
Math 416

Worksheet 21. Intro to Probabilistic Algorithms

There are a lot of problems in this worksheet. Make sure you spend some time on to the Monte
Carlo Algorithm section of the worksheet.

Part I. Crash course in basic probability

Events and probabilities

Definition. A discrete probability space is a finite or countable set Ω of outcomes together
with a function (called a probability measure) P : Powerset(Ω)→ R satisfying the following three
conditions.

(i) for every event E ⊆ Ω, P (E) ∈ [0, 1];
(ii) P (Ω) = 1 ;
(iii) P is countably additive: whenever A1, A2, . . . ⊆ Ω is a (finite or countable) list of pairwise

disjoint events (j 6= k implies Aj ∩Ak = ∅), then

P

⋃
k≥1

Ak

 =
∑
k≥1

P (Ak).

Problem 1. Use the definitions to prove the following:
(1) Prove that if A ⊆ B then P (A) ≤ P (B).
(2) (Inclusion–Exclusion Principle):

P (A ∪B) = P (A) + P (B)− P (A ∩B).

(3) (Continuity lemma): If A1 ∪A2 ∪ · · · is an increasing sequence of events, then

P

⋃
k≥1

Ak

 = lim
k→∞

P (Ak).

Corollary (Union Bound). The following bound applies to any sequence A1, A2, . . . of events
(countably infinite or finite).

P

⋃
n≥1

An

 ≤∑
n≥1

P (An).

Conditional probabilities and independence

Definition. If P (B) > 0 then we define the conditional probability of A given B as

P (A | B) =
P (A ∩B)

P (B)
.

(Sometimes it is useful to rearrange this: P (A ∩B) = P (B) · P (A | B).

Problem 2. In September 40% of days are warm and the rest are cool. On warm days there is a
60% chance of rain; on cool days there is a 30% chance of rain. Let R denote the event of rainy
days, C the event of cool days, and W the event of warm days.

(a) Draw a picture. (Start with a rectangle.)
(b) Explain why P (R) = P (R | W )P (W ) + P (R | C)P (C). Find the probability that it is

raining.
(c) Find the conditional probability P (W | R). Find P (C | R) too, while you’re at it.



Proposition (Law of Total Probability). Suppose that B1, . . . , Bn are (disjoint) events that partition
Ω. Then the following identity holds for any event A.

P (A) =
n∑

k=1

P (A | Bk)P (Bk).

Problem 3. Draw a picture illustrating the Law of Total Probability and explain why it follows
from what we’ve already done.

Problem 4. Suppose that three urns each contain red and blue marbles, distributed as follows.
1st urn: 3 red 1 blue
2nd urn: 1 red 1 blue
3rd urn: 2 red 3 blue

Suppose that you choose an urn at random and then choose a marble from that urn at random.
What is the probability that your marble is red? (Hint: The answer is not 6

11 .)
What if we choose Urn 2 with probability 1

2 and the other urns each with probability 1
4?

Problem 5. Drastically change the number of red and/or blue marbles in the various urns and see
what happens to the probability of drawing a red marble. Can you make it very close to 0? very
close to 1?

Definition. Events A and B are independent if

P (A ∩B) = P (A)P (B).

More generally, events Ai, i ∈ I, are pairwise independent if for any different indices i 6= j the
events Ai and Aj are independent. Events Ai, i ∈ I are mutually independent if for any finite
J ⊆ I we have P (

⋂
j∈J Aj) =

∏
i∈J P (Ai).

Problem 6. Suppose that P (A) > 0 and P (B) > 0. Prove that the following are equivalent.1

(a) A and B are independent events.
(b) P (A | B) = P (A).
(c) P (B | A) = P (B).

(Notice that the second and third conditions are not obviously symmetric in A and B, while the first
one is!)

Problem 7. Independence is not the same as disjointness! In fact, neither implies the other.
(a) Give an example of two independent events that are not disjoint.
(b) Give an example of two disjoint events that are not independent.

Problem 8. One implication between ‘pairwise independence’ and ‘mutual independence’ holds;
which is it?

Problem 9. Roll 2 (fair, 6-sided) dice. Consider the following three events.

A = the set of outcomes where the 1st roll is a 3

B = the set of outcomes where the 2nd roll is a 4

C = the set of outcomes where the sum of the two rolls is a 7

Show that A, B, and C are pairwise independent (so there are three things to do!) but not mutually
independent.

1This problem gives a more intuitive way to think about independence: A and B are independent iff knowing one
does not change the likelihood of the other.



Extra practice

Events and probabilities

10. Two fair six-sided dice are painted: each have two sides red, two sides black, one side yellow,
and one side white. If we roll both dice, what is the probability that the dice land with the
same color facing up?

11. A market study determined that 60% of respondents drink coffee, 30% drink both coffee and
tea, and 80% drink one or both of these beverages. What percentage drink tea?

12. Prove the following basic properties carefully, from the axioms of probability:
(a) If A and B are events and A ⊆ B, then P (A) ≤ P (B).
(b) For any event A, we have P (Ac) = 1− P (A). (In particular, P (∅) = 0.)
(c) The Union Bound for finitely many events:

P (A1 ∪ · · · ∪An) ≤
n∑

k=1

P (Ak).

13. The more general version of the Inclusion–Exclusion Lemma can be proved for n events by
induction. Illustrate this by deducing the version for 3 events from the version for 2.

Conditional probability and independence

14. I have three cards; each side of each card is either red or blue. The cards are RR, RB, and
BB. I select a card randomly (uniformly at random) and then show one of its sides at random.
Given that I see a red side, what is the probability that I’m holding the RR card? (Hint:
It’s not 1

2 !)
15. Verify (in the previous example) by conditioning on the probability of each card that the

probability of seeing a red side is 1
2 .

16. I have two coins: one is a normal fair coin, and the other one always shows heads. Suppose
that I choose one of the two coins at random and flip it twice. Given that I see two heads,
what is the probability that I’ve chosen the biased coin?

17. Prove that P (A | B) + P (Ac | B) = 1 for all events A and B (with P (B) > 0).

More practice

18. In poker, a standard deck of 52 cards is used, and a hand consists of 5 cards. You are dealt a
flush if all five cards that you receive have the same suit but are not in order. You are dealt
a straight if all five cards are in sequential order, but at least two suits appear. Assume that
an Ace can be either the highest or the lowest card.2 Assume that you are randomly dealt a
hand of 5 cards.
(a) What is the probability that you are dealt a flush?
(b) What is the probability that you are dealt a straight?
(c) What is the probability that you are dealt a straight flush, i.e., five cards all of the same

suit that are also in sequential order?
19. Prove (this special case of) Bayes’ Theorem:

P (A | B) =
P (A)P (B | A)

P (A)P (B | A) + P (Ac)P (B | Ac)
.

2So e.g. 10♣ J♦ Q♠ K♥ A♥ and A♣ 2♣ 3♣ 4♣ 5♥ are each valid straights.



Part II. Simple Monte Carlo Algorithms

We introduce randomness to our analysis of algorithms in two ways:
1. How long do we expect a (deterministic) algorithm to run on an average input?3

2. Can we improve deterministic algorithms (especially their running time) with access to
random numbers?

We will consider two types of randomized algorithms:
Monte Carlo algorithms: These always run in polynomial time, and they probably return the

correct answer.
Las Vegas algorithms: These probably run in polynomial time, and always return a correct

answer.

Problem 10. Explain how to turn a Las Vegas algorithm into a Monte Carlo algorithm. (NB.
There is no known general way to go the other way, i.e., to turn a MC algorithm into a LV one.)

Finding a top-half element The problem is this: given an array x[1 · · ·n] find k such that xk is
in the top half of the array, i.e., xk ≥ median.

Problem 11. Explain how to solve this problem deterministically after only n/2 comparisons.

Problem 12. Suppose that we choose two elements xi, xj of the array independently at random.
(a) (This does not refer to xj .) Explain why the probability that xi is in the upper half of the

array is ≥ 1/2. Why ≥ and not =?
(b) Prove that, if we simply return max(xi, xj), then our probability of success is ≥ 3/4.

A common trick for Monte Carlo algorithms is to repeat a selection or increase the number of
random selections to increase the likelihood of correctness.

Here we choose k elements instead of 2 and return the max of those k.

Problem 13. Explain why this gives a probability ≥ 1− 1
2k

of success.

(E.g. for k = 100 this is basically 1.) So we have an algorithm that solves the problem with
overwhelming probability using only 100 comparisons (i.e., in O(1) time, independent of n!).

Verifying polynomial identities Polynomials might be given to you in many different forms. For
example, one might be given as a product of monomials and the other in ‘standard form’, e.g.:

(x + 1)(x− 2)(x + 3)(x− 4)(x + 5)(x− 6) = x6 − 7x3 + 25?

Problem 14. Doing as little work as possible, show that the two polynomials above are not equal.

You could multiply the product in O(d2) time, where d is the degree, but let’s do better. Here’s
the idea:

• Suppose that degF (x) = degG(x) = d.
• Choose r ∈ {1, 2, . . . , 100d} uniformly at random.
• If F (r) = G(r) return equal; else return not equal.

Problem 15. How can the algorithm be incorrect? Can it produce a false positive? false negative?

Problem 16.
(a) Show that the probability that the algorithm returns an incorrect answer is ≤ 1

100 .
(b) Explain how, by repeating the algorithm, we can produce an answer that is as accurate as

we’d like.

3A more sophisticated question that follows up to 1: How confident can be be that the outcome will tend toward the
expected value? (E.g. analyze quantities like P (|X − µ| > ε).
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