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This paper demonstrates the use of a particular template. In the mean time, it discusses algorithms to solve
nonlinear equations of a single variable. This is a subject that lends itself well to simple equations and the use of
a few figures and tables. This should be enough to demonstrate the main features of this package using a small
number of pages.

I. Introduction
There is a need in almost all scientific disciplinesa to be able to solve
equations of the form

f (x) = 0 (1)
where the function f : R → R cannot be inverted symbolically. This
can occur with even relatively simple equations, for example

f (x) = x − sinh x (2)

Many texts, for example [1], have chapters on this subject. A common
technique to address such problems is to use an iterative algorithm, in
which the values of the function at previous estimates are used to obtain
the new estimates of the value of x that satisfy the equation. Consider
as an example Newton’s method, which is one of the most common
techniques.

xn+1 = xn −
f (xn)
f ′(xn)

(3)

In this case, the value of the function and its derivative at only the previ-
ous iteration is used to determine the next estimate. Ideally, f (xn)→ 0
as n→ ∞ (and this is often in fact the case).

Methods like Newton’s method that only use one previous estimate
at a time can have very good performance, but they are also prone to
failure [2]. As a simple example, consider

f (x) = tanh x (4)

Provided the initial estimate, x0 is a real number other than zero, ap-
plying Newton’s method gives the result

|xn+1| > |xn| (5)

despite the fact that the solution is at x = 0. A more robust class of
methods can be used when we have two real numbers a < b such that

f (a) f (b) < 0 (6)

Provided that f is a continuous function, the intermediate value theo-
rem, [3], guarantees that there is some a < x < b such that f (x) = 0.
If we also assume that f is strictly monotonic, then this value of x is
unique.

When we have f , an, and bn that satisfy these criteria, we can select
some value sn ∈ (an, bn) and evaluate it. If f (an) f (sn) < 0, we know
that the solution is between an and sn, and we update using

an+1 = an bn+1 = sn (7)

If f (an) f (sn) > 0, we update using

an+1 = sn bn+1 = bn (8)

Of course, if f (sn) = 0, we terminate the algorithm because sn is an ex-
act solution. Any algorithm that follows this outline is called a brack-
eting method, which is the main subject of this paper.
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II. Numerical Techniques
Two functions that satisfy the assumptions for a bracketing method are
shown in Fig. 1. The example in Fig. 1b is particularly difficult to solve
because the function has very little gradient information away from the
root.
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a) Type 1 challenge
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b) Type 2 challenge

Figure 1. Two examples of functions that satisfy the bracketing assump-
tions

A. Convergence Criteria

Figure 2 gives a visualization for the uncertainty in both axes for sev-
eral iterations of a bracketing scheme. The yellow circles represent the
iterative upper and lower bounds for the root location, and the sequen-
tially darker orange boxes represent the current estimate of the region
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in which the root must exist. Of course, we know that the root must lie
on the x-axis, but the height of the box still gives a good representation
of how good the current estimate is. Google
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Figure 2. Residuals in x- and y-directions

B. Methodology

III. Results
Here is a reference to Section II.A.

IV. Conclusions
A reduced-order two-dimensional model was developed that can ana-
lyze shock waves, expansion fans, and finite-rate chemistry. The model
was found to be particularly accurate in determining the boundary of
the exhaust plume, which is essential to thrust calculations. Recom-
bination can also be modeled as long as the flow is well-mixed be-
fore reaching the nozzle. However, the importance of recombination to
thrust calculations was debatable, even for a set of conditions specifi-
cally selected to emphasize the importance of recombination.

The model does not have the capability to analyze boundary layers,
which were found to play an important role. The boundary layer had
a noticeable effect on all quantities except for pressure. These results
make a strong case that a boundary layer model must be added to the
reduced-order model.

Whatever

Figure 3. Test figure

Appendix: Brent’s Method
A. Another Thing
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