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This paper demonstrates the use of a particular template. In the mean time, it discusses algorithms
to solve nonlinear equations of a single variable. This is a subject that lends itself well to simple
equations and the use of a few figures and tables. This should be enough to demonstrate the main
features of this package using a small number of pages.

I. Introduction

There is a need in almost all scientific disciplines® to be able to solve equations of the form

flz) =0 (D

where the function f : R — R cannot be inverted symbolically. This can occur with even relatively simple equations,
for example
f(z) =2z —sinhz (2)

Many texts, for example [1], have chapters on this subject. A common technique to address such problems is to use
an iterative algorithm, in which the values of the function at previous estimates are used to obtain the new estimates of
the value of x that satisfy the equation. Consider as an example Newton’s method, which is one of the most common
techniques.

f(@n)

Tn+1 Ln f / (ln)
In this case, the value of the function and its derivative at only the previous iteration is used to determine the next
estimate. Ideally, f(z,) — 0asn — oo (and this is often in fact the case).
Methods like Newton’s method that only use one previous estimate at a time can have very good performance, but
they are also prone to failure [2]. As a simple example, consider

3)

f(x) = tanhz 4)
Provided the initial estimate, x( is a real number other than zero, applying Newton’s method gives the result
|Q7n+1‘ > "rn| (5)

despite the fact that the solution is at x = 0. A more robust class of methods can be used when we have two real
numbers a < b such that

f(a)f(b) <0 (6)
Provided that f is a continuous function, the intermediate value theorem, [3], guarantees that there is some a < x < b
such that f(z) = 0. If we also assume that f is strictly monotonic, then this value of z is unique.
When we have f, a,,, and b,, that satisfy these criteria, we can select some value s,, € (an, b,) and evaluate it. If
flan)f(sn) < 0, we know that the solution is between a,, and s,,, and we update using
Ap+4+1 = An bn+1 = Sn N
If f(an)f(sn) > 0, we update using
Ap+1 = Sn b77,+1 = bn (8)

Of course, if f(s,) = 0, we terminate the algorithm because s,, is an exact solution. Any algorithm that follows this
outline is called a bracketing method, which is the main subject of this paper.

*Graduate Research Assistant, Department of Aerospace Engineering, AIAA Student Member, hastings@bysu.edu
tGraduate Research Assistant, Department of Aerospace Engineering, AIAA Student Member, dohnson@bysu. edu
tProfessor, Department of Aerospace Engineering, AIAA Fellow, brooks@bysu.edu

2And many disciplines that are not scientific
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II. Numerical Techniques

Two functions that satisfy the assumptions for a bracketing method are shown in Fig. 1. The example in Fig. 1b is
particularly difficult to solve because the function has very little gradient information away from the root.
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Figure 1. Two examples of functions that satisfy the bracketing assumptions

A. Convergence Criteria

Figure 2 gives a visualization for the uncertainty in both axes for several iterations of a bracketing scheme. The yellow
circles represent the iterative upper and lower bounds for the root location, and the sequentially darker orange boxes
represent the current estimate of the region in which the root must exist. Of course, we know that the root must lie on
the x-axis, but the height of the box still gives a good representation of how good the current estimate is. Google
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Figure 2. Residuals in z- and y-directions

B. Methodology
III. Results

Here is a reference to Section I1.A.
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IV. Conclusions

A reduced-order two-dimensional model was developed that can analyze shock waves, expansion fans, and finite-
rate chemistry. The model was found to be particularly accurate in determining the boundary of the exhaust plume,
which is essential to thrust calculations. Recombination can also be modeled as long as the flow is well-mixed before
reaching the nozzle. However, the importance of recombination to thrust calculations was debatable, even for a set of
conditions specifically selected to emphasize the importance of recombination.

The model does not have the capability to analyze boundary layers, which were found to play an important role.
The boundary layer had a noticeable effect on all quantities except for pressure. These results make a strong case that
a boundary layer model must be added to the reduced-order model.

Whatever

Figure 3. Test figure

Appendix: Brent’s Method
A. Another Thing
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