
Math 416

Worksheet 3. Basics of algorithm analysis

I. Big-O Notation.

Definition (Big O, Big Ω, Big Θ). Fix a function f : N→N (sometimes we abuse notation and allow
functions f : N→R≥0 or others... Sorry!):

O(f(n)) :=

{
g : N→N

∣∣∣∣ ∃C > 0, N0 ∈ N
s.t. ∀n ≥ N0, g(n) ≤ Cf(n)

}
.

Ω(f(n)) :=

{
g : N→N

∣∣∣∣ ∃C > 0, N0 ∈ N
s.t. ∀n ≥ N0, Cf(n) ≤ g(n)

}
.

Θ(f(n)) := O(f(n)) ∩ Ω(f(n)).

Definition. An algorithm has polynomial run time if T (n) is O(nd) for some d.

Problem 1. Discuss in less formal terms what it means for a function g(n) to be O(n2), Ω(log2(n)),
or Θ(n). Can you come up with a function that is simultaneously all three?

Problem 2. Prove that an algorithm with polynomial running time has the following desirable
property: doubling the input size results in slowing down the running time by a constant factor.

We are never going to prove something as precise as, ‘the running time on inputs of size n is
exactly

√
3n2 + 3n + 81.’

There is no sense in being precise when you don’t even know what you’re talking
about.

-John Von Neumann

Problem 3. What purpose do the constants C and N0 serve in the definition of O(f(n))? Discuss
in your group why we use this definition and don’t simply require T (n) ≤ f(n) for all n.

Problem 4. Prove in each case that T is O(f), by finding specific values of the constants C and N0

as required by the definition.
(a) T (n) = 16n2 + 11n + 1, f(n) = n2.
(b) T (n) = an2 + bn + c, f(n) = n2. (Arbitrary constants a, b, c.)

Problem 5. Prove that T (n) is Ω(f(n)) if and only if f(n) is O(T (n)).

Problem 6.
(a) Are logarithms with different bases asymptotically equivalent? That is, must loga(n) be

Θ(logb(n))?
(b) What about exponentials with different bases? Must an be Θ(bn)?

Lemma (Important Lemma).

(1) If f and g are functions such that lim
n→∞

f(n)

g(n)
= c > 0, then f(n) is Θ(g(n)).

(2) If lim
n→∞

f(n)

g(n)
= 0, then f(n) is O(g(n)) but is not Ω(g(n)).

Problem 7. Prove the Important Lemma, as follows.
(a) Explain why there is a constant d such that

d

2
≤ f(n)

g(n)
≤ 3d

2

for all but finitely many n.

(b) Use part (a) to conclude that f(n) is both O(g(n)) and Ω(g(n)), completing the proof of
part (1) of the lemma.

(c) Half of your argument for part (1) should give in part (2) that f(n) is O(g(n)). Verify this.
(d) Carefully write down what it means for f(n) to not be Ω(g(n)). (I.e., negate the definition.)
(e) Carefully prove in part (2) that f(n) is not Ω(g(n)), by showing that no constants C and

N0 work in the definition of big-Ω.

Problem 8. Prove that for any function g : N→[1,∞), g(n) is Θ(bg(n)c).

Problem 9. Use the Important Lemma and facts from calculus to prove the following.
(a) Let p(n) = a0 + a1n + · · ·+ adn

d with ad > 0. Then p(n) is Θ(nd).
(b) log(n) is O(nd) for every d > 0. (Including non-integer d, like d = 1/2.)
(c) nd is O(rn) for every r > 1 and every d > 0.

Problem 10 (Some basic properties of big-O). Prove the following.
(a) If f(n) is O(g(n)) and c > 0 is a constant, then cf(n) is O(g(n)).
(b) If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then f1(n)f2(n) is O(g1(n)g2(n)).
(c) If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then f1(n) + f2(n) is O().

(Find the best bound you can and prove that it works.)
(d) If f is O(g(n)) and g(n) is O(h(n)), then f(n) is O(h(n)).

II. Little o Notation.

Definition (Little o and Little ω). Fix a function f : N→N:

o(f(n)) :=

{
g : N→N

∣∣∣∣ ∀C > 0, ∃N0 ∈ N
s.t. ∀n ≥ N0, g(n) < Cf(n)

}
.

ω(f(n)) :=

{
g : N→N

∣∣∣∣ ∀C > 0, ∃N0 ∈ N
s.t. ∀n ≥ N0, Cf(n) < g(n)

}
.

Problem 11. (Practice with little o)
(a) Which polynomials are in o(n3)?
(b) Which exponential functions are in o(2n)?
(c) Which logarithmic functions are in o(log2(n))?

Problem 12. Let f : N→N be a function.
(a) Prove that o(f(n)) ⊂ O(f(n)) and ω(f(n)) ⊂ Ω(f(n)).
(b) Prove that Ω(f(n)) ∩ o(f(n)) = ∅.

	Basics of algorithm analysis

