The problem. Given a list $P=\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right]$ of n points in the plane, find the pair $(i, j)(i \neq j)$ minimizing the distance

$$
d\left(\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right)\right)=\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}} .
$$

Problem 1. There aren't all that many pairs (i, j) to check. What's the (asymptotic worst-case) complexity of the brute-force solution?
Problem 2. How efficiently can you solve the problem in 1 dimension? (That is, you are given a list of numbers on the number line, not a list of points.)
(Hint: Sort the list first.)
Problem 3. Since the 1-dimensional version of the problem can be solved so efficiently, you might hope that you could simply examine the two points with closest x-coordinate (or closest y-coordinate) and look among those for the closest points. Show by giving an example or two that this will not work.

We make the following simplification:
Assume all x-coordinates x_{1}, \ldots, x_{n} are distinct.
Problem 4. We can easily (and efficiently) eliminate this assumption, for example by applying a rotation to the points that makes it true. Briefly discuss with your groupmates how this would work.

This is the general strategy for how the algorithm begins:

- Sort the input data by x-coordinate (in $O(n \log n)$ time).
- Find an x-value c such that $\lceil n / 2\rceil$ points lie in $L=(-\infty, c) \times \mathbb{R}$ and the remaining $\lfloor n / 2\rfloor$ points lie in $R=(c, \infty) \times \mathbb{R}$.
- Recursively find the closest pair p_{L}, q_{L} in L and the closest pair p_{R}, q_{R} in R.

Problem 5. Describe how to find c efficiently.
Let $\delta=\min \left(d\left(p_{L}, q_{L}\right), d\left(p_{R}, q_{R}\right)\right)$. Of course, there might be points lying on opposite sides of the line $x=c$ that are closer than δ from each other. So we need to figure out how to deal with that.

For simplicity we discard all points with $x_{i} \notin(c-\delta, c+\delta)$ and sort the remainder by y-coordinate.

Problem 6. Prove that any $\delta \times \delta$ square in the plane contains at most 4 points of L.
(Hint: Divide the square into four $\delta / 2 \times \delta / 2$ squares.)

Problem 7. Suppose that $p_{l}=\left(x_{l}, y_{l}\right) \in L$ and $p_{r}=$ $\left(x_{r}, y_{r}\right) \in R$ are the closest pair of points (among all the points)
(a) Explain why x_{l} and x_{r} must each lie in the interval $(c-\delta, c+\delta)$.
(b) Explain why p_{l} and p_{r} must lie in a $\delta \times 2 \delta$ rectangle centered on the vertical line $x=c$.
(c) Explain why at most 8 points of $L \cup R$ lie in the $\delta \times 2 \delta$ rectangle.

Problem 8. We can complete the recursive step of the algorithm as follows.
Sort the points by y-coordinate. Scan through the list sorted by y-coordinate and, for each point, compute its distance to each of the subsequent 7 points in the list. Let p_{M}, q_{M} be the closest pair found in this way, and return whichever of $\left(p_{L}, q_{L}\right),\left(p_{M}, q_{M}\right),\left(p_{R}, q_{R}\right)$ is closest.
Explain why this process produces the correct answer.
Problem 9. The worst-case running time $T(n)$ of this algorithm will satisfy a recurrence

$$
T(n)=a T(n / b)+f(n) .
$$

(a) What is a ? What is b ?
(b) What is the complexity class of $f(n)$? Remember that we sorted by y-coordinate in the assembly step.
(c) What would $f(n)$ be if we somehow didn't have to sort by y-coordinate at each level of the recursive tree?
(d) Does the Master Theorem apply here?

Fear not: on the Problem Set, you will explain how to clean all this up to achieve $f(n) \in O(n)$ and therefore $T(n) \in O(n \log n)$.

