






Fig. 2. Systems of 2048 polyhedra were assembled starting from the
disordered fluid. In each subfigure, a snapshot of the simulation box (left), the
bond-order diagram for nearest neighbors (inset), the polyhedron shape and ID
(top right), a small group of particles or the diffraction pattern (middle right),
and the crystallographic characterization consisting of name or atomic proto-

type, Pearson symbol, and Strukturbericht designation (bottom right) are shown.
The snapshots depict crystals (A to D), plastic crystals (E to I), and liquid crystals
( J to L). Some low index planes (A to C, E, and F), tiling descriptions consisting of
squares and triangles (D and G to I) and structural features (K and L) are
highlighted in the simulation snapshots by different colors.

Fig. 3. (A) The coordination number in the fluid phase, CNf, is correlated
to the isoperimetric quotient (IQ) of the polyhedron. Here, IQ is a scalar
parameter for the sphericity of the shape and coordination number is a
measure for the degree of local order. Data points are drawn as small
polyhedra. Polyhedra are colored and grouped according to the assem-

blies they form. (B) Polyhedra have, in most cases, nearly identical co-
ordination number in the ordered phase (CNo) and the fluid phase (CNf)
close to the ordering transition. Because of this strong correlation, com-
bining CNf and IQ allows for prediction of the assembly category expected
for most cases.
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IQ and CNf alone, the assembly of 95/101 = 94%
of the polyhedra studied into crystals, liquid crys-
tals, or plastic crystals is predicted. The outliers
either lie within boundaries between regions, or
they are nearly space-filling, which favors crys-
tals over liquid or plastic crystals. We expect the
shaded regions in Fig. 3A to become further
refined as additional shapes are investigated. For
example, the liquid crystal region is expected to
expand upward for prolate particles (not studied
here), which have a higher CNf than oblate par-
ticles yet still have a low IQ.

Wecompare the coordination numbermeasured
close to the ordering transition in the fluid (CNf )
and in the ordered structure (CNo) in Fig. 3B.
Both numbers are nearly identical for almost all
101 shapes that assemble. This explains why it is
sufficient to determine the coordination number
in the dense fluid, which can be obtained from
short simulations and experiments by integrat-
ing over the first peak of the radial distribution
function, to predict with reasonable accuracy the
category of structure that will form from the dis-
ordered fluid. As an independent test of Fig. 3A,
we calculated the IQ and CNf for the family of
truncated tetrahedra studied in (14) and correctly
predict that each member should form a crystal
(fig. S2).

When comparing our observations with known
crystal structures of atoms and molecules, which
can be rationalized in terms of a few parameters,
like the strength and directionality of bonds be-
tween atoms (39) and themolecular geometry (40),

we can interpret our findings as follows. First,
FCC (HCP) and BCC crystals form from highly
spherical polyhedra that have nondirectional or
weakly directional entropic interactions. TCP struc-
tures are a compromise between high density and
maintaining icosahedral local order present in the
dense liquid. The coordination geometry can be
visualized with Voronoi cells (Fig. 4, A and B).
Voronoi cells of TCP structures often have pentag-
onal or hexagonal faces. We frequently find TCP
structures with particles that resemble the Voronoi
cells, such as the (truncated) dodecahedron. The
assembly of plastic crystals is dominated by pack-
ing, and their atomic analog is metals and metal-
lic bonding. It is interesting to note that all of our
plastic crystals except g-brass are isostructural
to crystals found in elementary metals. Second,
polyhedra that form crystals are more aspherical,
with more pronounced and fewer faces. The
crystal lattice is well represented by an ordered
network of entropic “bonds” (Fig. 4, C and D).
Polyhedra assembling into crystals do not al-
ways resemble the Voronoi cells of the crystal,
but usually have strong directional entropic bond-
ing, reminiscent of covalent bonds. Third, poly-
hedra forming liquid crystals typically have an
axial shape. Alignment of the most prominent
faces is important for these phases and can be
analyzed by the alignment of the directors (Fig. 4,
E and F). In general, we expect for axial particles
to align prominent faces and long particle dimen-
sions first. The behavior of polyhedra forming
liquid crystals corresponds most closely to mo-

lecular liquid crystals. In all cases, the degree of
directional entropic bonding may be quantified
through various shape descriptors and correla-
tion functions (fig. S3).

Our results push the envelope of entropic crys-
tallization and the assembly behavior of hard
particle fluids and provide an important step
toward a predictive science of nanoparticle and
colloidal assembly, which will be necessary to
guide experiments with families of polyhedrally
shaped particles that are now becoming available.
Although we are not yet able to predict a specific
structure (e.g., BCC or diamond), the knowledge
that obtaining, e.g., the diamond structure requires
a shape with intermediate IQ or that a complex,
topologically close-packed structure like g-brass
requires a shape with high IQ provides important
predictive guidance for building block design and
synthesis. With further developments, more re-
fined future structure prediction, with the level
of detail now possible for atoms (41), should be
attainable.
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The Tides of Titan
Luciano Iess,1* Robert A. Jacobson,2 Marco Ducci,1 David J. Stevenson,3 Jonathan I. Lunine,4

John W. Armstrong,2 Sami W. Asmar,2 Paolo Racioppa,1 Nicole J. Rappaport,2 Paolo Tortora5

We have detected in Cassini spacecraft data the signature of the periodic tidal stresses within Titan,
driven by the eccentricity (e = 0.028) of its 16-day orbit around Saturn. Precise measurements
of the acceleration of Cassini during six close flybys between 2006 and 2011 have revealed that
Titan responds to the variable tidal field exerted by Saturn with periodic changes of its quadrupole
gravity, at about 4% of the static value. Two independent determinations of the corresponding
degree-2 Love number yield k2 = 0.589 T 0.150 and k2 = 0.637 T 0.224 (2s). Such a large
response to the tidal field requires that Titan’s interior be deformable over time scales of the
orbital period, in a way that is consistent with a global ocean at depth.

Since its gravitational capture by Saturn on
1 July 2004, the spacecraft Cassini has
flown by Titan more than 80 times, carry-

ing out extensive observations of the surface and
the atmosphere by means of particle and remote
sensing instruments. In contrast, information on
the moon’s deep interior is scarce. Lacking a de-
tectable internally generated magnetic field, con-
straints on the interior of Titan come from gravity,
topography, and rotation measurements. Titan’s
main deviations from spherical symmetry are
caused by centrifugal and tidal forces, associated
respectively with the rotation about its spin axis
and the gradient of Saturn’s gravity. The moon
responds to the centrifugal and tidal potentials

with deformations that (to the lowest order)
change its quadrupole field. In a body-fixed frame
with the prime meridian pointing to the central
planet at pericenter and the z axis along the in-
stantaneous rotation axis (coinciding with the
orbit normal), only the J2 and C22 quadrupole co-
efficients are different from zero for a relaxed,
synchronous satellite. They are bound by the
constraint J2/C22 = 10/3. The satellite’s static re-
sponse to the external fields is usually char-
acterized by a single parameter, the fluid Love
number kf, which reaches its maximum value
of 3/2 for an incompressible fluid body. Pre-
vious determinations of Titan’s gravity (1) yielded
kf =1.0097 T 0.0039, implying a relaxed shape,
very close to hydrostatic equilibrium. The value
smaller than 3/2 revealed a significant concen-
tration toward the center, with a moment of in-
ertia factor C̃ ¼ 0:3414 T 0:0005 (inferred from
the Radau-Darwin equation). However, the non-
negligible eccentricity of Titan’s orbit causes a
variation with time of the quadrupole tidal field
[proportional to 1/r3 (r, distance between Titan
and the Saturn barycenter)]. These short-term
variations change the satellite’s physical shape

and gravity. Titan’s linear response to the peri-
odic tidal field entails a corresponding periodic
change in its own quadrupole potential. The
ratio between the perturbed and the perturbing
potentials is known as the k2 Love number. It is
an indication of the mass redistribution inside the
body in response to the forcing potential. k2,
like kf, reaches its theoretical upper limit of 3/2
for an incompressible liquid body, whereas for
a perfectly rigid body, k2 = 0. If Titan hosts a
global subsurface ocean, then k2 must differ sub-
stantially from zero. We have detected the sig-
nature of the tidal forcing in Cassini data and
derived a value of k2.

Our observational strategy entailed gravity
determinations near the pericenter and apocenter
of Titan’s orbit. For k2 = 0.4 (a typical value if
an ocean is present), the expected peak-to-peak
variations of the quadrupole coefficients are
about 4% for J2 and 7% for C22 (2, 3). The
corresponding change in the spacecraft accel-
eration, about 0.2 mgal in the most favorable
geometry, is measurable by the Cassini tracking
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Table 1. Titan’s k2 Love number, estimated from
different data analysis procedures (supplementary
materials) and representations of the gravity field:
multi-arc analysis and 3 × 3 gravity field (SOL1a);
multi-arc analysis and 4 × 4 gravity field (SOL1b);
and global solution with 3 × 3 gravity field (SOL2).
SOL1 and SOL2 were produced independently by
the Cassini Radio Science Team and the Naviga-
tion Team.

k2
(value T 1s)

SOL1a
SOL1b
SOL2

0.589
0.670
0.637

T
T
T

0.075
0.090
0.112

www.sciencemag.org SCIENCE VOL 337 27 JULY 2012 457

REPORTS

 o
n 

Ju
ly

 2
6,

 2
01

2
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/

