Worksheet 3. Basics of algorithm analysis

I. Big-O Notation.

Definition (Big $O, \operatorname{Big} \Omega, \operatorname{Big} \Theta$). Fix a function $f: \mathbb{N} \rightarrow \mathbb{N}$ (sometimes we abuse notation and allow functions $f: \mathbb{N} \rightarrow \mathbb{R}^{\geq 0}$ or others... Sorry!):

$$
\begin{aligned}
& O(f(n)):=\left\{g: \mathbb{N} \rightarrow \mathbb{N} \left\lvert\, \begin{array}{l}
\exists C>0, N_{0} \in \mathbb{N} \\
\text { s.t. } \forall n \geq N_{0}, g(n) \leq C f(n)
\end{array}\right.\right\} . \\
& \Omega(f(n)):=\left\{g: \mathbb{N} \rightarrow \mathbb{N} \left\lvert\, \begin{array}{l}
\exists C>0, N_{0} \in \mathbb{N} \\
\text { s.t. } \forall n \geq N_{0}, C f(n) \leq g(n)
\end{array}\right.\right\} . \\
& \Theta(f(n)):=O(f(n)) \cap \Omega(f(n))
\end{aligned}
$$

Definition. An algorithm has polynomial run time if $T(n)$ is $O\left(n^{d}\right)$ for some d.
Problem 1. Discuss in less formal terms what it means for a function $g(n)$ to be $O\left(n^{2}\right), \Omega\left(\log _{2}(n)\right)$, or $\Theta(n)$. Can you come up with a function that is simultaneously all three?

Problem 2. Prove that an algorithm with polynomial running time has the following desirable property: doubling the input size results in slowing down the running time by a constant factor.

We are never going to prove something as precise as, 'the running time on inputs of size n is exactly $\sqrt{3} n^{2}+3 n+81$.'

There is no sense in being precise when you don't even know what you're talking about.
-John Von Neumann
Problem 3. What purpose do the constants C and N_{0} serve in the definition of $O(f(n))$? Discuss in your group why we use this definition and don't simply require $T(n) \leq f(n)$ for all n.
Problem 4. Prove in each case that T is $O(f)$, by finding specific values of the constants C and N_{0} as required by the definition.
(a) $T(n)=16 n^{2}+11 n+1, f(n)=n^{2}$.
(b) $T(n)=a n^{2}+b n+c, f(n)=n^{2}$. (Arbitrary constants a, b, c.)

Problem 5. Prove that $T(n)$ is $\Omega(f(n))$ if and only if $f(n)$ is $O(T(n))$.

Problem 6.

(a) Are $\operatorname{logarithms~}$ with different bases asymptotically equivalent? That is, must $\log _{a}(n)$ be $\Theta\left(\log _{b}(n)\right) ?$
(b) What about exponentials with different bases? Must a^{n} be $\Theta\left(b^{n}\right)$?

Lemma (Important Lemma).
(1) If f and g are functions such that $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c>0$, then $f(n)$ is $\Theta(g(n))$.
(2) If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$, then $f(n)$ is $O(g(n))$ but is not $\Omega(g(n))$.

Problem 7. Prove the Important Lemma, as follows.
(a) Explain why there is a constant d such that

$$
\frac{d}{2} \leq \frac{f(n)}{g(n)} \leq \frac{3 d}{2}
$$

for all but finitely many n.
(b) Use part (a) to conclude that $f(n)$ is both $O(g(n))$ and $\Omega(g(n))$, completing the proof of part (1) of the lemma.
(c) Half of your argument for part (1) should give in part (2) that $f(n)$ is $O(g(n))$. Verify this.
(d) Carefully write down what it means for $f(n)$ to not be $\Omega(g(n))$. (I.e., negate the definition.)
(e) Carefully prove in part (2) that $f(n)$ is not $\Omega(g(n))$, by showing that no constants C and N_{0} work in the definition of big- Ω.

Problem 8. Prove that for any function $g: \mathbb{N} \rightarrow[1, \infty), g(n)$ is $\Theta(\lfloor g(n)\rfloor)$.
Problem 9. Use the Important Lemma and facts from calculus to prove the following.
(a) Let $p(n)=a_{0}+a_{1} n+\cdots+a_{d} n^{d}$ with $a_{d}>0$. Then $p(n)$ is $\Theta\left(n^{d}\right)$.
(b) $\log (n)$ is $O\left(n^{d}\right)$ for every $d>0$. (Including non-integer d, like $d=1 / 2$.)
(c) n^{d} is $O\left(r^{n}\right)$ for every $r>1$ and every $d>0$.

Problem 10 (Some basic properties of big-O). Prove the following.
(a) If $f(n)$ is $O(g(n))$ and $c>0$ is a constant, then $c f(n)$ is $O(g(n))$.
(b) If $f_{1}(n)$ is $O\left(g_{1}(n)\right)$ and $f_{2}(n)$ is $O\left(g_{2}(n)\right)$, then $f_{1}(n) f_{2}(n)$ is $O\left(g_{1}(n) g_{2}(n)\right)$.
(c) If $f_{1}(n)$ is $O\left(g_{1}(n)\right)$ and $f_{2}(n)$ is $O\left(g_{2}(n)\right)$, then $f_{1}(n)+f_{2}(n)$ is $O($ \qquad). (Find the best bound you can and prove that it works.)
(d) If f is $O(g(n))$ and $g(n)$ is $O(h(n))$, then $f(n)$ is $O(h(n))$.

II. Little o Notation.

Definition (Little o and Little ω). Fix a function $f: \mathbb{N} \rightarrow \mathbb{N}$:

$$
\begin{aligned}
& o(f(n)):=\left\{g: \mathbb{N} \rightarrow \mathbb{N} \left\lvert\, \begin{array}{l}
\forall C>0, \exists N_{0} \in \mathbb{N} \\
\text { s.t. } \forall n \geq N_{0}, g(n)<C f(n)
\end{array}\right.\right\} . \\
& \omega(f(n)):=\left\{g: \mathbb{N} \rightarrow \mathbb{N} \left\lvert\, \begin{array}{l}
\forall C>0, \exists N_{0} \in \mathbb{N} \\
\text { s.t. } \forall n \geq N_{0}, C f(n)<g(n)
\end{array}\right.\right\} .
\end{aligned}
$$

Problem 11. (Practice with little o)
(a) Which polynomials are in $o\left(n^{3}\right)$?
(b) Which exponential functions are in $o\left(2^{n}\right)$?
(c) Which logarithmic functions are in $o\left(\log _{2}(n)\right)$?

Problem 12. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function.
(a) Prove that $o(f(n)) \subset O(f(n))$ and $\omega(f(n)) \subset \Omega(f(n))$.
(b) Prove that $\Omega(f(n)) \cap o(f(n))=\emptyset$.

