
Math 416

Worksheet 23. Satisfiability

Satisfiability. Suppose that we have a supply of boolean variables x1, . . . , xn, each of which can
take the value 0 (i.e., ‘false’) or 1 (i.e., ‘true’).

• A term is either one of these variables or its negation: xk or ¬xk.
• A clause is a disjunction of terms: e.g. x1 ∨ x3 ∨ ¬x5. (The symbol ∨ means OR, and the
symbol ∧ means AND.)
• A truth assignment is a function v : {x1, . . . , xn} → {0, 1}.
• A truth assignment v satisfies a clause C iff it causes C to evaluate to true (= 1) under the
rules of Boolean logic.

Problem 1. Consider n = 3 and the truth assignment

v :


x1 7−→ 0

x2 7−→ 1

x3 7−→ 0

Find a clause that v satisfies, and find one that it does not satisfy.

Definition. A truth assignment v satisfies a collection C1, . . . , Ck of clauses iff it satisfies all of
C1, . . . , Ck, i.e., iff v causes the conjunction

C1 ∧ C2 ∧ · · · ∧ Ck

to evaluate to true (= 1) under the rules of Boolean logic.
• We say that the set {C1, . . . , Ck} of clauses is satisfiable iff there is a truth assignment v
that satisfies it.
• The algorithmic problem SAT is this: given a set of clauses C1, . . . , Ck, determine whether
it’s satisfiable.
• An important special case is 3-SAT: given a set of clauses C1, . . . , Ck, each Cl of length 3,
determine whether it’s satisfiable.

3-SAT (and hence SAT) is computationally hard: there is no known polynomial-time algorithm,
and other computationally hard problems reduce to 3-SAT.

Note! 3-SAT exhibits one-sided difficulty: if you are given a satisfying assignment, it is easy to
check that it works.

An approximation algorithm for 3-SAT. What if we turn 3-SAT into an optimization problem?
We could try to find a truth assignment satisfying as many clauses among C1, . . . , Cn as possible.

The simplest thing to do would be to simply assign truth values independently at random. Define
the following random variables:

Zj =

{
1 if Cj is satisfied
0 otherwise

And let Z be the number of satisfied clauses.

Problem 2.
(a) How are Z and Z1, . . . , Zn related?
(b) Fix j. What is the probability that Cj is not satisfied? (Remember that each Cj is a clause

of size 3.)
(c) Find E[Z].

Problem 3. Explain why the following Theorem is true. Make sure that you understand its
significance; notice that it does not mention probability anywhere!



Theorem. For every instance of 3-SAT there is a truth assignment satisfying at least 7/8 of all
clauses.

Corollary. Every instance of 3-SAT with ≤ 7 clauses is satisfiable.

Problem 4. Explain why the Corollary follows from the Theorem.

Problem 5 (For fun, if you want). Write down 7 clauses (each of 3 terms) in, say, 5 boolean
variables, and find a truth assignment that satisfies all of them.

Problem 6 (2-SAT). Describe and analyze a polynomial-time algorithm for solving 2-SAT. (So you
must determine satisfiability of all sets of clauses each of size 2.)

(Hint: This is hard if you haven’t seen it before. You can think of a length two clause as an implication
(why??), and then try to construct a directed graph and consider the strongly connected components. This is
a fun exercise, but if you get frustrated just move on!)

Poly-time reductions. Remember that we defined an efficient algorithm as one that runs in
polynomial time in the size of the input.

(To make this precise, we really need a real model of computation—a standard one is the Turing
Machine—but we will continue to pretend with our informal model of computation.)

Definition. If X and Y are two computational problems,1 and there is an algorithm solving X that
runs in polynomial time and is allowed to make ‘black-box’ calls to an oracle for Y , then we write
X ≤P Y and say that X is polynomial-time-reducible to Y .

For example, suppose that Y itself can be solved in polynomial time. Then we can replace each
black-box call to an oracle for Y to a call to an (efficient) subroutine solving Y , and so:

Lemma. If X ≤P Y and Y can be solved in polynomial time, then so can X.

Problem 7. Suppose that X ≤P Y . Explain why, if X cannot be solved in polynomial time, then
neither can Y .

Definition. We write P for the set of problems that can be solved in polynomial time (without use
of any oracle).

Problem 8. Explain why X ≤P Y and Y ≤P Z imply X ≤P Z.

Definition. A decision problem is a set X of finite binary strings (or a set of strings over any
finite alphabet). An algorithm A for a decision problem receives an input string s and returns the
value 0 (for false) or 1 (for true). We say that A solves the problem X if for all strings s, we have
A(s) = 1 iff s ∈ X.

We say that A has polynomial running time if there is a polynomial function p so that for
every input string s, the algorithm A terminates on s in at most O(p(lh(s))) computation steps.
We write P for the set of decision problems X for which there exists an algorithm with polynomial
running time that solves X.

Problem 9. Explain how SAT and 3-SAT are (can be coded as) decision problems.

Definition. We say that B is an efficient certifier for a problem X if it has the following properties.
(i) B is a polynomial-time algorithm that takes two input arguments s and t.
(ii) There is a polynomial p so that for every string s we have s ∈ X iff there is a string t for

which lh(t) ≤ p(lh(s)) and B(s, t) = 1.

1You can take computational problem to mean subset X of N; and an algorithm solves X iff the algorithm returns 1
on input x if x ∈ X and 0 otherwise. But it takes some thought to convince yourself that this definition captures all
the computational problems we want.



We think of the t as a certificate or proof that s ∈ X, and so s ∈ X iff the certifier can certify
s ∈ X efficiently.

Problem 10. Briefly describe an efficient certifier for SAT.

Problem 11. Explain how an efficient certifier can be used as the core component of a brute-force
algorithm for a problem X. What is its running time?

(Hint: Try all proofs.)

Definition. The class NP is the class of decision problems for which there exists an efficient certifier.

One of the most important open questions in math/theoretical computer science is. . .

Question. Does P = NP?

Most researchers believe the answer is No, but we don’t have a proof. It might interest you
to know that all of digital cryptography depends on the assumption that some problems in NP
are not in P.

Problem 12. Prove that P ⊆ NP.
(Hint: Assume that A is a poly-time algorithm that solves X; show that (s, t) 7→ A(s) is an efficient

certifier for X.)

In the absence of a proof of P 6= NP, we analyze how far from being in P some hard problems in
NP are.

Definition. A decision problem X is NP-complete iff X ∈ NP and Y ≤P X for all Y ∈ NP.

Problem 13. Suppose that X is NP-complete. Prove that X ∈ P iff P = NP.
Conclude that, in order to prove P 6= NP, it is enough to find an NP-complete problem and show

that it isn’t in P.

Problem 14. Suppose that X is NP-complete and that X ≤P Y . Prove that if Y ∈ NP then Y is
NP-complete too.

Theorem. SAT is NP-complete. In fact, 3-SAT is NP-complete.


	Satisfiability

