 the function vβ(x) is clearly concave, and thus by Theorem 2 the equilibrium support is one interval and
the equilibrium measure associated with Q(x) has concave density. Indeed, it is known that supp(µQ) = [−1, 1] and
dµQ(x) = (2

√
1− x2/π) dx. Below we provide an alternative argument to this fact.
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Observe that since vβ(1) > 0 for all β > 1, the IBA scheme is the collection of nested intervals supp(σk) =:
[−βk, βk] ⊃ [−1, 1]. It can be calculated that the sequence {βk} satisfies the recurrence relation

βk+1 =

√
β2

k + 1
2

, β0 = β.

The density of σk is simply given by (2.1) with β replaced by βk. One can easily show that βk ↘ 1 as k → ∞,
implying that supp(µQ) = [−1, 1] and dµQ(x) = (2

√
1− x2/π) dx.

The unit circle counterpart of Theorem 2 is not a trivial consequence of the result on the real line and its proof is
essentially different, so we formulate it as a separate theorem.

THEOREM 7. Let Σ ⊆ T and w : Σ → [0,∞), w = exp(−Q) as described in Section 1.1. Suppose that the
signed equilibrium on Σ associated with Q exists and is denoted by σ0. If supp(σ+

0 ) consists of at most two arcs
A1, A2, and dσ+

0 = g(θ) dθ has a concave density g(θ) on each of the arcs, then the equilibrium support supp(µ)
consists of at most two arcs B1, B2, with B1 ⊂ A1, B2 ⊂ A2, and the equilibrium density is concave on each of these
arcs. Here dθ indicates the arclength Lebesgue measure on T.

We remark that the theorem remains valid for any Σ ⊆ T compact set as long as σ+
0 has a support consisting of at

most two arcs and dσ+
0 = g(θ) dθ has a concave density. Also, the δ-Hölder continuous first derivative condition on

Q must be satisfied only on supp(σ+
0 ).

The key to the proof of the unit circle case is an analog of Lemma 3.

LEMMA 8. Let A be an arc or a union of two arcs, and let ν be a positive measure with compact support on T,
such that ν(A) = 0. Then the balayage ν̂ := Bal(ν,A) of ν onto A is absolutely continuous measure with respect to
the Lebesgue arclength measure dθ and has convex density on every subarc.

REMARK 9. It is possible to derive Lemma 3 from Lemma 8 through a limiting process, which we illustrate
briefly. It is enough to consider only the point mass balayage case. Let s ∈ R be fixed, A = [a, b] ∪ [c, d] ⊂ R, and
let AR be the preimage of A under the inversion with center s + iR and radius R. Observe, that AR consists of two
arcs on the circle |x − s − iR/2| = R/2, and hence Bal(δs, AR) has convex density with respect to the Lebesgue
arclength on every subarc. As R → ∞ one can show that the density of Bal(δs, AR) approaches that of Bal(δs, A),
which would imply the convexity of the limit. However, instead of following this route, we prefer to prove Lemma 3
directly, as its proof is simpler than that of Lemma 8, as well as illustrative and constructive.

The next theorem establishes another condition which guarantees that the support of the equilibrium measure is an
interval. We say that a function h(x) is strictly increasing (decreasing) a.e. on [−1, 1], if there exists a set G ⊂ [−1, 1]
such that G has measure 1 and h(x) is strictly increasing (decreasing) on G.

THEOREM 10. Let Q be an external field on [−1, 1] as described in Section 1.1. Then the following hold:
(a) Let f(x) := (1− x2)Q′(x).

If f is convex on [−1, 1], then the support S is an interval [b, 1], where b ∈ [−1, 1).
If f is concave on [−1, 1], then the support S is an interval [−1, b], where b ∈ (−1, 1].

(b) For x ∈ [−1, 1] let g(x) := Q′(x)
√

1− x2, and let g(x) = 0 otherwise. Assume that g(x) is absolutely
continuous,

∫
R

∫
R |(g′(x + u)− g′(x))/u|dudx < ∞, and x 7→ ∫

R(g
′(x + u)− g′(x))/udu is a continuous

function on (−1, 1).
If
√

1− x2g′(x) is strictly increasing a.e. on [−1, 1], then the support S is an interval [b, 1], where b ∈
[−1, 1).
If
√

1− x2g′(x) is a strictly decreasing a.e. on [−1, 1], then the support S is an interval [−1, b], where
b ∈ (−1, 1].

EXAMPLE 11. Let

Q(x) = c arcsin(x/a), x ∈ [−1, 1], a > 1, c 6= 0.

We find that

f(x) = c

[√
a2 − x2 − a2 − 1√

a2 − x2

]
.
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Thus, for c > 0 the function f is concave and the equilibrium support SQ = [−1, b]. For c < 0 the function f(x) is
convex and SQ = [b, 1]. Observe that the external field Q is weakly-convex in the sense of [2], so this is an independent
verification of the result there.

The remainder of this paper is devoted to the proofs of our results.

3. Proof of the real line case. We will repeatedly make use of the Chebyshev’s Integral Inequality (see [13, p.
1092], [14, pp. 43-44]), which we formulate as a separate lemma and provide a short proof for completeness.

LEMMA 12. (Chebyshev, 1882) Let f, g, h be integrable functions on [a, b] and let f ≥ 0 on [a, b].
(a) Suppose that both g and h are monotone increasing (decreasing). Then

∫ b

a

(fg)(x) dx

∫ b

a

(fh)(x) dx ≤
∫ b

a

f(x) dx

∫ b

a

(fgh)(x)dx, (3.1)

provided all integrals exist.
(b) If h increases and g decreases (h decreases and g increases), then

∫ b

a

(fg)(x) dx

∫ b

a

(fh)(x) dx ≥
∫ b

a

f(x) dx

∫ b

a

(fgh)(x)dx, (3.2)

provided all integrals exist.
Proof. Clearly (b) follows from (a) by substituting g with (−g), so let h, g be both monotone increasing (decreas-

ing). Then

f(x)f(y)[g(x)− g(y)][h(x)− h(y)] ≥ 0 for any x, y ∈ [a, b].

Integrating the inequality yields

∫ b

a

∫ b

a

f(x)f(y)[g(x)− g(y)][h(x)− h(y)] dx dy ≥ 0,

which implies (3.1).

REMARK 13. In the particular case when h(x) = x, Lemma 12 has an interesting geometric interpretation.
Suppose f, g, are integrable non-negative functions on [a, b] and g is an increasing function on [a, b]. Then (3.1)
becomes

∫
xf(x) dx∫
f(x) dx

≤
∫

xf(x)g(x) dx∫
f(x)g(x) dx

. (3.3)

Imagine that the [a, b] interval is a wire with density f(x). The above inequality says that the center of mass will move
to the right if we multiply the density by an increasing non-negative function g(x).

We now continue with the proof of Lemma 3.

Proof of Lemma 3. It is enough to prove the lemma only for Dirac delta measures δs, s 6∈ A, because in general
we have the representation

dν̂

dt
=

∫

supp(ν)

dδ̂s

dt
dν(s) =:

∫

supp(ν)

f(t, s) dν(s), (3.4)

where f(t, s) := dδ̂s/dt. Then the convexity of ν̂ can be easily derived from that of f(t, s) by integrating the inequality

f(αt + (1− α)y, s) ≤ αf(t, s) + (1− α)f(y, s), 0 ≤ α ≤ 1, t, y ∈ A

with respect to dν(s) and using (3.4) (recall that ν(A) = 0).
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We now consider two cases.
Case 1: The set A consists of one interval, for simplicity A = [−1, 1].
From [19, Chapter II, Corollary 4.12] we have that

f(t, s) =
1
π

√
s2 − 1

|s− t|√1− t2
(3.5)

We claim that ftt(t, s) > 0 for all t ∈ (−1, 1). Without loss of generality let s > 1. Then we find that

ftt(t, s) =
√

s2 − 1
π

(
2

(s− t)3
√

1− t2
+

s + t

(s− t)2(1− t2)3/2
+

3t2

(s− t)(1− t2)5/2

)
,

which verifies the claim, since s + t > 0 and s− t > 0.

Case 2: The set A consists of two intervals, i.e., A = [a, b] ∪ [c, d]. Assume first that s ∈ (b, c). Applying Kelvin
transform K with center s and radius 1 we obtain A∗ := K(A) = [b∗, a∗] ∪ [d∗, c∗] (see Section 1.3).

The density of the equilibrium measure of A∗ (see [21, Lemma 4.4.1]) is given by

dµA∗

dt∗
=

|t∗ − y∗|
π
√
|t∗ − a∗||t∗ − b∗||t∗ − c∗||t∗ − d∗| , (3.6)

where y∗ ∈ (a∗, d∗) is determined from the equation

∫ d∗

a∗

t∗ − y∗

π
√
|t∗ − a∗||t∗ − b∗||t∗ − c∗||t∗ − d∗| dt∗ = 0. (3.7)

Using the distance distortion formula (1.12) and the balayage/equilibrium relation (1.13) we derive the balayage den-
sity as

dδ̂s

dt
= f(t, s) :=

√
|s− a||s− b||s− c||s− d|

π|s− y|
|t− y|

|t− s|
√
|t− a||t− b||t− c||t− d| , t ∈ A. (3.8)

Let

φ(t) := log(f(t, s)) = log

(
|t− y|

|t− s|
√
|t− a||t− b||t− c||t− d|

)
+ c(s).

We shall prove that for fixed s ∈ (b, c), we have φ′′(x) > 0 for all x ∈ (a, b) ∪ (c, d). This amounts to the
inequality

1
(x− y)2

<
1

(x− s)2
+

1
2

{
1

(x− a)2
+

1
(x− b)2

+
1

(x− c)2
+

1
(x− d)2

}
, for all x ∈ A. (3.9)

(Observe that if y∗ = s, then y = ∞ and the factors |t− y| and |s− y| in (3.8) are omitted and (3.9) obviously holds.)
If y∗ ∈ (a∗, d∗) \ {s}, then y ∈ (−∞, a) ∪ (d,∞). Without loss of generality we may assume y ∈ (−∞, a).

Clearly, for x ∈ [c, d] (3.9) holds. So, let us fix x ∈ [a, b]. From (3.7) we derive that

y∗ − a∗ =

∫ d∗

a∗

t∗ − a∗√
|t∗ − a∗||t∗ − b∗||t∗ − c∗||t∗ − d∗| dt∗

∫ d∗

a∗

1√
|t∗ − a∗||t∗ − b∗||t∗ − c∗||t∗ − d∗| dt∗

(3.10)
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Since
√
|t∗ − c∗| is decreasing on [a∗, d∗] we can apply Lemma 12 (see also Remark 13) to estimate that

y∗ − a∗ ≥

∫ d∗

a∗

t∗ − a∗√
|t∗ − a∗||t∗ − b∗||t∗ − d∗| dt∗

∫ d∗

a∗

1√
|t∗ − a∗||t∗ − b∗||t∗ − d∗| dt∗

≥
√

a∗ − b∗√
d∗ − b∗

·

∫ d∗

a∗

√
t∗ − a∗

d∗ − t∗
dt∗

∫ d∗

a∗

1√
(t∗ − a∗)(d∗ − t∗)

dt∗
(3.11)

The second fraction evaluates to (d∗ − a∗)/2, thus reducing (3.11) to

y∗ − a∗ ≥
√
|a∗ − b∗|√
|d∗ − b∗|

d∗ − a∗

2
, (3.12)

which after the Kelvin transformation becomes

|y − a|
|y − s| ≥

√
|d− s||a− b|√
|a− s||d− b|

|d− a|
2|d− s| . (3.13)

Rewriting (3.13) yields

1√
|y − a| ≤

2
√
|y − a||a− s|
|y − s| ·

√
|d− s||d− b|
|d− a| · 1√

|a− b| ≤
1√
|a− b| , (3.14)

where each of the two fractions above is less than 1.
On the other hand, one easily derives that

min
x∈[a,b]

1
2

{
1

(a− x)2
+

1
(b− x)2

}
=

4
(b− a)2

.

So, the inequality (3.14) implies (3.9) at least with a factor of four in excess.

1
(y − x)2

≤ 1
(y − a)2

≤ 1
(a− b)2

≤ 1
8

{
1

(a− x)2
+

1
(b− x)2

}
.

This establishes the lemma when s ∈ (b, c), and hence for any measure ν with supp(ν) ⊂ [b, c] with ν(A) = 0. If
we assume that s ∈ (−∞, a)∪(d,∞), then the balayage µ = Bal(δs, [a, d]) has a convex density by Case 1. However,
from the properties of balayage measure we have that

Bal(δs, [a, b] ∪ [c, d]) = Bal(µ, [a, b] ∪ [c, d]) = µ|A + Bal(µ|[b,c]
, A).

Both measures on the right have convex densities on A, the first, as a restriction of a measure with a convex density
on the entire interval [a, d], and the second by what we just proved. Hence, δ̂s has convex density and the lemma is
proved.

We are now ready for the

Proof of Theorem 2. The proof is based on the iterated balayage algorithm discussed in Section 1.2. Let Σ0 := Σ
and σ0 denote the signed equilibrium associated with Q. By the assumption of the theorem the latter exists, and
if σ0 = σ+

0 − σ−0 is the Jordan decomposition of σ0, the measure σ+
0 has concave density and its support Σ1 :=

supp(σ+
0 ) consists of at most two intervals. Then from Lemma 3, Bal(σ−0 , Σ1) is convex and thus, σ1 = J(σ0) =

σ+
0 − Bal(σ−0 ,Σ1) has concave density on Σ1. Therefore, Σ2 := supp(σ+

1 ) consists of at most two intervals (nested
in at most two intervals that make up Σ1).

Continuing, in this way we obtain an IBA sequence of nested compact sets

Σ0 ⊃ Σ1 ⊃ . . . Σn ⊃ · · · ⊃ supp(µQ) ,
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each made of at most two intervals.
Now we show that the density of σn, which we will denote by vn(x), is converging to the density of the equilibrium

measure µQ associated with the external field Q(x).
Let us assume that for all n we have Σn = [an, bn] ∪ [cn, dn], where [an, bn] and [cn, dn] are two non-trivial

disjoint intervals. If it was not the case, the proof would be the same. (We remark that even if Σ0 consisted of two
intervals, we may “lose” one in the IBA if at one step vn ≤ 0 on [an, bn] or on [cn, dn].)

Let lim an = a, lim bn = b, lim cn = c, lim dn = d. We have

Q(x)− Fn =
∫

Σn

log |t− x|vn(t) dt

=

(∫

Σn+1

+
∫

Σn\Σn+1

)
log |t− x|vn(t)dt (3.15)

=

(∫

[an+1,bn+1]∪[cn+1,dn+1]

+
∫

[an,an+1]∪[bn+1,bn]∪[cn,cn+1]∪[dn+1,dn]

)
log |t− x|vn(t)dt.

We claim that
∫

[an,an+1]∪[bn+1,bn]∪[cn,cn+1]∪[dn+1,dn]

vn(t)dt → 0. (3.16)

If not, then we can chose a subsequence, denoted by n for simplicity, and mi ≤ 0, i = 1, . . . , 4, such that
∫

[an,an+1]

vn(t)dt → m1,

∫

[bn+1,bn]

vn(t)dt → m2,

∫

[cn,cn+1]

vn(t)dt → m3,

∫

[dn+1,dn]

vn(t)dt → m4,
∑

mi < 0.

Since vn

∣∣∣
[a,b]∪[c,d]

is a bounded decreasing sequence, letting v := lim vn, we can use the dominated convergence

theorem and mean value theorem to derive that for any x ∈ (a, b) ∪ (c, d)

lim(Q(x)−Fn) =
∫

[a,b]∪[c,d]

log |t−x|v(t)dt+m1 log |a−x|+m2 log |b−x|+m3 log |c−x|+m4 log |d−x|. (3.17)

This shows that Fn has a finite limit. We also see that we must have m1 = m2 = m3 = m4 = 0. For example, if
m1 < 0, let x = a in (3.15) and let n → ∞. The right-hand side of (3.15) is approaching positive infinity while the
left hand-side has finite limit, which is a contradiction.

Let F := lim Fn. From (3.15) we get that for any x ∈ (a, b) ∪ (c, d)

Q(x)− F =
∫

[a,b]∪[c,d]

log |t− x|v(t)dt.

From (3.16) it is also clear that v(t) is a probability density function. The equilibrium measure µQ minimizes the
weighted energy on Σ and therefore on [a, b]∪ [c, d], too. Also, the support of µQ is a subset of [a, b]∪ [c, d]. It follows
that v(x) is the density of the equilibrium measure (see [19, Theorem I.3.3]).

If a = b then supp(µQ) = [c, d]. If c = d then supp(µQ) = [a, b]. Finally, if a < b and c < d then
supp(µQ) = [a, b] ∪ [c, d].

4. Proof of the unit circle case. We proceed first with the proof of Lemma 8.
Proof of Lemma 8. As in the proof of Lemma 3 above, it is enough to verify the Lemma for case of a point mass,

so without loss of generality we assume that ν = δs, where s ∈ T \A.
Given two points on the unit circle eiφ and eiθ we denote by [eiφ, eiθ] the closed arc that connects the points

counterclockwise. In this notation, its complement relative to the unit circle would be the open arc (eiθ, eiφ). Since
the case of an arc easily follows from the case of two arcs as we deform one of the arcs to a point, we set A =



10 D. BENKO, S. B. DAMELIN AND P. D. DRAGNEV

FIG. 4.1. Circle case

[eiα, eiβ ] ∪ [eiγ , eiδ], where eiα, eiβ , eiγ , eiδ are points on the unit circle ordered counterclockwise. Without loss of
generality we assume that s = i ∈ (eiδ, eiα) (see Fig. 4.1). For simplicity assume also that all angles below are given
in the interval [π/2, 5π/2), meaning in particular that π/2 < α < β < γ < δ < 5π/2.

To find the balayage ν̂, we observe that after a Kelvin transform centered at s with a radius
√

2 the unit circle is
sent to the real line and n A∗ = [a, b] ∪ [c, d], where a =

(
eiα

)∗, b =
(
eiβ

)∗, c =
(
eiγ

)∗, and d =
(
eiδ

)∗ (see Fig.
4.2). Using Riesz’s approach (Section 1.3) we find ν̂ = K(µA∗). Recall that (see (3.6))

dµA∗ =
|t∗ − y∗|

π
√
|t∗ − a||t∗ − b||t∗ − c||t∗ − d| dt∗, t∗ ∈ [a, b] ∪ [c, d], (4.1)

where t∗ =
(
eiθ

)∗ ∈ A and y∗ ∈ (b, c) is determined from the equation

∫ c

b

x∗ − y∗

π
√
|x∗ − a||x∗ − b||x∗ − c||x∗ − d| dx∗ = 0. (4.2)

Since the relationship between the Lebesgue measures on R and T is given by

dt∗

|t∗ − s| =
|d t|
|t− s| =

dθ

|eiθ − s| ,

we find that

dt =
2dθ

|eiθ − s|2 . (4.3)

Let y := eiφ := (y∗)∗ with φ ∈ (β, γ). Using (1.12) and the formula |eiξ − eiζ | = 2| sin
(

ξ−ζ
2

)
|, we conclude

that (recall the order of the angles)

dν̂ = C
| sin

(
θ−φ

2

)
| dθ

sin
(

θ−π/2
2

) √
| sin (

θ−α
2

)
sin

(
θ−β

2

)
sin

(
θ−γ

2

)
sin

(
θ−δ
2

) |
, θ ∈ [α, β] ∪ [γ, δ], (4.4)
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FIG. 4.2. Kelvin transformation - circle case

where

C =

√
sin

(
α−π/2

2

)
sin

(
β−π/2

2

)
sin

(
γ−π/2

2

)
sin

(
δ−π/2

2

)

2π sin
(

φ−π/2
2

) .

If x∗ =
(
eiψ

)∗
, then

x∗ − y∗ =
sin

(
ψ−φ

2

)

2 sin
(

φ−π/2
2

)
sin

(
ψ−π/2

2

) , x∗, y∗ ∈ [b, c].

Indeed, the equality holds with absolute values by (1.12) and since the signs of x∗ − y∗ and sin
(

ψ−φ
2

)
are the same

we can remove the absolute value. Therefore, (4.2) implies that φ is determined uniquely by

∫ γ

β

sin
(

ψ−φ
2

)

sin
(

ψ−π/2
2

) √
| sin

(
ψ−α

2

)
sin

(
ψ−β

2

)
sin

(
ψ−γ

2

)
sin

(
ψ−δ

2

)
|
dψ = 0, (4.5)

which is equivalent to

cot
(

φ− θ

2

)
=

∫ γ

β

cot
(

ψ − θ

2

) sin
(

ψ−θ
2

)

sin
(

ψ−π/2
2

) √
| sin

(
ψ−α

2

)
sin

(
ψ−β

2

)
sin

(
ψ−γ

2

)
sin

(
ψ−δ

2

)
|
dψ

∫ γ

β

sin
(

ψ−θ
2

)

sin
(

ψ−π/2
2

)√
| sin

(
ψ−α

2

)
sin

(
ψ−β

2

)
sin

(
ψ−γ

2

)
sin

(
ψ−δ

2

)
|
dψ

(4.6)

for any convenient choice of θ.
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Recall that our goal is to show that for any π/2 < α < β < γ < δ < 5π/2, the balayage density function

N(θ) :=
| sin

(
θ−φ

2

)
|

sin
(

θ−π/2
2

) √
| sin (

θ−α
2

)
sin

(
θ−β

2

)
sin

(
θ−γ

2

)
sin

(
θ−δ
2

) |
, θ ∈ [α, β] ∪ [γ, δ]

is convex, provided φ satisfies (4.6). We will actually show more, namely that (log(N(θ)))′′ > 0. The latter is
equivalent to verifying for all θ ∈ [α, β] ∪ [γ, δ] the inequality

csc2

(
θ − φ

2

)
≤ csc2

(
θ − π/2

2

)
+

1
2

[
csc2

(
θ − α

2

)
+ csc2

(
θ − β

2

)
+ csc2

(
θ − γ

2

)
+ csc2

(
θ − δ

2

)]
.

(4.7)
Let us fix θ ∈ [α, β] (the case θ ∈ [γ, δ] is considered similarly). If φ− θ ≥ π, then

csc2

(
θ − φ

2

)
=

4
|eiφ − eiθ| <

4
|eiπ/2 − eiθ| = csc2

(
θ − π/2

2

)

and (4.7) holds trivially. Henceforth, assume that φ− θ < π.
We now perform several perturbations to simplify the problem. First, we study the effect of substituting δ with

5π/2. Let φ1 ∈ (β, γ) be uniquely determined by

cot
(

φ1 − θ

2

)
=

∫ γ

β

cot
(

ψ − θ

2

) sin
(

ψ−θ
2

)

sin
(

ψ−π/2
2

) √
| sin

(
ψ−α

2

)
sin

(
ψ−β

2

)
sin

(
ψ−γ

2

)
sin

(
ψ−5π/2

2

)
|
dψ

∫ γ

β

sin
(

ψ−θ
2

)

sin
(

ψ−π/2
2

) √
| sin

(
ψ−α

2

)
sin

(
ψ−β

2

)
sin

(
ψ−γ

2

)
sin

(
ψ−5π/2

2

)
|
dψ

. (4.8)

Observe that the monotonicity of cot((ψ− θ)/2) guarantees the existence and uniqueness of φ1. Applying Lemma 12
with

h(ψ) = cot
(

ψ − θ

2

)
, g(ψ) =

√√√√√
sin

(
δ−ψ

2

)

sin
(

5π/2−ψ
2

) =

√
cos

(
5π/2− δ

2

)
− cot

(
5π/2− ψ

2

)
sin

(
5π/2− δ

2

)

and using that both h(ψ) and g(ψ) are monotone decreasing functions on (β, γ), we conclude that

cot
(

φ− θ

2

)
< cot

(
φ1 − θ

2

)
, or that φ1 < φ.

Similarly, if φ2 ∈ (β, γ) denotes the unique solution obtained when α = θ in (4.8), we conclude that φ2 < φ1.
Indeed, if

cot
(

φ2 − θ

2

)
=

∫ γ

β

cot
(

ψ − θ

2

)
√

sin
(

ψ−θ
2

)

(
sin

(
ψ−π/2

2

))3/2
√

sin
(

ψ−β
2

)
sin

(
γ−ψ

2

) dψ

∫ γ

β

√
sin

(
ψ−θ

2

)

(
sin

(
ψ−π/2

2

))3/2
√

sin
(

ψ−β
2

)
sin

(
γ−ψ

2

) dψ

, (4.9)
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we again apply Lemma 12, this time with

g(ψ) =

√√√√√
sin

(
ψ−α

2

)

sin
(

ψ−θ
2

) =

√
cos

(
θ − α

2

)
+ cot

(
ψ − θ

2

)
sin

(
θ − α

2

)
,

which is still decreasing function for ψ ∈ (β, γ).
Finally, let φ3 ∈ (β, γ) be derived from (4.9) with θ instead of π/2. Then we have

cot
(

φ3 − θ

2

)
=

∫ γ

β

cot
(

ψ − θ

2

)
1

sin
(

ψ−θ
2

) √
sin

(
ψ−β

2

)
sin

(
γ−ψ

2

) dψ

∫ γ

β

1

sin
(

ψ−θ
2

) √
sin

(
ψ−β

2

)
sin

(
γ−ψ

2

) dψ

. (4.10)

Applying Lemma 12 with the decreasing function

g(ψ) =


 sin

(
ψ−π/2

2

)

sin
(

ψ−θ
2

)



3/2

=
(

cos
(

θ − π/2
2

)
+ cot

(
ψ − θ

2

)
sin

(
θ − π/2

2

))3/2

we obtain φ3 < φ2. In Lemma 14 below we will show for the so derived φ3 the inequality

csc2

(
φ3 − θ

2

)
≤ 2 +

1
2

[
csc2

(
θ − β

2

)
+ csc2

(
θ − γ

2

)]
, (4.11)

which coupled with θ < β < φ3 < φ < γ and φ − θ < π proves (4.7) so the proof of Lemma 8 will be complete.

We now prove that (4.11) holds provided φ3 satisfies (4.10). Since we find the inequality interesting in its own
right we formulate it as a separate lemma. Without loss of generality we could assume that β = 0 < γ < θ < 2π.

LEMMA 14. Let 0 < γ < θ < 2π. Then




∫ γ

0

cot
(

θ−t
2

)
dt

sin
(

θ−t
2

) √
sin

(
t
2

)
sin

(
γ
2 − t

2

)
∫ γ

0

dt

sin
(

θ−t
2

) √
sin

(
t
2

)
sin

(
γ
2 − t

2

)




2

≤ 1 +
1
2


 1

sin2
(

θ
2

) +
1

sin2
(

θ−γ
2

)

 . (4.12)

Proof. First we compute:

I1 =
∫ γ

0

dt

sin
(

θ−t
2

)√
sin

(
t
2

)
sin

(
γ
2 − t

2

) (4.13)

Making a substitution y = (cos(t− γ/2)− cos(γ/2))/(1− cos(γ/2)) in (4.13) leads to

I1 =
4 sin

(
θ−γ/2

2

)

1− cos(γ
2 )

∫ 1

0

1
y + c

dy√
y(1− y)

=
4 sin

(
θ−γ/2

2

)

1− cos(γ
2 )

π√
c(c + 1)

(4.14)

=
2
√

2π√
cos(γ/2)− cos(θ − γ/2)

,
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where c = c(θ, γ) :=
cos(γ/2)− cos(θ − γ/2)

1− cos(γ/2)
> 0.

Next, we compute similarly,

I2 :=
∫ γ

0

cos((θ − t)/2)
sin2((θ − t)/2)

dt√
sin(t/2) sin(γ/2− t/2)

=
√

2
∫ γ/2

0


 cos

(
θ−γ/2

2 − u/2
)

sin2
(

θ−γ/2
2 − u/2

) +
cos

(
θ−γ/2

2 + y/2
)

sin2
(

θ−γ/2
2 + u/2

)

 du√

cos(u)− cos(γ/2)
.

Using the identity

cos(α− α′)
sin2(α− α′)

+
cos(α + α′)
sin2(α + α′)

=
8 cos(α) cos(α′)(1− 1/2(cos(2α) + cos(2α′)))

(cos(2α′)− cos(2α))2

that holds for any real α and α′, and the substitution y = (cos u− cos(γ/2))/(1− cos(γ/2)), we get

I2 =
4 cos((θ − γ/2))

1− cos(γ/2)

[
2(1− cos(θ − γ/2))

1− cos(γ/2)

∫ 1

0

1
(y + c)2

dy√
y(1− y)

−
∫ 1

0

1
y + c

dy√
y(1− y)

]
. (4.15)

Since
∫ 1

0

1
(y + c)2

dy√
y(1− y)

= − d

dc

(∫ 1

0

1
y + c

dy√
y(1− y)

)
= − d

dc

π√
c(1 + c)

,

we obtain
∫ 1

0

dy

(y + c)2
√

y(1− y)
=

π(2c + 1)
2
√

c(c + 1)c(c + 1)
.

Substituting in (4.15) we find that

I2 =
2
√

2 sin(θ − γ/2)π

(cos(γ/2)− cos(θ − γ/2))3/2
. (4.16)

Thus, we see from (4.14) and (4.16) that

(I2/I1)
2 = (1/4)(cot(θ/2) + cot((θ − γ)/2))2 ≤ (1/2)(cot2(θ/2) + cot2((θ − γ)/2)))

< (1/2)(csc2(θ/2) + csc2((θ − γ)/2)) < 1 + 1/2(csc2(θ/2) + csc2((θ − γ)/2)),

which concludes the proof.

Proof of Theorem 7. The proof of this theorem follows word for word the argument in Theorem 2, where instead
of Lemma 3 we use Lemma 8.

Proof of Theorem 10. From (1.6) with [a, b] = [−1, 1] we can write

v(x) =
1

π
√

1− x2

[
1 +

1
π

∫ 1

−1

f(t)− f(x)
(t− x)

√
1− t2

dt

]
. (4.17)

Here we used the fact that

P.V.

∫ 1

−1

1
(t− x)

√
1− t2

dt = 0,



SUPPORT OF EQUILIBRIUM MEASURE 15

which follows from differentiation of the equilibrium potential on [−1, 1]

∫ 1

−1

log
1

|x− t|
dt

π
√

1− t2
= log 2, x ∈ [−1, 1].

Proof of part a). If f is identically zero, then Q is constant and S = [−1, 1]. Note that f cannot be a linear function
(unless f ≡ 0) because of the δ-Hölder continuity assumption on Q′. So let f be convex but not a linear function. Let
gt(x) = (f(t) − f(x))/(t − x), and x1 < x2. Then gt(x1) ≤ gt(x2) for all t ∈ [−1, 1] and gt(x1) < gt(x2) holds
on a set of positive measure. Integrating over [−1, 1] with respect to t, we thus derive that

√
1− x2v(x) is strictly

increasing. The claim now follows from [15, Theorem 2]. The proof is similar when f is concave.
Proof of part b). Let

√
1− x2g′(x) be strictly increasing (strictly decreasing) a.e. on [−1, 1]. Note that

√
1− x2v(x)

is strictly increasing (strictly decreasing) function a.e. if the following is positive (negative):

d

dx

∫ 1

−1

√
1− t2Q′(t)

t− x
dt =

∫ 1

−1

(
√

1− t2Q′(t))′

t− x
dt =

∫ 1

−1

√
1− t2(

√
1− t2Q′(t))′ −√1− x2(

√
1− x2Q′(x))′

(t− x)
√

1− t2
dt.

We used that

d

dx

∫ 1

−1

g(t)
t− x

dt =
d

dx

∫

R

g(x + u)− g(x)
u

du =
∫

R

g′(x + u)− g′(x)
u

du =
∫ 1

−1

g′(t)
t− x

du.

We could differentiate inside the parametric integral because of [1, Lemma 13].
The claim of part b) now follows from [15, Theorem 2].
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