- Math 416

Worksheet 9. Roots of unity and polynomial multiplication

Euler's Formula. $e^{i\theta} = \cos\theta + i\sin\theta$ (which remember represents the point $(\cos\theta, \sin\theta)$ on the unit circle in \mathbb{C} .)

Definition. An *n*th root of unity is a solution (in \mathbb{C}) to $z^n = 1$.

Problem 1.

- (a) Prove that for any integer k, the number $e^{2\pi i k/n}$ is a complex n^{th} root of unity. Where does it appear on the unit circle?
- (b) Find all solutions $\theta \in \mathbb{R}$ to $e^{i\theta} = 1$.
- (c) Prove that, for any $n \in \mathbb{N}$, the numbers

$$e^{2\pi i k/n}, \ k = 0, 1, \dots, n-1,$$

are the complex n^{th} roots of unity. (In particular, you must show that this is a list of n distinct numbers!) Draw a picture and indicate where these n points appear in the plane.

(d) Write $\zeta = e^{2\pi i/n}$. Prove that

$$1, \zeta, \zeta^2, \ldots, \zeta^{n-1}$$

is also a complete list of the n^{th} roots of unity.

- (e) Prove that if n is even, then squaring the n^{th} roots of unity gives a list (with repetitions) of the $(n/2)^{\text{th}}$ roots of unity.
- (f) Prove that if n is even, then the n^{th} roots of unity come in \pm pairs: ξ is an n^{th} root of unity iff $-\xi$ is. What about when n is odd?

Polynomial multiplication Given two polynomials $A(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ and $B(x) = b_0 + b_1x + b_2x^2 + \cdots + b_nx^n$, we would like to compute the coefficients of the product

$$A(x)B(x) = a_0b_0 + (a_0b_1 + a_1b_0)x + \dots + a_nb_nx^{2n}$$

= $c_0 + c_1x + \dots + c_{2n}x^{2n}$.

Problem 2. Find an explicit formula for the coefficient c_k of x^k in A(x)B(x), for k = 0, 1, ..., 2n.

Problem 3. Briefly discuss with your groupmates a naïve algorithm to multiply two degree n polynomials in $O(n^2)$ time.

Our goal is to find a D&C solution that runs in $O(n \log n)$ time. The main idea is to convert the polynomial to **point-value form**.

Problem 4. Discuss with your groupmates the assertion, a polynomial of degree n is determined by n + 1 of its values. Can you interpret this in terms of linear algebra?

So we need to translate between coefficient form and point-value form efficiently:

Problem 5. Show how evaluation at a single value x can be performed in linear time using *Horner's Rule*:

$$A(x) = a_0 + x(a_1 + x(a_2 + \dots + x(a_{n-2} + x(a_{n-1} + a_n x))) \dots)$$

Do a small example, say a degree-3 polynomial.

So we need a way to interpolate quickly. The trick will be to choose the interpolation points x_k cleverly. But actually we won't worry much about interpolation yet; it will turn out by some magic that if we find a nice evaluation algorithm, then interpolation will fall right out of it.

Problem 6. Explain how, if we could both interpolate polynomials in $O(n \log n)$ and evaluate at n points in $O(n \log n)$ time, then we could multiply polynomials in $O(n \log n)$ time. Draw a diagram.

A preview: Choose the *n* points for interpolation in \pm pairs, so that the even powers of $\pm x_k$ are the same:

$$\pm x_0, \pm x_1, \dots, \pm x_{n/2-1}.$$

Then we can split A(x) up as a sum $A(x) = A_E(x^2) + xA_O(x^2)$, where A_E and A_O are each polynomials of degree $\frac{n}{2} - 1$. These lower-degree polynomials have to be evaluated at n/2 points each:

$$(x_0)^2, (x_1)^2, \dots, (x_{n/2-1})^2.$$

But, (uh-oh!), these n/2 points no longer come in \pm pairs! How do we continue the recursion?! **Answer:** By evaluating at the n^{th} roots of unity in \mathbb{C} (!), which we will explore on the next worksheet.

In case you're fast, like last time:

We want to interpolate! That is, we still want to be able to take n values of a polynomial $A(x_0), A(x_1), \ldots, A(x_{n-1})$ and return its coefficients $a_0, a_1, \ldots, a_{n-1}$. This problem can be thought of in terms of matrices:

$$\begin{bmatrix} A(x_0) \\ A(x_1) \\ \vdots \\ A(x_{n-1}) \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

Problem 7 (Challenging!). The large $n \times n$ matrix M is called a Vandermonde matrix. Prove that if the x_i s are distinct, then the Vandermonde matrix is invertible.