- Math 416

Worksheet 8. A D&C method to find the closest pair

The problem. Given a list $P = [(x_1, y_1), \ldots, (x_n, y_n)]$ of *n* points in the plane, find the pair (i, j) $(i \neq j)$ minimizing the distance

$$d((x_i, y_i), (x_j, y_j)) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}.$$

Problem 1. There aren't all that many pairs (i, j) to check. What's the (asymptotic worst-case) complexity of the brute-force solution?

Problem 2. How efficiently can you solve the problem in 1 dimension? (That is, you are given a list of numbers on the number line, not a list of points.)

(*Hint:* Sort the list first.)

Problem 3. Since the 1-dimensional version of the problem can be solved so efficiently, you might hope that you could simply examine the two points with closest x-coordinate (or closest y-coordinate) and look among those for the closest points. Show by giving an example or two that this will not work.

We make the following simplification:

Assume all x-coordinates x_1, \ldots, x_n are distinct.

Problem 4. We can easily (and efficiently) eliminate this assumption, for example by applying a rotation to the points that makes it true. *Briefly* discuss with your groupmates how this would work.

This is the general strategy for how the algorithm begins:

- Sort the input data by x-coordinate (in $O(n \log n)$ time).
- Find an x-value c such that [n/2] points lie in L = (-∞, c) × ℝ and the remaining [n/2] points lie in R = (c, ∞) × ℝ.
- Recursively find the closest pair p_L, q_L in L and the closest pair p_R, q_R in R.

Problem 5. Describe how to find *c* efficiently.

Let $\delta = \min(d(p_L, q_L), d(p_R, q_R))$. Of course, there might be points lying on opposite sides of the line x = c that are closer than δ from each other. So we need to figure out how to deal with that.

For simplicity we discard all points with $x_i \notin (c - \delta, c + \delta)$ and sort the remainder by y-coordinate.

Problem 6. Prove that any $\delta \times \delta$ square in the plane contains at most 4 points of *L*.

(*Hint*: Divide the square into four $\delta/2 \times \delta/2$ squares.)

Problem 7. Suppose that $p_l = (x_l, y_l) \in L$ and $p_r = (x_r, y_r) \in R$ are the closest pair of points (among all the points)

- (a) Explain why x_l and x_r must each lie in the interval $(c \delta, c + \delta)$.
- (b) Explain why p_l and p_r must lie in a $\delta \times 2\delta$ rectangle centered on the vertical line x = c.
- (c) Explain why at most 8 points of $L \cup R$ lie in the $\delta \times 2\delta$ rectangle.

Problem 8. We can complete the recursive step of the algorithm as follows.

Sort the points by y-coordinate. Scan through the list sorted by y-coordinate and, for each point, compute its distance to each of the subsequent 7 points in the list. Let p_M, q_M be the closest pair found in this way, and return whichever of $(p_L, q_L), (p_M, q_M), (p_R, q_R)$ is closest.

Explain why this process produces the correct answer.

Problem 9. The worst-case running time T(n) of this algorithm will satisfy a recurrence

$$T(n) = aT(n/b) + f(n).$$

- (a) What is a? What is b?
- (b) What is the complexity class of f(n)? Remember that we sorted by y-coordinate in the assembly step.
- (c) What would f(n) be if we somehow didn't have to sort by y-coordinate at each level of the recursive tree?
- (d) Does the Master Theorem apply here?

Fear not: on the Problem Set, you will explain how to clean all this up to achieve $f(n) \in O(n)$ and therefore $T(n) \in O(n \log n)$.