- Math 416

Worksheet 3. Basics of algorithm analysis

I. Big-O Notation.

Definition (Big O, Big Ω , Big Θ). Fix a function $f : \mathbb{N} \to \mathbb{N}$ (sometimes we abuse notation and allow functions $f : \mathbb{N} \to \mathbb{R}^{\geq 0}$ or others... Sorry!):

$$O(f(n)) := \left\{ g \colon \mathbb{N} \to \mathbb{N} \middle| \begin{array}{l} \exists C > 0, N_0 \in \mathbb{N} \\ \text{s.t.} \quad \forall n \ge N_0, \ g(n) \le Cf(n) \end{array} \right\}.$$
$$\Omega(f(n)) := \left\{ g \colon \mathbb{N} \to \mathbb{N} \middle| \begin{array}{l} \exists C > 0, N_0 \in \mathbb{N} \\ \text{s.t.} \quad \forall n \ge N_0, \ Cf(n) \le g(n) \end{array} \right\}.$$
$$\Theta(f(n)) := O(f(n)) \cap \Omega(f(n)).$$

Definition. An algorithm has polynomial run time if T(n) is $O(n^d)$ for some d.

Problem 1. Discuss in less formal terms what it means for a function g(n) to be $O(n^2)$, $\Omega(\log_2(n))$, or $\Theta(n)$. Can you come up with a function that is simultaneously all three?

Problem 2. Prove that an algorithm with polynomial running time has the following desirable property: doubling the input size results in slowing down the running time by a *constant* factor.

We are never going to prove something as precise as, 'the running time on inputs of size n is exactly $\sqrt{3}n^2 + 3n + 81$.'

There is no sense in being precise when you don't even know what you're talking about.

-John Von Neumann

Problem 3. What purpose do the constants C and N_0 serve in the definition of O(f(n))? Discuss in your group why we use this definition and don't simply require $T(n) \leq f(n)$ for all n.

Problem 4. Prove in each case that T is O(f), by finding specific values of the constants C and N_0 as required by the definition.

- (a) $T(n) = 16n^2 + 11n + 1, f(n) = n^2.$
- (b) $T(n) = an^2 + bn + c$, $f(n) = n^2$. (Arbitrary constants a, b, c.)

Problem 5. Prove that T(n) is $\Omega(f(n))$ if and only if f(n) is O(T(n)).

Problem 6.

- (a) Are logarithms with different bases asymptotically equivalent? That is, must $\log_a(n)$ be $\Theta(\log_b(n))$?
- (b) What about exponentials with different bases? Must a^n be $\Theta(b^n)$?

Lemma (Important Lemma).

- (1) If f and g are functions such that $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c > 0$, then f(n) is $\Theta(g(n))$.
- (2) If $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$, then f(n) is O(g(n)) but is not $\Omega(g(n))$.

Problem 7. Prove the Important Lemma, as follows.

(a) Explain why there is a constant d such that

$$\frac{d}{2} \le \frac{f(n)}{g(n)} \le \frac{3d}{2}$$

for all but finitely many n.

- (b) Use part (a) to conclude that f(n) is both O(g(n)) and $\Omega(g(n))$, completing the proof of part (1) of the lemma.
- (c) Half of your argument for part (1) should give in part (2) that f(n) is O(g(n)). Verify this.
- (d) Carefully write down what it means for f(n) to not be $\Omega(g(n))$. (I.e., negate the definition.)
- (e) Carefully prove in part (2) that f(n) is not $\Omega(g(n))$, by showing that no constants C and N_0 work in the definition of big- Ω .

Problem 8. Prove that for any function $g: \mathbb{N} \to [1, \infty), g(n)$ is $\Theta(|g(n)|)$.

Problem 9. Use the Important Lemma and facts from calculus to prove the following.

- (a) Let $p(n) = a_0 + a_1 n + \dots + a_d n^d$ with $a_d > 0$. Then p(n) is $\Theta(n^d)$.
- (b) $\log(n)$ is $O(n^d)$ for every d > 0. (Including non-integer d, like d = 1/2.)
- (c) n^d is $O(r^n)$ for every r > 1 and every d > 0.

Problem 10 (Some basic properties of big-O). Prove the following.

- (a) If f(n) is O(g(n)) and c > 0 is a constant, then cf(n) is O(g(n)).
- (b) If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n)f_2(n)$ is $O(g_1(n)g_2(n))$.
- (c) If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is O((Find the best bound you can and prove that it works.)
- (d) If f is O(g(n)) and g(n) is O(h(n)), then f(n) is O(h(n)).

II. Little o Notation.

Definition (Little o and Little ω). Fix a function $f: \mathbb{N} \to \mathbb{N}$:

$$o(f(n)) := \left\{ g \colon \mathbb{N} \to \mathbb{N} \middle| \begin{array}{l} \forall C > 0, \ \exists N_0 \in \mathbb{N} \\ \text{s.t.} \ \forall n \ge N_0, \ g(n) < Cf(n) \end{array} \right\}.$$
$$\omega(f(n)) := \left\{ g \colon \mathbb{N} \to \mathbb{N} \middle| \begin{array}{l} \forall C > 0, \ \exists N_0 \in \mathbb{N} \\ \text{s.t.} \ \forall n \ge N_0, \ Cf(n) < g(n) \end{array} \right\}.$$

Problem 11. (Practice with little o)

- (a) Which polynomials are in $o(n^3)$?
- (b) Which exponential functions are in $o(2^n)$?
- (c) Which logarithmic functions are in $o(\log_2(n))$?

Problem 12. Let $f : \mathbb{N} \to \mathbb{N}$ be a function.

- (a) Prove that $o(f(n)) \subset O(f(n))$ and $\omega(f(n)) \subset \Omega(f(n))$.
- (b) Prove that $\Omega(f(n)) \cap o(f(n)) = \emptyset$.