Worksheet 23. Satisfiability

Satisfiability. Suppose that we have a supply of boolean variables x_{1}, \ldots, x_{n}, each of which can take the value 0 (i.e., 'false') or 1 (i.e., 'true').

- A term is either one of these variables or its negation: x_{k} or $\neg x_{k}$.
- A clause is a disjunction of terms: e.g. $x_{1} \vee x_{3} \vee \neg x_{5}$. (The symbol \vee means OR, and the symbol \wedge means AND.)
- A truth assignment is a function $v:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{0,1\}$.
- A truth assignment v satisfies a clause C iff it causes C to evaluate to true ($=1$) under the rules of Boolean logic.

Problem 1. Consider $n=3$ and the truth assignment

$$
v:\left\{\begin{array}{lll}
x_{1} & \longmapsto & 0 \\
x_{2} & \longmapsto & 1 \\
x_{3} & \longmapsto & 0
\end{array}\right.
$$

Find a clause that v satisfies, and find one that it does not satisfy.
Definition. A truth assignment v satisfies a collection C_{1}, \ldots, C_{k} of clauses iff it satisfies all of C_{1}, \ldots, C_{k}, i.e., iff v causes the conjunction

$$
C_{1} \wedge C_{2} \wedge \cdots \wedge C_{k}
$$

to evaluate to true ($=1$) under the rules of Boolean logic.

- We say that the set $\left\{C_{1}, \ldots, C_{k}\right\}$ of clauses is satisfiable iff there is a truth assignment v that satisfies it.
- The algorithmic problem SAT is this: given a set of clauses C_{1}, \ldots, C_{k}, determine whether it's satisfiable.
- An important special case is 3-SAT: given a set of clauses C_{1}, \ldots, C_{k}, each C_{l} of length 3 , determine whether it's satisfiable.

3-SAT (and hence SAT) is computationally hard: there is no known polynomial-time algorithm, and other computationally hard problems reduce to 3-SAT.

Note! 3-SAT exhibits one-sided difficulty: if you are given a satisfying assignment, it is easy to check that it works.

An approximation algorithm for 3-SAT. What if we turn 3-SAT into an optimization problem? We could try to find a truth assignment satisfying as many clauses among C_{1}, \ldots, C_{n} as possible.

The simplest thing to do would be to simply assign truth values independently at random. Define the following random variables:

$$
Z_{j}= \begin{cases}1 & \text { if } C_{j} \text { is satisfied } \\ 0 & \text { otherwise }\end{cases}
$$

And let Z be the number of satisfied clauses.

Problem 2.

(a) How are Z and Z_{1}, \ldots, Z_{n} related?
(b) Fix j. What is the probability that C_{j} is not satisfied? (Remember that each C_{j} is a clause of size 3.)
(c) Find $E[Z]$.

Problem 3. Explain why the following Theorem is true. Make sure that you understand its significance; notice that it does not mention probability anywhere!

Theorem. For every instance of 3-SAT there is a truth assignment satisfying at least $7 / 8$ of all clauses.

Corollary. Every instance of 3-SAT with ≤ 7 clauses is satisfiable.
Problem 4. Explain why the Corollary follows from the Theorem.
Problem 5 (For fun, if you want). Write down 7 clauses (each of 3 terms) in, say, 5 boolean variables, and find a truth assignment that satisfies all of them.

Problem 6 (2-SAT). Describe and analyze a polynomial-time algorithm for solving 2-SAT. (So you must determine satisfiability of all sets of clauses each of size 2.)
(Hint: This is hard if you haven't seen it before. You can think of a length two clause as an implication (why??), and then try to construct a directed graph and consider the strongly connected components. This is a fun exercise, but if you get frustrated just move on!)

Poly-time reductions. Remember that we defined an efficient algorithm as one that runs in polynomial time in the size of the input.
(To make this precise, we really need a real model of computation - a standard one is the Turing Machine - but we will continue to pretend with our informal model of computation.)
Definition. If X and Y are two computational problems, ${ }^{1}$ and there is an algorithm solving X that runs in polynomial time and is allowed to make 'black-box' calls to an oracle for Y, then we write $X \leq_{P} Y$ and say that X is polynomial-time-reducible to Y.

For example, suppose that Y itself can be solved in polynomial time. Then we can replace each black-box call to an oracle for Y to a call to an (efficient) subroutine solving Y, and so:

Lemma. If $X \leq_{P} Y$ and Y can be solved in polynomial time, then so can X.
Problem 7. Suppose that $X \leq_{P} Y$. Explain why, if X cannot be solved in polynomial time, then neither can Y.

Definition. We write P for the set of problems that can be solved in polynomial time (without use of any oracle).

Problem 8. Explain why $X \leq_{P} Y$ and $Y \leq_{P} Z$ imply $X \leq_{P} Z$.
Definition. A decision problem is a set X of finite binary strings (or a set of strings over any finite alphabet). An algorithm A for a decision problem receives an input string s and returns the value 0 (for false) or 1 (for true). We say that A solves the problem X if for all strings s, we have $A(s)=1$ iff $s \in X$.

We say that A has polynomial running time if there is a polynomial function p so that for every input string s, the algorithm A terminates on s in at most $O(p(\operatorname{lh}(s)))$ computation steps. We write P for the set of decision problems X for which there exists an algorithm with polynomial running time that solves X.

Problem 9. Explain how SAT and 3-SAT are (can be coded as) decision problems.
Definition. We say that B is an efficient certifier for a problem X if it has the following properties.
(i) B is a polynomial-time algorithm that takes two input arguments s and t.
(ii) There is a polynomial p so that for every string s we have $s \in X$ iff there is a string t for which $\operatorname{lh}(t) \leq p(\operatorname{lh}(s))$ and $B(s, t)=1$.

[^0]We think of the t as a certificate or proof that $s \in X$, and so $s \in X$ iff the certifier can certify $s \in X$ efficiently.

Problem 10. Briefly describe an efficient certifier for SAT.
Problem 11. Explain how an efficient certifier can be used as the core component of a brute-force algorithm for a problem X. What is its running time?
(Hint: Try all proofs.)
Definition. The class NP is the class of decision problems for which there exists an efficient certifier.
One of the most important open questions in math/theoretical computer science is...
Question. Does $P=N P ?$
Most researchers believe the answer is No, but we don't have a proof. It might interest you to know that all of digital cryptography depends on the assumption that some problems in NP are not in P.

Problem 12. Prove that $\mathrm{P} \subseteq$ NP.
(Hint: Assume that A is a poly-time algorithm that solves X; show that $(s, t) \mapsto A(s)$ is an efficient certifier for X.)

In the absence of a proof of $P \neq N P$, we analyze how far from being in P some hard problems in NP are.

Definition. A decision problem X is NP-complete iff $X \in$ NP and $Y \leq_{P} X$ for all $Y \in$ NP.
Problem 13. Suppose that X is NP-complete. Prove that $X \in \mathrm{P}$ iff $\mathrm{P}=\mathrm{NP}$.
Conclude that, in order to prove $\mathrm{P} \neq \mathrm{NP}$, it is enough to find an NP-complete problem and show that it isn't in P.

Problem 14. Suppose that X is NP-complete and that $X \leq_{P} Y$. Prove that if $Y \in N P$ then Y is NP-complete too.
Theorem. SAT is NP-complete. In fact, 3-SAT is NP-complete.

[^0]: ${ }^{1}$ You can take computational problem to mean subset X of \mathbb{N}; and an algorithm solves X iff the algorithm returns 1 on input x if $x \in X$ and 0 otherwise. But it takes some thought to convince yourself that this definition captures all the computational problems we want.

