- Math 416

Worksheet 2. The Gale–Shapley Algorithm

Question. Is there always a stable matching?

Theorem (Gale–Shapley, 1962¹). Yes. In fact, there is an efficient algorithm to find one.

The idea of the algorithm is that each hospital makes an offer to its 1st-choice student, and students with offers accept their best ones. Repeat, until all hospitals are matched.

Algorithm 1: The Gale–Shapley Algorithm						
Input: sets H and S of n hospitals and n students, together with preference lists						
Output: a stable matching						
1 set $M = \emptyset$;						
2 while there is $h \in H$ unmatched that hasn't yet made an offer to every student do						
3 choose such a hospital h						
let $s \in S$ be the highest-ranked (in h's list) student to whom h hasn't yet made an offer ;						
if s is unmatched then						
6 add (h,s) to M ;						
7 else if $(h', s) \in M$ and s prefers h to h' then						
8 replace (h', s) in M by (h, s) ; // h' becomes unmatched						
9 else // s prefers h' to h						
h remains unmatched ;						
11 return M.						

Part I. Analyzing the correctness of the algorithm

Problem 1. Choose an example with n = 3 or n = 4, and run the algorithm on your example. Keep track of the entire execution of the algorithm, i.e., all offers made and accepted / rejected. (To make things more algorithmically interesting, make an example where there are overlapping first choices between the hospitals.)

Observation 1. Every hospital *h* makes offers to students in *decreasing* order of *h*'s preferences.

Problem 2. Explain why Observation 1 is true.

Observation 2. Once $s \in S$ is matched they remain so; and if they switch, they only 'trade up' to a hospital higher on their preference list.

Problem 3. Explain why Observation 2 is true.

Observation 3. The algorithm terminates after $\leq n^2$ iterations of the while loop.

Problem 4. Explain why Observation 3 is true.

(*Hint:* Look at P(t) = the number of offers made at or before the t^{th} iteration. Note that each iteration of the while loop represents a single *proposed offer*, so you should try to bound the number of proposed offers.)

Observation 4. The output M of the algorithm is a perfect matching.

Problem 5. Explain why Observation 4 is true.

(*Hint:* Look at the while loop's condition.)

¹For which Shapley won the Nobel Prize in 2012.

Observation 5. The output M of the algorithm is a stable matching.

Problem 6. Explain why Observation 5 is true.

Problem 7. Fill in the preference arrays below (with $H = \{X, Y\}$ and $S = \{A, B\}$) in such a way that both perfect matchings are stable. Which one would the Gale–Shapley Algorithm produce?

Part II. Analyzing the output of the algorithm.

There can be many stable matchings. It is interesting to ask: Can we characterize the perfect matching from the Gale-Shapley algorithm?

Definition. A pair $(h, s) \in H \times S$ is valid if there exists a stable matching M with $(h, s) \in M$. We also say that h and s are valid partners in this case.

For a *fixed* hospital h, we can consider all possible valid student pairings with h:

$$V_h := \{ s \in S | (h, s) \text{ is valid} \}.$$

Define best(h) to be the highest-ranked (according to h's preferences) student in V_h .

Problem 8. Take a second to discuss this. For example, why do we know V_h is not the empty set?

Theorem. Let $M^* = \{(h, best(h)) : h \in H\}$. Then M^* is a stable matching, and the Gale–Shapley Algorithm always produces M^* .

The matching M^* is called the **hospital-optimal** stable matching.

Problem 9. First prove that M^* is a *perfect* matching.

(*Hint:* First argue that it is enough to show that no two hospitals $h \neq h'$ satisfy best(h) = best(h'). Then assume that there are two hospitals of this kind and use the definition of 'best' to arrive at a contradiction.)

Problem 10. If we prove that the Gale–Shapley Algorithm always produces M^* , then have we completed the proof of the theorem?

Problem 11. Suppose toward a contradiction that the GS Algorithm does not produce M^* .

(a) Argue that there is a hospital h that is rejected by a student s for which (h, s) is a valid pair. We may assume that we are considering the *first* time in the execution of the algorithm that a hospital h is rejected by its valid partner s. Since s is a valid partner of h, there is a stable matching M such that $(h, s) \in M$.

- (b) What can you conclude from the fact that s rejects h?
- (c) Argue that there is a hospital k such that (k, s) forms a blocking pair in M.
- (d) Make sure you have a complete proof of the Theorem.
- (e) Identify clearly the point in your proof where you used the fact that the rejection of h by s was the *first* (in the execution of the algorithm) rejection of a hospital by a valid partner.

Part III. For the interested student.

How are the students doing in M^* , the stable matching produced by GS? Not great. It turns out that M^* is the **student-pessimal** stable matching.

Definition. Let worst(s) be the valid hospital for s that is lowest on s's preference list.

Corollary. $M^* = \{(worst(s), s) : s \in S\}.$

Problem 12.

- (a) Why is it enough to show the inclusion $M^* \supseteq \{(\text{worst}(s), s) : s \in S\}$?
- (b) Finish the proof of the Corollary.

(*Hint:* Assume toward a contradiction that there is a pair $(h, s) \in M^*$ with $h \neq \text{worst}(s)$. This means that there is a stable matching M with $(\text{worst}(s), s) \in M$. Find a blocking pair in M. Don't forget that s = best(h).)

Examples and cultural diversion Fix preference lists for H and S. We define **cost** functions for a stable matching M as follows.

$$c_H(M) = \sum_{h \in H} (\text{rank in } h \text{'s preference list of its match in } M)$$
$$c_S(M) = \sum_{s \in S} (\text{rank in } s \text{'s preference list of its match in } M)$$

(The top choice of h gets rank 1, the next gets rank 2, etc.)

Problem 13. Using our characterization of the GS matching, insert *maximal* in one box and *minimal* in the other:

The GS matching M^* is the stable matching for which c_H is ______. and for which c_S is ______.

Consider the example where the hospitals W, X, Y, Z and the students A, B, C, D have preferences as shown below.

	1^{st}	2^{nd}	$3^{\rm rd}$	4^{th}			1^{st}	2^{nd}	$3^{\rm rd}$	4^{th}
W	A	B	C	D	-	A	Z	Y	X	W
X	B	A	D	C		B	Y	Z	W	X
Y	C	D	A	B		C	X	W	Z	Y
Z	D	C	B	A		D	W	X	Y	Z

Problem 14. Which stable matching does the GS produce? How many iterations of the while loop does the algorithm require before it halts?

Problem 15. This example admits many stable matchings.

- (a) One is $\{WA, XB, YC, ZD\}$. Verify that its c_H is 4 and its c_S is 16.
- (b) Verify that $\{WB, XD, YA, ZC\}$ is a stable matching, and find its costs c_H and c_S .
- (c) Verify that $\{WD, XC, YA, ZB\}$ is a stable matching, and find its costs c_H and c_S .

In light of the hospital-optimality and student-pessimality of the GS matching, you might try to find a stable matching that doesn't favor one side or the other too much. Here are a few attempts to define this.

Definition. A stable matching is called ...

	SH-equal	if	$ c_H(M) - c_S(M) $	
{	balanced	if	$\max\{c_H(M), c_S(M)\}\$	is minimal among all stable matchings.
	egalitarian	if	$c_H(M) + c_S(M)$	

Finding SH-equal or balanced stable matchings is known to be NP-hard. But it's known how to find egalitarian stable matchings in polynomial time!