Worksheet 5. Divide \& Conquer I

We start to understand our first paradigm of algorithm design, Divide and Conquer. D\&C algorithms follow this strategy:

- Break the problem into subproblems that are smaller instances of the same problem.
- Recursively solve these subproblems.
- Merge (hopefully efficiently) solutions of the subproblems into solutions of the big problem.

Notes.

- Often D\&C is well-suited to problems for which brute-force search is already polynomial (e.g. finding the closest pair of points among n in the plane).
- Small improvements in steps of D\&C can add up to material improvements in the overall running time.
We focus now on an example of this second point.
Integer multiplication Recall that if x and y each have n bits then the gradeschool algorithm for computing $x \cdot y$ has running time $O\left(n^{2}\right)$.

Problem 1. Run the algorithm to compute 1100×1101, just to make sure you remember how it works. (You are more familiar with it in base-10, but it works the same way in base-2.)
Problem 2. Suppose that we are trying to multiply the two n-bit numbers x and y. Let x_{L} be the first $n / 2$ bits of x and x_{R} the last $n / 2$ bits. Similarly, let y_{L} be the first $n / 2$ bits of y and y_{R} the last $n / 2$ bits.
(a) Write two equations, one that expresses x in terms of x_{L} and x_{R} and another that expresses y in terms of y_{L} and y_{R}.
(b) Multiply your two equations to get an expression for $x y$ in terms of the four products $x_{L} y_{L}$, $x_{L} y_{R}, x_{R} y_{L}$, and $x_{R} y_{R}$ of two ($n / 2$)-bit integers.
(c) This suggests a $\mathrm{D} \& \mathrm{C}$ solution, since, using the previous part of the problem, you can compute $x y$ using four recursive calls to compute ($n / 2$)-bit instances. Explain why the worst-case running time $T(n)$ of this algorithm on inputs of size n satisfies the recurrence $T(n)=4 T(n / 2)+O(n)$.
(Unfortunately, as we'll see, functions $T(n)$ of this type are $\Theta\left(n^{2}\right)$. So we have not improved on the grade-school algorithm.)

Problem 3.

(a) After meditating on the equation

$$
a d+b c=(a+b)(c+d)-a c-b d,
$$

show that in fact three recursive calls to compute products of ($n / 2$)-bit numbers would suffice in Problem 2(c). ${ }^{1}$
(b) Write your algorithm in pseudocode and explain why its worst-case running time $T(n)$ satisfies the recurrence

$$
T(n)=3 T(n / 2)+O(n) .
$$

(c) By analyzing the tree of recursive calls, show that $T(n)$ is $O\left(n^{\log _{2} 3}\right)=O\left(n^{1.59}\right)$, which is sub-quadratic!
(Hint: You will probably need a standard log trick: $n^{\log _{b}(a)}=a^{\log _{b}(n)}$.)

[^0]Strassen's Trick for matrix multiplication A similar trick allows us to speed up matrix multiplication a bit. Suppose that we want to multiply two $n \times n$ matrices, X and Y, each of which we divide into four $n / 2 \times n / 2$ blocks:

$$
X=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \quad Y=\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right] .
$$

Problem 4. The product $X Y$ can be computed blockwise. Fill in the remaining entries:

$$
X Y=[A E+B G]
$$

This suggests a D\&C strategy for multiplying matrices: recursively compute eight $n / 2 \times n / 2$ matrix products $A E, B G$, etc., and do a few $O\left(n^{2}\right)$ additions of $n \times n$ matrices. Unfortunately this gives $O\left(n^{3}\right)$ running time, the same as the usual linear algebra algorithm.

Strassen's trick allows us to get away with only 7 multiplications. They are these:

$$
\begin{aligned}
& P_{1}=A(F-H) \\
& P_{2}=(A+B) H \\
& P_{3}=(C+D) E \\
& P_{4}=D(G-E)
\end{aligned}
$$

$$
\begin{aligned}
& P_{5}=(A+D)(E+H) \\
& P_{6}=(B-D)(G+H) \\
& P_{7}=(C-A)(E+F)
\end{aligned}
$$

Problem 5. Pick a couple of entries of $X Y$ and show that they can be computed by adding and subtracting some of the seven Strassen products P_{1}, \ldots, P_{7}.

Problem 6. Explain how we can compound these savings into an algorithm for multiplying $n \times n$ matrices whose worst-case running time $T(n)$ satisfies the recurrence $T(n)=7 T(n / 2)+O\left(n^{2}\right)$ and is therefore $O\left(n^{\log _{2} 7}\right)=O\left(n^{2.807}\right)$.

[^0]: ${ }^{1}$ You're right! Actually maybe one of them is a product of two $(n / 2+1)$-bit integers. But that doesn't affect the asymptotic analysis, luckily.

