
Math 416

Worksheet 19. Dynamic Programming II

Dynamic Programming principle. To solve problems, we solve subproblems. There is an
ordering (implicit dag) on the subproblems and a relation that can be used to solve a subproblem
given solutions to previous (in the ordering) subproblems.

Longest increasing subsequences The input: a sequence of n numbers a1, a2, . . . , an. Our goal
is to find the longest increasing subsequence, i.e., the longest sequence ai1 < ai2 < · · · < aik for
1 ≤ i1 < i2 < · · · < ik ≤ n.

Problem 1. Find the longest increasing subsequence in the following.

8 4 12 2 10 6 14 1 9
Problem 2. You might try picking the least term and then the least term to the right of that and
so on. Or pick the greatest term and then the next-greatest to the left of that one and so on. Why
do these ideas not work? (Give examples.) Why do they naturally lead to a dynamic-programming
method?

Problem 3. Given a sequence (a1, . . . , an), build a directed graph with vertices 1, 2, . . . , n. Say
that (i, j) is an edge iff i < j and ai < aj .

(a) Why is this graph acyclic?
(b) Paths in the graph correspond to subsequences.
(c) What is the graph corresponding to the sequence in Problem 1?
(d) Write L[j] for the length of the longest increasing subsequence ending in aj . How does L[j]

relate to L[i] for other i?
Use this relation to write a dynamic-programming algorithm that solves this problem.

Problem 4. Run the algorithm to find the longest increasing subsequence of the sequence below.

5 2 8 6 3 6 9 7
Again, you can recover the subsequence itself using backpointing. The algorithm runs in O(n2)

time in the worst case.

Problem 5. Why does this longest-increasing-subsequence algorithm run in O(n2) time, in the
worst case?

Edit distance Given two strings x1, . . . , xm and y1, . . . , yn, we want to measure how well they can
be aligned (e.g. for a spellcheck).

The edit distance of two strings is the minimum number of edits—insertions, deletions, and
substitutions of characters—needed to transform one string into the other.

Problem 6. An alignment of two strings is a way of writing the strings one on top of the other,
possibly with the additional placeholder character ‘-’ inserted, so that they have the same length.
The cost of an alignment is the number of mismatches, i.e., columns in which the characters are
different. (See the next example.)

Convince yourself that the edit distance of two strings equals the minimum cost of an alignment
of the two strings.

Example. ocurrance versus occurrence:
o-currance o-curr-ance
occurrence occurre-nce



The comparison on the left has 1 gap and 1 mismatch, so its cost is 1 + 1 = 2. The comparison on
the right has 3 gaps, giving a cost of 3.

To solve this problem using dynamic programming, we need to choose subproblems and see how a
subproblem can be solved by assembling solutions to smaller subproblems.

The right subproblems to consider for this problem are bi-initial segments (or prefixes):

x1 x2 · · · xi i ≤ m,

y1 y2 · · · yj j ≤ n.

Let E(i, j) be the edit distance of the initial segments x1 · · ·xi and y1 · · · yj . We want E(m,n).

Problem 7 (relation between subproblems). When aligning x1 · · ·xi and y1 · · · yj , three things can
happen at the right end:

xi
- ,

-
yj
, or xi

yj
.

Fill in the blanks.

if we have xi
- on the right then: E(i, j) = .

if we have -
yj

on the right then: E(i, j) = .

if we have xi
yj

on the right then: E(i, j) = , where ∆(a, b) =

{
0 if a = b

1 if a 6= b
.

So we have the crucial relation between subproblems.

E(i, j) = min

(
, ,

)
.

The idea of the algorithm is this. We store E(i, j) in an (m+ 1)× (n+ 1) table; before computing
E(i, j) we need to have computed E(i− 1, j), E(i, j − 1), and E(i− 1, j − 1). The base cases are
E(i, 0) = i and E(0, j) = j.
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i
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Figure 1. The table of subproblems E(i, j). Entries E(i − 1, j), E(i, j − 1), and
E(i− 1, j − 1) are needed to fill in E(i, j).

Problem 8. Use the edit-distance algorithm to compute the edit distances between the following
pairs of strings (or at least, say, two of the pairs):

ALGORITHM MATH MISPPEEL
ALGOREISM MOUTH MISSPELL



Problem 9. Write the algorithm in pseudocode and analyze its running time.

Problem 10. How should our algorithm be modified to give the optimal alignment, in addition to
the edit distance?

Problem 11. Every dynamic-programming problem has an underlying (weighted) dag structure
on the subproblems. What dag models the edit-distance problem? What does a solution correspond
to in the dag?

Problem 12. As we’ve presented the problem, the three possible operations — insertion, deletion,
and substitution—each have the same cost in the computation of edit distance. Specific applications
might call for different definitions of distance that e.g. assign insertions and deletions higher costs
than substitutions. Briefly discuss how the algorithm should be modified to accommodate changes
like this.

Knapsack problems We have n items to choose from; their values are v1, . . . , vn and their weights
are w1, . . . , wn. Our knapsack has a capacity of W . What’s the most valuable combination of items
we can fit in the knapsack, so that the weight doesn’t exceed W?

We will study two variants of this question:
(a) with repetition (unlimited supply of each item)
(b) no repetition (there is only one of each item)

Example. Say W = 6 and we have three items:
w1 = 2 w2 = 4 w3 = 3
v1 = 5 v2 = 10 v3 = 8

The optimal solution with repetition is 3 3 (i.e., select two of item 3).
The optimal solution without repetition is .

Knapsack with repetition

Problem 13. A first attempt at solving the knapsack problem might be to greedily add items that
offer the most value per unit of weight; i.e., add items maximizing vi/wi as long as this is possible.
Does this work? Why or why not?

We consider these subproblems: for w ≤W let K(w) be the max value of a knapsack of capacity
w.

This is the crucial relation between subproblems:

K(w) = .

Problem 14. Write the algorithm in pseudocode.

Problem 15. Explain why this algorithm runs in O(nW ) time. Is this efficient?

Problem 16. What dag models the knapsack problem? What does a solution correspond to in the
dag?

Knapsack without repetition Now we don’t allow repetitions; each item can be used only once.

Problem 17. Explain why the previous approach won’t work if repetitions aren’t allowed.

So we need to divide into subproblems more carefully. For w ≤W and j ≤ n let K(w, j) = the
maximum value achievable using a knapsack of capacity w and items 1, . . . , j. So we seek K(W,n).

Problem 18. Either item j is needed, or it isn’t. This gives the following crucial relation between
subproblems.

K(w, j) = .



Problem 19. Now write the algorithm in pseudocode.

Problem 20. What is the worst-case running time of this algorithm?
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