## Worksheet 9. Roots of unity and polynomial multiplication

Euler's Formula. $e^{i \theta}=\cos \theta+i \sin \theta$ (which remember represents the point $(\cos \theta, \sin \theta)$ on the unit circle in $\mathbb{C}$.)

Definition. An $n$th root of unity is a solution (in $\mathbb{C}$ ) to $z^{n}=1$.

## Problem 1.

(a) Prove that for any integer $k$, the number $e^{2 \pi i k / n}$ is a complex $n^{\text {th }}$ root of unity. Where does it appear on the unit circle?
(b) Find all solutions $\theta \in \mathbb{R}$ to $e^{i \theta}=1$.
(c) Prove that, for any $n \in \mathbb{N}$, the numbers

$$
e^{2 \pi i k / n}, k=0,1, \ldots, n-1
$$

are the complex $n^{\text {th }}$ roots of unity. (In particular, you must show that this is a list of $n$ distinct numbers!) Draw a picture and indicate where these $n$ points appear in the plane.
(d) Write $\zeta=e^{2 \pi i / n}$. Prove that

$$
1, \zeta, \zeta^{2}, \ldots, \zeta^{n-1}
$$

is also a complete list of the $n^{\text {th }}$ roots of unity.
(e) Prove that if $n$ is even, then squaring the $n^{\text {th }}$ roots of unity gives a list (with repetitions) of the $(n / 2)^{\text {th }}$ roots of unity.
(f) Prove that if $n$ is even, then the $n^{\text {th }}$ roots of unity come in $\pm$ pairs: $\xi$ is an $n^{\text {th }}$ root of unity iff $-\xi$ is. What about when $n$ is odd?

Polynomial multiplication Given two polynomials $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ and $B(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{n}$, we would like to compute the coefficients of the product

$$
\begin{aligned}
A(x) B(x) & =a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\cdots+a_{n} b_{n} x^{2 n} \\
& =c_{0}+c_{1} x+\cdots+c_{2 n} x^{2 n} .
\end{aligned}
$$

Problem 2. Find an explicit formula for the coefficient $c_{k}$ of $x^{k}$ in $A(x) B(x)$, for $k=$ $0,1, \ldots, 2 n$.

Problem 3. Briefly discuss with your groupmates a naïve algorithm to multiply two degree $n$ polynomials in $O\left(n^{2}\right)$ time.

Our goal is to find a $\mathrm{D} \& \mathrm{C}$ solution that runs in $O(n \log n)$ time. The main idea is to convert the polynomial to point-value form.

Problem 4. Discuss with your groupmates the assertion, a polynomial of degree $n$ is determined by $n+1$ of its values. Can you interpret this in terms of linear algebra?

So we need to translate between coefficient form and point-value form efficiently:


Problem 5. Show how evaluation at a single value $x$ can be performed in linear time using Horner's Rule:

$$
A(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+\cdots+x\left(a_{n-2}+x\left(a_{n-1}+a_{n} x\right)\right) \cdots\right)\right.
$$

Do a small example, say a degree-3 polynomial.
So we need a way to interpolate quickly. The trick will be to choose the interpolation points $x_{k}$ cleverly. But actually we won't worry much about interpolation yet; it will turn out by some magic that if we find a nice evaluation algorithm, then interpolation will fall right out of it.

Problem 6. Explain how, if we could both interpolate polynomials in $O(n \log n)$ and evaluate at $n$ points in $O(n \log n)$ time, then we could multiply polynomials in $O(n \log n)$ time. Draw a diagram.

A preview: Choose the $n$ points for interpolation in $\pm$ pairs, so that the even powers of $\pm x_{k}$ are the same:

$$
\pm x_{0}, \pm x_{1}, \ldots, \pm x_{n / 2-1}
$$

Then we can split $A(x)$ up as a sum $A(x)=A_{E}\left(x^{2}\right)+x A_{O}\left(x^{2}\right)$, where $A_{E}$ and $A_{O}$ are each polynomials of degree $\frac{n}{2}-1$. These lower-degree polynomials have to be evaluated at $n / 2$ points each:

$$
\left(x_{0}\right)^{2},\left(x_{1}\right)^{2}, \ldots,\left(x_{n / 2-1}\right)^{2} .
$$

But, (uh-oh!), these $n / 2$ points no longer come in $\pm$ pairs! How do we continue the recursion?! Answer: By evaluating at the $n^{\text {th }}$ roots of unity in $\mathbb{C}(!)$, which we will explore on the next worksheet.

## In case you're fast, like last time:

We want to interpolate! That is, we still want to be able to take $n$ values of a polynomial $A\left(x_{0}\right), A\left(x_{1}\right), \ldots, A\left(x_{n-1}\right)$ and return its coefficients $a_{0}, a_{1}, \ldots, a_{n-1}$. This problem can be thought of in terms of matrices:

$$
\left[\begin{array}{c}
A\left(x_{0}\right) \\
A\left(x_{1}\right) \\
\vdots \\
A\left(x_{n-1}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}{ }^{2} & \cdots & x_{0}{ }^{n-1} \\
1 & x_{1} & x_{1}{ }^{2} & \cdots & x_{1}{ }^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n-1} & x_{n-1}{ }^{2} & \cdots & x_{n-1}{ }^{n-1}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right] .
$$

Problem 7 (Challenging!). The large $n \times n$ matrix $M$ is called a Vandermonde matrix. Prove that if the $x_{i} \mathrm{~s}$ are distinct, then the Vandermonde matrix is invertible.

