Math 416
(Worksheet 23. Satisfiability

Satisfiability. Suppose that we have a supply of boolean variables z1,. .., z,, each of which can
take the value 0 (i.e., ‘false’) or 1 (i.e., ‘true’).

e A term is either one of these variables or its negation: xj or —xy.

e A clause is a disjunction of terms: e.g. 1 V x3 V —x5. (The symbol V means OR, and the
symbol A means AND.)

e A truth assignment is a function v: {z1,...,z,} — {0,1}.

e A truth assignment v satisfies a clause C' iff it causes C' to evaluate to true (= 1) under the
rules of Boolean logic.

Problem 1. Consider n = 3 and the truth assignment
ry — 0
V: g x2 — 1
xz3 — 0
Find a clause that v satisfies, and find one that it does not satisfy.

Definition. A truth assignment v satisfies a collection C1,...,Cy of clauses iff it satisfies all of
Cy,...,Cy, ie., iff v causes the conjunction

CiNCoyN---NCy
to evaluate to true (= 1) under the rules of Boolean logic.

e We say that the set {C1,...,Cy} of clauses is satisfiable iff there is a truth assignment v
that satisfies it.

e The algorithmic problem SAT is this: given a set of clauses C1,. .., Ck, determine whether
it’s satisfiable.
e An important special case is 3-SAT: given a set of clauses C1,...,Cy, each C; of length 3,

determine whether it’s satisfiable.

3-SAT (and hence SAT) is computationally hard: there is no known polynomial-time algorithm,
and other computationally hard problems reduce to 3-SAT.

Note! 3-SAT exhibits one-sided difficulty: if you are given a satisfying assignment, it is easy to
check that it works.

An approximation algorithm for 3-SAT. What if we turn 3-SAT into an optimization problem?
We could try to find a truth assignment satisfying as many clauses among C1, ..., C, as possible.

The simplest thing to do would be to simply assign truth values independently at random. Define
the following random variables:

7. - 1 if Cj is satisfied
7710 otherwise
And let Z be the number of satisfied clauses.

Problem 2.
(a) How are Z and Z1,..., Z, related?
(b) Fix j. What is the probability that C; is not satisfied? (Remember that each Cj is a clause
of size 3.)
(c) Find E[Z].
Problem 3. Explain why the following Theorem is true. Make sure that you understand its
significance; notice that it does not mention probability anywhere!

Theorem. For every instance of 3-SAT there is a truth assignment satisfying at least 7/8 of all
clauses.

Corollary. Every instance of 3-SAT with < 7 clauses is satisfiable.
Problem 4. Explain why the Corollary follows from the Theorem.

Problem 5 (For fun, if you want). Write down 7 clauses (each of 3 terms) in, say, 5 boolean
variables, and find a truth assignment that satisfies all of them.

Problem 6 (2-SAT). Describe and analyze a polynomial-time algorithm for solving 2-SAT. (So you
must determine satisfiability of all sets of clauses each of size 2.)

(Hint: This is hard if you haven’t seen it before. You can think of a length two clause as an implication
(why??), and then try to construct a directed graph and consider the strongly connected components. This is
a fun exercise, but if you get frustrated just move on!)

Poly-time reductions. Remember that we defined an efficient algorithm as one that runs in
polynomial time in the size of the input.

(To make this precise, we really need a real model of computation — a standard one is the Turing
Machine —but we will continue to pretend with our informal model of computation.)

Definition. If X and Y are two computational problems,' and there is an algorithm solving X that
runs in polynomial time and is allowed to make ‘black-box’ calls to an oracle for Y, then we write
X <p Y and say that X is polynomial-time-reducible to Y.

For example, suppose that Y itself can be solved in polynomial time. Then we can replace each
black-box call to an oracle for Y to a call to an (efficient) subroutine solving Y, and so:

Lemma. If X <p Y and Y can be solved in polynomial time, then so can X.

Problem 7. Suppose that X <p Y. Explain why, if X cannot be solved in polynomial time, then
neither can Y.

Definition. We write P for the set of problems that can be solved in polynomial time (without use
of any oracle).

Problem 8. Explain why X <pY and Y <p Z imply X <p Z.

Definition. A decision problem is a set X of finite binary strings (or a set of strings over any
finite alphabet). An algorithm A for a decision problem receives an input string s and returns the
value 0 (for false) or 1 (for true). We say that A solves the problem X if for all strings s, we have
A(s)=1iff s e X.

We say that A has polynomial running time if there is a polynomial function p so that for
every input string s, the algorithm A terminates on s in at most O(p(lh(s))) computation steps.
We write P for the set of decision problems X for which there exists an algorithm with polynomial
running time that solves X.

Problem 9. Explain how SAT and 3-SAT are (can be coded as) decision problems.
Definition. We say that B is an efficient certifier for a problem X if it has the following properties.

(i) B is a polynomial-time algorithm that takes two input arguments s and ¢.
(ii) There is a polynomial p so that for every string s we have s € X iff there is a string ¢ for

which 1h(¢) < p(lh(s)) and B(s,t) = 1.

You can take computational problem to mean subset X of N; and an algorithm solves X iff the algorithm returns 1
on input z if x € X and 0 otherwise. But it takes some thought to convince yourself that this definition captures all
the computational problems we want.

We think of the ¢ as a certificate or proof that s € X, and so s € X iff the certifier can certify
s € X efficiently.

Problem 10. Briefly describe an efficient certifier for SAT.

Problem 11. Explain how an efficient certifier can be used as the core component of a brute-force
algorithm for a problem X. What is its running time?
(Hint: Try all proofs.)

Definition. The class NP is the class of decision problems for which there exists an efficient certifier.

One of the most important open questions in math/theoretical computer science is. . .
Question. Does P = NP?

Most researchers believe the answer is No, but we don’t have a proof. It might interest you
to know that all of digital cryptography depends on the assumption that some problems in NP
are not in P.

Problem 12. Prove that P C NP.
(Hint: Assume that A is a poly-time algorithm that solves X; show that (s,t) — A(s) is an efficient
certifier for X.)

In the absence of a proof of P # NP, we analyze how far from being in P some hard problems in
NP are.
Definition. A decision problem X is NP-complete iff X € NP and Y <p X for all Y € NP.

Problem 13. Suppose that X is NP-complete. Prove that X € P iff P = NP.
Conclude that, in order to prove P # NP, it is enough to find an NP-complete problem and show
that it isn’t in P.

Problem 14. Suppose that X is NP-complete and that X <p Y. Prove that if Y € NP then Y is
NP-complete too.

Theorem. SAT is NP-complete. In fact, 3-SAT is NP-complete.

	Satisfiability

